Subrota Kumar Mondal
Assistant Professor
Department: School of Computer Science and Engineering
Tel.: 8897 3007
Office: A304a
E-mail: skmondal@must.edu.mo

Academic Qualification

Ph.D. in Computer Science and Engineering, Hong Kong University of Science and Technology

B.Sc. in Computer Science and Engineering, Khulna University of Engineering and Technology

 

Teaching Area

Operating Systems, Deep Learning, Software Engineering, Software Project Management

 

Research Area

Cloud/Serverless Computing, Deep Learning, NLP, Cybersecurity, Smart City

 

Working Experience

Sep 2018 - Present, Assistant Professor, Macau University of Science and Technology, Macao, China

Sep 2017 - Aug 2018, Postdoctoral Fellow, The Hong Kong Polytechnic University, Hong Kong, China

Dec 2016 - Aug 2017, Software Developer, iSunCloud Limited, Hong Kong, China

Sep 2015 - Nov 2016, Instructional Assistant, HKUST, Hong Kong, China

Sep 2011 - Aug 2015, Research Assistant and Teaching Assistant, HKUST, Hong Kong, China

Jun 2013 - Aug 2013, Summer Intern, Infosys Lab, India

Apr 2009 - Aug 2011, Lecturer, Pabna University of Science and Technology (PUST), Bangladesh

Jan 2008 - Mar 2009, Services Engineer, LM Ericsson Bangladesh Limited, Bangladesh

 

Academic Publication (selected)

[Articles Published in Journals]

1.      Mondal, S. K., Pan, W., Dai, H. N., Chen, Y., & Wang, H. (2025). An Empirical Study of Container Escape: Penetration Test, Root Cause Analysis, Defense Mechanism, and Further Study. China Communications, 0-40.

2.      Ni, K., Mondal, S. K., Kabir, H. D., Tan, T., & Dai, H. N. (2024). Toward security quantification of serverless computing. Journal of Cloud Computing, 13(1), 140.

3.      Kabir, H. D., Mondal, S. K., Alam, S. B., & Acharya, U. R. (2024). Transfer learning with spinally shared layers. Applied Soft Computing, 163, 111908.

4.      Mondal, S. K., Zheng, Z., & Cheng, Y. (2024). On the Optimization of Kubernetes toward the Enhancement of Cloud Computing. Mathematics, 12(16), 2476.

5.      Mondal, S. K., Wang, C., Chen, Y., Cheng, Y., Huang, Y., Dai, H. N., & Kabir, H. D. (2024). Enhancement of English-Bengali Machine Translation Leveraging Back-Translation. Applied Sciences, 14(15), 6848.

6.      Kabir, H. D., Mondal, S. K., Khanam, S., Khosravi, A., Rahman, S., Qazani, M. R. C., ... & Acharya, U. R. (2023). Uncertainty aware neural network from similarity and sensitivity. Applied Soft Computing, 149, 111027.

7.      Mondal, S. K., Zhang, H., Kabir, H. D., Ni, K., & Dai, H. N. (2023). Machine translation and its evaluation: a study. Artificial Intelligence Review, 56(9), 10137–10226.

8.      Song, Y., Wang, T., Cai, P., Mondal, S. K., & Sahoo, J. P. (2023). A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities. ACM Computing Surveys55(13s), 1-40.

9.      Mondal, S. K., Wu, X., Kabir, H. M. D., Dai, H. N., Ni, K., Yuan, H., & Wang, T. (2023). Toward Optimal Load Prediction and Customizable Autoscaling Scheme for Kubernetes. Mathematics, 11(12), 2675.

10.  Kabir, H. D., Abdar, M., Khosravi, A., Nahavandi, D., Mondal, S. K., Khanam, S., ... & Suganthan, P. N. (2023). Synthetic Datasets for Numeric Uncertainty Quantification: Proposing Datasets for Future Researchers. IEEE Systems, Man, and Cybernetics Magazine, 9(2), 39-48.

11.  Mondal, S. K.; Tan, T.; Khanam, S.; Kumar, K.; Kabir, H.M.D.; Ni, K. Security Quantification of Container-Technology-Driven E-Government Systems. Electronics 2023, 12, 1238.

12.  Guan, M., Mondal, S. K., Dai, H. N., & Bao, H. (2023). Reinforcement learning-driven deep question generation with rich semantics. Information Processing & Management60(2), 103232.

13.  Mondal, S. K., Pan, R., Kabir, H. M., Tian, T., & Dai, H. N. (2022). Kubernetes in IT administration and serverless computing: An empirical study and research challenges. The Journal of Supercomputing, 78(2), 2937-2987.

14.  Kabir, H.D., Khanam, S., Khozeimeh, F., Khosravi, A., Mondal, S. K., Nahavandi, S. & Acharya, U.R., 2022. Aleatory-aware deep uncertainty quantification for transfer learning. Computers in Biology and Medicine, p.105246.

15.  Chen, Z., Wang, T., Cai, H., Mondal, S. K., & Sahoo, J. P. (2021). BLB-gcForest: A High-Performance Distributed Deep Forest with Adaptive sub-Forest Splitting, IEEE Transactions on Parallel & Distributed Systems, (01), 1-1, (2021).    

16.  Zhang, Z., Dai, H. N., Zhou, J., Mondal, S. K., García, M. M., & Wang, H., Forecasting Cryptocurrency Price Using Convolutional Neural Networks with Weighted and Attentive Memory Channels, Expert Systems with Applications, 115378, 2021.

17.  Kabir, H.D., Khosravi, A., Mondal, S. K., Rahman, M.M., Nahavandi, S. and Buyya, R., Uncertainty-aware Decisions in Cloud Computing: Foundations and Future Directions, ACM Computing Surveys (CSUR), 54(4), 1-30. 2021.

18.  King-Hang Wang, Mondal, S. K., Ki Chan, and Xiaoheng Xie, A Review of Contemporary E-voting: Requirements, Technology, Systems and Usability, Data Science and Pattern Recognition, vol. 1(1), pp. 31-47, 2017.

19.  Mondal, S. K.; Muppala, J. K.; Machida, F., Virtual Machine Replication on Achieving Energy-Efficiency in a Cloud, Electronics, 5(3), 37, 2016.

20.  Mondal, S. K.; Xiaoyan Yin; Muppala, J.K.; Alonso Lopez, J.; Trivedi, K.S., Defects per Million Computation in Service-Oriented Environments, IEEE Transactions on Services Computing, vol.8, no.1, pp.32-46, Jan.-Feb. 2015.

[Book Chapter]

1.      Mondal, S. K.; Machida, F.; Muppala, J.K., Service Reliability Enhancement in Cloud by Checkpointing and Replication, In Principles of Performance and Reliability Modeling and Evaluation, pp.425-448. Springer International Publishing, 2016.

[Articles in Conference Proceedings]

1.      Li, H., & Mondal, S. K. (2024, September). Automation Framework Foundation for Continuous Integration with Docker. In Proceedings of the 2024 4th International Conference on Artificial Intelligence, Automation and Algorithms (pp. 70-75).

2.      Mondal, S. K., Wu, X., & Pan, R. (2024, September). On Rapid Application Deployment with Kubernetes. In Proceedings of the 2024 4th International Conference on Artificial Intelligence, Automation and Algorithms (pp. 76-80).

3.      Zhou, Y., & Mondal, S. K. (2024, September). On Optimization of Traffic Sign Recognition using Improved YOLOv5 Algorithm. In Proceedings of the 2024 4th International Conference on Artificial Intelligence, Automation and Algorithms (pp. 104-109).

4.      Dai, F., & Mondal, S. K. (2024, July). Toward Automatic Number Plate Recognition: A Deep Learning Based Study for Macau. In 2024 IEEE International Conference on Software Services Engineering (SSE) (pp. 303-312). IEEE.

5.      Huang, Y., Mondal, S. K., Cheng, Y., & Wang, C. (2024, July). On Optimization of Traditional Chinese Character Recognition. In 2024 IEEE International Conference on Software Services Engineering (SSE) (pp. 293-302). IEEE.

6.      He, J., Zhao, W., Li, Z., Huang, J., Li, P., Zhu, L., ... & Mondal, S. K. (2023, August). Reference-Based Line Drawing Colorization Through Diffusion Model. In Computer Graphics International Conference (pp. 362-372). Cham: Springer Nature Switzerland.

7.      Mohanty, S., Dash, A., Mohapatra, S., Sahoo, A., & Mondal, S. K. (2023). Performance Enhancement of the Healthcare System Using Google Cloud Platform. In Advances in Distributed Computing and Machine Learning: Proceedings of ICADCML 2023 (pp. 175-186). Singapore: Springer Nature Singapore.

8.      Khanam, S., Qazani, M. R. C., Mondal, S. K., Kabir, H. D., Sabyasachi, A. S., Asadi, H., ... & Nahavandi, S. (2022, October). CoV-TI-Net: transferred initialization with modified end layer for COVID-19 diagnosis. In 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2237-2243). IEEE.

9.      Mondal, S. K., Sahoo, JP., Wang J., Mondal, K., & Rahman, M. (2022, Jan), Fake News Detection exploiting TF-IDF Vectorization with Ensemble learning Models, In Advances in Distributed Computing and Machine Learning (pp. 261-270).  Springer, Singapore, 2022.

10.  Kumar, K., Khanam, S., Bhuiyan, M. M. I., Qazani, M. R. C., Mondal, S. K., Asadi, H., ... & Nahavandi, S. (2021, December), SpinalXNet: Transfer Learning with Modified Fully Connected Layer for X-Ray Image Classification, In 2021 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE) (pp. 1-7). IEEE, 2021.

11.  Sabyasachi, A. S., Kabir, H. M. D., & Mondal, S. K., (2021, March). Dynamic Spot Pricing and Instance Acquisition in Public Clouds, In 2020 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2020.

12.  Mondal, S. K., Pei, Y., Dai, H. N., Kabir, H M D., & Sahoo, J. P. (2020, Dec). Boosting UI Rendering in Android Applications, In 2020 IEEE International Conference on Software Quality, Reliability and Security (QRS)-Industry Track, IEEE, 2020.

13.  Chang, N., Wang, L., Pei, Y., Mondal, S. K, & Li, X. (2018, July). Change-Based Test Script Maintenance for Android Apps, In 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS) (pp. 215-225). IEEE.

14.  Sabyasachi, A. S., Kabir, H. M. D., Abdelmoniem, A. M., & Mondal, S. K. (2017, September). A Resilient Auction Framework for Deadline-Aware Jobs in Cloud Spot Market, In Reliable Distributed Systems (SRDS), 2017 IEEE 36th Symposium on (pp. 247-249). IEEE.

15.  Mondal, S. K., Sabyasachi, A. S., & Muppala, J. K. (2017, January). On Dependability, Cost and Security Trade-Off in Cloud Data Centers, In Dependable Computing (PRDC), 2017 IEEE 22nd Pacific Rim International Symposium on (pp. 11-19). IEEE, 2017  

16.  Mondal, S. K.; Abadhan S. S.; Muppala J. K., On Boosting Cloud Service Dependability through Optimized Checkpointing, 2016 International Conference On Cloud Computing And Big Data (CloudCom-Asia)., The Hong Kong Polytechnic University, Hong Kong, 2016

17.  Mondal, S. K.; Muppala, J.K.; Trivedi, K.S., Defects Per Million (DPM): A user-oriented perspective of telecommunication systems, Globecom Workshops (GC Wkshps), 2014 , vol., no., pp.711-716, 8-12 Dec. 2014

18.  Mondal, S. K.; Muppala, J.K., Energy Modeling of Virtual Machine Replication Schemes with Checkpointing in Data Centers, Big Data and Cloud Computing (BdCloud), 2014 IEEE Fourth International Conference on, vol., no., pp.633-640, 3-5 Dec. 2014

19.  Mondal, S. K.; Muppala, J.K.; Machida, F.; Trivedi, K.S., Computing Defects per Million in Cloud Caused by Virtual Machine Failures with Replication, Dependable Computing (PRDC), 2014 IEEE 20th Pacific Rim International Symposium on , vol., no., pp.161-168, 18-21 Nov. 2014

20.  Mondal, S. K.; Muppala, J.K., Energy Modeling of Different Virtual Machine Replication Schemes in a Cloud Data Center, Internet of Things(iThings), 2014 IEEE International Conference on, and Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing(CPSCom), IEEE , vol., no., pp.486-493, 1-3 Sept. 2014

21.  Mondal, S. K.; Muppala, J.K., Defects per Million (DPM) Evaluation for a Cloud Dealing with VM Failures Using Checkpointing, Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on, vol., no., pp.672-677, 23-26 June 2014

22.  Dey, T.; Hashem, M.M.A.; Mondal, S.K., On performance analysis of AMBR protocol in mobile ad hoc networks, Computer and Communication Engineering, 2008. ICCCE 2008. International Conference on, vol., no., pp.128-132, 13-15 May 2008

23.  Dey, T.; Mondal, S. K.; Hashem, M.M.A., Performance enhancement of ad hoc networks with adaptive monitor based routing, Radio and Wireless Symposium, 2008 IEEE , vol., no., pp.263-266, 22-24 Jan. 2008

 

Professional Certification and Awards

Certified Kubernetes Administrator (CKA), Cloud Native Computing Foundation (CNCF), The Linux Foundation, 2020

Certified Kubernetes Application Developer (CKAD), Cloud Native Computing Foundation (CNCF), The Linux Foundation, 2020

 

Professional Society Membership

Member, Institute of Electrical and Electronics Engineers (IEEE)