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Abstract
We prove that the Gram–Schmidt orthogonalization process can be carried out in
Hilbert modules over Clifford algebras, in spite of the un-invertibility and the un-
commutativity of general Clifford numbers. Then, we give two crucial applications of
the orthogonalization method. One is to give a constructive proof of existence of an
orthonormal basis of the inner spherical monogenics of order k for each k ∈ N. The
second is to formulate the Clifford Takenaka–Malmquist systems, or in other words,
the Clifford rational orthogonal systems, as well as to define Clifford Blaschke product
functions, in both the unit ball and the half space contexts. The Clifford TM systems
then are further used to establish an adaptive rational approximation theory for L2

functions in Rm and on the sphere.

Keywords Takenaka–Malmquist system · Adaptive approximation · Clifford
algebra · Monogenic Hardy space

Mathematics Subject Classification 30G35 · 41A20 · 46S10

1 Introduction

Due to importance of orthonormal bases in both theoretical analysis and practical
applications, for a system of functions, F , in a Hilbert space, the questions of exis-
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tence, and explicit composition if existing, of an orthogonal system equivalent to F
naturally arise. If the functions inF are complex-valued, existence of an orthonormal
basis ofF is guaranteed by the Gram–Schmidt (GS) orthogonalization process, but in
the case of Clifford number-valued functions it is not obvious, since Clifford algebras
are non-commutative and Clifford numbers are usually un-invertible. In Clifford anal-
ysis there is a problem: How to find an orthonormal basis for the Fueter polynomials
of degree k (i.e., the inner spherical monogenics of order k)? This problem appears,
because there are more than one Fueter polynomials of degree k and they are not mutu-
ally orthogonal. In [6] the existence was proved by induction on dimensions, but no
explicit forms were given. In [3] an explicit form was constructed in three dimensions
using the Gelfand–Tsetlin bases, but the construction is too complicated for higher
dimensions. The mentioned construction is also applicable to the Hermitean Clifford
analysis and to some other systems as well ([5, 7]).

In this paper we show that the GS orthogonalization process can be applied to
general Clifford module Hilbert spaces. This is through proving that the orthogonal
projection of a function onto the subspace spanned by some other function exists. We
present here a direct construction of an orthonormal basis for a system of Clifford
number-valued functions. When we consider some common and familiar functions,
such as Fueter polynomials and parameterized Szegö kernel functions, the construction
has a concrete expression involving inverse of the Clifford-valued inner product. As
applications, we give a constructive proof of existence of an orthonormal basis of the
inner spherical monogenics of order k for each k ∈ N, and generalize the Takenaka–
Malmquist (TM) systems into higher dimensions. It is well-known that the TM, or
the rational orthogonal systems in one complex variable have attracted, and being
attracting as well, great interest among analysts due to their theoretical involvements
and applications.

The extended orthogonalization method has potential to establish approximation
methods to Clifford number-valued functions of finite energy on manifolds of Rn .
In this paper we emphasize a direct extension of the recently established adaptive
approximation by TM systems in the one complex variable case ([9, 12, 14]). The
type of adaptive approximation theory has also been generalized to some several
complex variables and matrix-valued contexts with applications, see the works [1, 2,
17] by Alpay et al.

The paper is organized as follows. In Sect. 2 we review Clifford algebra and Clif-
ford analysis. In Sect. 3 we study orthogonalization of function systems in the right
Am-module inner product space. In Sect. 4 we give definitions for TM systems and
Blaschke products in general higher dimensions. In the last section, we study adap-
tive approximation by Clifford TM systems in the unit ball and half space in higher
dimensions.
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2 Preliminaries

In this paper wework on the real Clifford algebraAm that generated by an orthonormal
basis {e1, . . . , em} of Rm with the (non-commutative) multiplication rule:

ei e j + e j ei = −2δi j , i, j = 1, . . . ,m,

where δi j equals 1 if i = j and 0 otherwise. Each element x in Am is of the form:

x =
∑

T∈PN

xT eT ,

where xT ∈ R, eT = ei1,...,il := ei1ei2 . . . eil is the basic element of Am , T =
{i1, . . . , il}, 1 ≤ i1 < · · · < il ≤ m, PN is the set consisting of all the ordered
subsets of {1, . . . ,m}. In addition we set x∅ = x0, e∅ = e0, e0 is identified with the
multiplication unit “1”. The multiplication of Clifford numbers is determined by the
multiplication of the basic elements through linearity and the law of distribution. Let
eA, eB be any two basic elements in Am , their multiplication is defined by

eAeB = (−1)#(A
⋂

B)(−1)p(A,B)eA�B,

where p(A, B) = ∑
j∈B p(A, j), p(A, j) = #{i ∈ A : i > j}, A�B = (A \

B)
⋃

(B \ A) is the symmetric difference of A and B. Together with the multiplication,
Am is an associative algebra of dimension 2m .

For x = ∑
T xT eT ∈ Am , we call x0 the real part or scalar part of x , denote it

by Sc x . NSc x := x − Sc x is then the non-scalar part of x . The norm and the
conjugate of x are defined by |x | = (

∑
T x2T )1/2 and x = ∑

T xT eT , respectively,
where eT = eil · · · ei2 ei1 , and e0 = e0, ei = −ei for i �= 0. For any x, y, z ∈ Am ,
there hold xy = y x , (xy)z = x(yz), and |xy| ≤ 2m/2|x ||y|. The real numbers,
complex numbers and quaternions are special cases of Clifford algebra, i.e., we have
A0 = R, A1 = C, and A2 = H.

For any x ∈ Am , we have Sc(xx) = Sc(xx) = |x |2. If x ∈ Am is of vector form,
i.e., x = ∑m

i=0 xi ei ∈ R
m+1, then obviously xx = xx = |x |2. Consequently, in such

a vector case, the inverse of x is given by x−1 = x/|x |2 when x �= 0. However, for a
general Clifford number x , the inverse of x may not exist. That is to say, the Clifford
algebra Am is not a division algebra. Here we give a criterion for a Clifford number
being invertible or not.

Proposition 2.1 Let a ∈ Am, the following conclusions are equivalent:

1. The equation ax = 0 (or xa = 0) has only zero solution x = 0.
2. a is invertible, i.e., there exists a unique b ∈ Am, such that ab = ba = 1.
3. there exists b ∈ Am, such that ab = 1 (or ba = 1).

Proof (1) ⇒ (2): Note that the equation ax = 0 can be written in the matrix form
AX = 0, where A is a 2m × 2m matrix associated with a, X = (x0, x1, . . .)� is the
column vector whose components correspond to those of its algebraic representation.
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From this viewpoint, ax = 0 has only zero solution x = 0 means that the linear
system of equations AX = 0 has only zero solution X = 0. Therefore, the matrix A
is invertible, and the equation AX = (1, 0, . . . , 0)� has a unique solution, given by
X = A−1(1, 0, . . . , 0)�, which also gives the unique b ∈ Am , such that ab = 1. To
prove ba = 1, consider the equation xa = 0, we get x = xab = 0, so xa = 0 has
only zero solution x = 0. Similarly, we get a unique c ∈ Am , such that ca = 1, and
c = cab = b, hence ba = 1.

(2) ⇒ (3): It is obvious.
(3) ⇒ (1): Similar to the proof of (1) ⇒ (2). 	

Clifford analysis was founded by Brackx et al. ([4]). As a generalization of complex

analysis and quaternionic analysis into higher dimensional spaces, Clifford analysis
is a theory on Clifford monogenic functions. A function f = ∑

T∈PN fT eT , defined
on an open subset � of Rm+1, taking values inAm , is said to be left monogenic on �

if it satisfies the generalized Cauchy–Riemann equation:

Df =
m∑

i=0

ei
∂ f

∂xi
=

m∑

i=0

∑

T∈PN

∂ fT
∂xi

ei eT = 0,

for all x ∈ �, where the Dirac operator D is defined by

D = ∂

∂x0
+ ∇ =

m∑

i=0

ei
∂

∂xi
.

If f is left monogenic, then � f = D(Df ) = 0, so f is harmonic. The set of all left
monogenic functions on � constitutes a right Am-module.

If f is left monogenic on� and continuous on�, then there holds Cauchy’s integral
formula:

f (x) = 1

ωm

∫

y∈∂�

E(y − x)n(y) f (y)dS, x ∈ �,

where E(x) = x
|x |m+1 is the Cauchy kernel, ωm = 2π

m+1
2 /�(m+1

2 ) is the area of the

unit sphere in R
m+1, n(y) is the outward-pointing unit normal vector and dS is the

surface area element on ∂�.
For right monogenic functions there is a parallel theory.

3 Orthogonalization in Hilbert modules over Clifford algebras

In this section, we discuss the orthogonalization problem of a rightAm-module inner
product space (for the case of leftAm-modules one can similarly formulate). First, we
give some definitions (cf. [4]).

Definition 3.1 A spaceH is called a rightAm-module if the following conditions are
fulfilled:
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1. (H ,+) is an abelian group.
2. A multiplication ( f , λ) → f λ from H × Am to H is defined such that for all

λ,μ ∈ Am and f , g ∈ H there holds

(1) f (λ + μ) = f λ + f μ.
(2) f (λμ) = ( f λ)μ.
(3) ( f + g)λ = f λ + gλ.
(4) f e0 = f .

Definition 3.2 A spaceH is called a rightAm-module normed space if the following
conditions are fulfilled:

1. H is a right Am-module.
2. A norm ‖ · ‖ is defined on H , such that

(1) ‖ f ‖ ≥ 0 for all f ∈ H , and ‖ f ‖ = 0 if and only if f = 0.
(2) There is a real positive constantC , such that ‖ f λ‖ ≤ C |λ|‖ f ‖ for all λ ∈ Am ,

f ∈ H , and ‖ f λ‖ = |λ|‖ f ‖ for all λ ∈ R, f ∈ H .
(3) ‖ f + g‖ ≤ ‖ f ‖ + ‖g‖ for all f , g ∈ H .

Definition 3.3 A space H (in which the element is also named “function”) is called
a right Am-module inner product space if the following conditions are fulfilled:

1. H is a right Am-module.
2. An inner product ( f , g) → 〈 f , g〉 from H × H to Am is defined such that for

all λ,μ ∈ Am and f , g, h ∈ H there holds

(1) 〈 f , g〉 = 〈g, f 〉.
(2) 〈 f λ + gμ, h〉 = 〈 f , h〉λ + 〈g, h〉μ.
(3) Sc〈 f , f 〉 ≥ 0, and Sc〈 f , f 〉 = 0 if and only if f = 0.
(4) |Sc〈 f , g〉| ≤ √

Sc〈 f , f 〉√Sc〈g, g〉.
We have the following propositions for the right Am-module inner product space.

Proposition 3.4 LetH be a rightAm-module inner product space, then for any f , g ∈
H

|〈 f , g〉| ≤ 2
m
2
√
Sc〈 f , f 〉√Sc〈g, g〉.

In particular

|〈 f , f 〉| ≤ 2
m
2 Sc〈 f , f 〉.

Proof Writing 〈 f , g〉 = ∑
T∈PN 〈 f , g〉T eT , for every T ∈ PN we get

〈 f , g〉2T = (Sc(eT 〈 f , g〉))2
= (Sc〈 f , geT 〉)2
≤ (Sc〈 f , f 〉)(Sc〈geT , geT 〉)
= (Sc〈 f , f 〉)(Sc(eT 〈g, g〉eT ))

= (Sc〈 f , f 〉)(Sc〈g, g〉),
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so |〈 f , g〉| = (
∑

T∈PN 〈 f , g〉2T )1/2 ≤ 2
m
2
√
Sc〈 f , f 〉√Sc〈g, g〉. 	


Proposition 3.5 Every rightAm-module inner product spaceH is a rightAm-module
normed space with the induced norm ‖ f ‖ := √

Sc〈 f , f 〉 for f ∈ H .

Proof For any λ ∈ Am and f , g ∈ H ,

‖ f λ‖ = √
Sc〈 f λ, f λ〉

=
√
Sc(λ〈 f , f 〉λ)

=
√
Sc(λλ〈 f , f 〉)

≤
√

|λλ||〈 f , f 〉|
≤

√
2

m
2 |λ|2 · 2m

2 ‖ f ‖2
= 2

m
2 |λ|‖ f ‖,

and ‖ f + g‖2 = Sc〈 f + g, f + g〉 = Sc(〈 f , f 〉+2〈 f , g〉+〈g, g〉) ≤ (‖ f ‖+‖g‖)2.
	


A complete right Am-module normed space is called a right Am-module Banach
space, and a complete right Am-module inner product space is called a right Am-
module Hilbert space. The case for the left Am-module can be similarly formulated.

Lemma 3.6 If H is a right Am-module inner product space, then for any function
f ∈ H , { f c : c ∈ Am} is a close subspace of H .

Proof Our goal is to show that if ‖ f cN − f cM‖ → 0 (N , M → ∞), then there exists
c ∈ Am such that ‖ f cN − f c‖ → 0 as N → ∞. Because

‖ f cN − f cM‖2 = Sc〈 f (cN − cM ), f (cN − cM )〉
= Sc((cN − cM )〈 f , f 〉(cN − cM )) ≥ 0,

‖ f cN − f cM‖2 can be seen as a positive semidefinite quadratic form of cN − cM .
Now, we treat cN −cM as a column vector whose i th component coincides with the i th
component of its algebraic form, and denote by A the real symmetric matrix associated
with the quadratic form ‖ f cN − f cM‖2, which is determined by 〈 f , f 〉. Then, we
have

‖ f cN − f cM‖2 = (cN − cM )�A(cN − cM ).

Let � be the orthogonal matrix, such that ��A� is a diagonal matrix. Without loss
of generality, we assume that ��A� = diag(λ1, . . . , λk, 0, . . . , 0) with λ1, . . . , λk
being positive, and write cN − cM = �(dN − dM ), then

‖ f cN − f cM‖2 = (dN − dM )���A�(dN − dM )

= λ1(dN1 − dM1)
2 + · · · + λk(dNk − dMk )

2 → 0,
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which means dN1 − dM1 → 0, . . . , dNk − dMk → 0 as N , M → ∞. By the
completeness of the real numbers, there exists d1, . . . , dk , such that dN1 − d1 →
0, . . . , dNk − dk → 0 as N → ∞. Now, let d = (d1, . . . , dk, 0, . . . , 0)�, c = �d,
then

‖ f cN − f c‖2 = (dN − d)���A�(dN − d)

= λ1(dN1 − d1)
2 + · · · + λk(dNk − dk)

2 → 0

as N → ∞. 	


Lemma 3.7 If H is a right Am-module inner product space, then for any functions
α, β ∈ H , the orthogonal projection of α onto the subspace spanned by β uniquely
exists, denoted by Pspan{β}α.

Proof The purpose is to show that there exists a unique βc such that

‖α − βc‖ = inf
c′∈Am

‖α − βc′‖,

and such βc satisfies

〈α − βc, β〉 = 0.

Let d = infc′∈Am ‖α − βc′‖, then for any N ∈ N+ there exists cN ∈ Am , such that
d ≤ ‖α − βcN‖ ≤ d + 1

N . By the parallelogram identity,

‖βcN − βcM‖2 = ‖(α − βcN ) − (α − βcM )‖2

= 2(‖α − βcN‖2 + ‖α − βcM‖2) − 4

∥∥∥∥α − β
cN + cM

2

∥∥∥∥
2

≤ 2

((
d + 1

N

)2

+
(
d + 1

M

)2
)

− 4d2 → 0

as N , M → ∞. By Lemma 3.6, {βcN }∞N=1 has a limit βc, so by the continuity of the
norm we get ‖α − βc‖ = d. To prove the uniqueness, suppose there is another β c̃
satisfying ‖α − β c̃‖ = d, then

‖βc − β c̃‖2 = 2(‖α − βc‖2 + ‖α − β c̃‖2) − 4

∥∥∥∥α − β
c + c̃

2

∥∥∥∥
2

≤ 4d2 − 4d2 = 0,
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which implies βc = β c̃. Finally, we turn to show that 〈α−βc, β〉 = 0. For any x ∈ R,
we have

d2 ≤ ‖α − βc − βx‖2
= Sc〈α − βc − βx, α − βc − βx〉
= ‖α − βc‖2 − 2xSc〈α − βc, β〉 + x2‖β‖2
= d2 − 2xSc〈α − βc, β〉 + x2‖β‖2.

Therefore

−2xSc〈α − βc, β〉 + x2‖β‖2 ≥ 0,

for all x ∈ R, which implies

Sc〈α − βc, β〉 = 0.

After replacing βx by βeT x for each T ∈ PN and repeating the above discussions,
we see that every component of 〈α − βc, β〉 equals 0. Hence, 〈α − βc, β〉 = 0. 	


Remark 3.8 In the above proof the orthogonal projection βc is unique, but c ∈ Am

may not be unique. This is different from the case of complex inner product space.

As a consequence of Lemma 3.7 we have

Theorem 3.9 Let {αn}∞n=1 be a sequence of functions in a right Am-module inner
product space H . Set

β1 = α1,

β2 = α2 − Pspan{β1}α2,

...

βn = αn −
n−1∑

i=1

Pspan{βi }αn,

...

then {βn}∞n=1 is an orthogonal system of functions in H .

As an application, we now consider the inner spherical monogenics of order k
(k ∈ N) in Clifford analysis (playing an analogous role as the powers of the complex
variable z), denoted by

Mk = {Vl1,...,lk : (l1, . . . , lk) ∈ {1, . . . ,m}k},
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where by definition V0(x) = e0,

Vl1,...,lk = 1

k!
∑

π(l1,...,lk )

zl1 . . . zlk ,

in which the sum runs over all distinguishable permutations of l1, . . . , lk , and the
hyper-complex variables

zl = xle0 − x0el , l = 1, . . . ,m.

For f , g ∈ ⋃
k∈NMk , the inner product is defined by

〈 f , g〉 := 1

ωm

∫

Sm
g f dS,

with the induced norm

‖ f ‖ := (Sc〈 f , f 〉)1/2 =
(

1

ωm

∫

Sm
| f |2dS

)1/2

,

where Sm is the unit sphere in R
m+1 centered at the origin, dS is the surface area

element on Sm .
Inner spherical monogenics of different orders are mutually orthogonal, but for

a fixed order k, there are
(m+k−1

k

)
elements in Mk being not necessarily mutually

orthogonal. Therefore, it is natural to ask for the construction of the orthonormal basis
ofMk . The existence of the orthonormal basis ofMk was proved in [4] by induction,
but with no concrete expressions. By Theorem 3.9 we can now immediately give the
explicit orthogonal formulas. More precisely, we have

Theorem 3.10 Rearrange the elements in Mk by writing

Mk = {V1, V2, . . . , Vn},

where n = (m+k−1
k

)
, then 〈V1, V1〉 is invertible. Let U1 = V1, then

Pspan{U1}V2 = U1〈U1,U1〉−1〈V2,U1〉.

Let

U2 = V2 − Pspan{U1}V2,

then 〈U2,U2〉 is invertible and 〈U2,U1〉 = 0. In general, let

U j = Vj −
j−1∑

i=1

Pspan{Ui }Vj = Vj −
j−1∑

i=1

Ui 〈Ui ,Ui 〉−1〈Vj ,Ui 〉, for j ≤ n,
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then 〈Uj ,Uj 〉 is invertible for each j ≤ n, and 〈Uj ,Ul〉 = 0 for j �= l. Therefore,
{U1, . . . ,Un} consists an orthogonal basis ofMk .

Proof Consider the equation 〈Uj ,Uj 〉c = 0 in c, then

c〈Uj ,Uj 〉c = 〈Ujc,Ujc〉 = 0,

so ‖Ujc‖2 = Sc〈Ujc,Ujc〉 = 0, which gives Ujc = 0. Note that Ujc is a linear
combination of V1, . . . , Vj with the coefficient of Vj being c, by the uniqueness of
the Taylor series (V1, . . . , Vn are basic functions constituting the Taylor series) we get
c = 0. By Proposition 2.1, we conclude that 〈Uj ,Uj 〉 is invertible. The orthogonality
〈Ui ,Uj 〉 = 0 for i �= j can be directly verified. 	


4 Takenaka–Malmquist systems in higher dimensions

Denote by Bm+1 the unit ball in R
m+1 centered at the origin, Bm+1 = {x ∈ R

m+1 :
|x | < 1}, Sm = ∂Bm+1. The monogenic Hardy space H2(Bm+1) consists of all left
monogenic functions f on Bm+1 that satisfy

‖ f ‖ := sup
0<r<1

(
1

ωm

∫

η∈Sm
| f (rη)|2dS

)1/2

< ∞.

For f , g ∈ H2(Bm+1), their Clifford number-valued inner product is defined by

〈 f , g〉 := 1

ωm

∫

η∈Sm
g(η) f (η)dS,

where f (η) and g(η) (η ∈ Sm) are, respectively, the non-tangential boundary limit of
f and g. We have

‖ f ‖ = (Sc〈 f , f 〉)1/2 =
(

1

ωm

∫

η∈Sm
| f (η)|2dS

)1/2

.

H2(Bm+1) is a right Am-module Hilbert space.
Let a ∈ Bm+1,

Sa(x) = 1 − ax

|1 − ax |m+1 (x ∈ Bm+1)

be the Szegö kernel for Bm+1. For any multi-index k = (k0, k1, . . . , km) ∈ N
m+1 and

any f ∈ H2(Bm+1), by Cauchy’s integral formula and exchanging order of integration
and differentiation ([19]), we have

〈 f , ∂ka Sa〉 = (∂kx f )(a), (4.1)
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where ∂kx f = ∂ |k| f
∂x

k0
0 ∂x

k1
1 ···∂xkmm

, |k| = ∑m
i=0 ki .

Let {an}∞n=1 be a sequence of Clifford numbers taking values in Bm+1. If an (n ∈
N+) are distinct from each other, then we have

Theorem 4.1 The GS orthogonalization process

⎧
⎪⎪⎨

⎪⎪⎩

Ta1 := Sa1 ,

Ta1,...,an := San −
n−1∑

i=1

Ta1,...,ai 〈Ta1,...,ai , Ta1,...,ai 〉−1〈San , Ta1,...,ai 〉, n ≥ 2

is realizable.

Proof To show that 〈Ta1,...,an , Ta1,...,an 〉 is invertible, consider the equation:

〈Ta1,...,an , Ta1,...,an 〉c = 0.

By the same argument as that in the proof of Theorem 3.10, we have

Ta1,...,an (x)c = San (x)c +
n−1∑

i=1

Sai (x)ci ≡ 0 (4.2)

for some Clifford numbers c1, . . . , cn−1 ∈ Am and x ∈ Bm+1. Since Sa1 , . . . San are
of different poles outside the unit sphere, we can show that

c = c1 = · · · = cn−1 = 0.

To be specific, first by the uniqueness theorem of monogenic functions we can extend
the identity (4.2) to Rm+1 \ { a1

|a1|2 , . . . ,
an

|an |2 }. After multiplying (4.2) by

(1 − anx)|1 − anx |m−1

from the left-hand side, we get

c + (1 − anx)|1 − anx |m−1
n−1∑

i=1

Sai (x)ci ≡ 0

for all x ∈ R
m+1\{ a1

|a1|2 , . . . ,
an

|an |2 }. Letting x → an
|an |2 we obtain c = 0, which implies

that 〈Ta1,...,an , Ta1,...,an 〉−1 exists by Proposition 2.1. 	

Remark 4.2 We have checked by calculations that 〈Ta1,...,an , Ta1,...,an 〉 is a positive real
number for n ≤ 5. We conjecture that it holds for all n ∈ N+.
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Hence, {Bn} := {Ba1,...,an } := { Ta1,...,an
||Ta1,...,an || }∞n=1 becomes an orthonormal system for

H2(Bm+1).
But if at least two of the parameters are the same, for example, a2 equals a1, then

obviously Ta1,a2 = Ta1,a1 = 0. At this case we interpret B2 as limρ→0+ Ba1,b (cf.
[15]), where b = a1 + ρω, ω = cos θ1 + sin θ1 cos θ2e1 + sin θ1 sin θ2 cos θ3e2 +
. . . + sin θ1 sin θ2 · · · sin θmem , and θ1, θ2, . . . , θm−1 ∈ [0, π ], θm ∈ [0, 2π ]. More
precisely,

B2 := lim
ρ→0+ Ba1,b

= lim
ρ→0+

Ta1,b
‖Ta1,b‖

= lim
ρ→0+

Ta1,b − Ta1,a1
‖Ta1,b − Ta1,a1‖

= lim
ρ→0+

Ta1,b−Ta1,a1
ρ

‖ Ta1,b−Ta1,a1
ρ

‖
= ∇ωTa1,y |y=a1

‖∇ωTa1,y |y=a1‖
= ∇ωSy |y=a1 − Ta1〈Ta1, Ta1〉−1〈∇ωSy |y=a1, Ta1〉

‖∇ωSy |y=a1 − Ta1〈Ta1, Ta1〉−1〈∇ωSy |y=a1, Ta1〉‖
,

where ∇ωSy = ∂Sy
∂ y0

cos θ1 + ∂Sy
∂ y1

sin θ1 cos θ2 + ∂Sy
∂ y2

sin θ1 sin θ2 cos θ3 + · · · +
∂Sy
∂ ym

sin θ1 sin θ2 · · · sin θm is the directional derivative of Sy with respect to y. In other
words,whena2 = a1, B2 is interpreted as the orthonormalization of Ta1 and∇ωSy |y=a1
(see also [11]).

We further note that as a function of y, Sy satisfies SyD = 0, which implies that
∂Sy
∂ y0

,
∂Sy
∂ y1

, . . . ,
∂Sy
∂ ym

are linear dependent in H2(Bm+1). Hence, if the multiplicity of
the parameter an (we call the cardinal number of the set { j : a j = an, j ≤ n} the
multiplicity of an and denote it bym(an)) is greater thanm+1, then the second-order
partial derivatives of Sy at the point an should be involved in the orthogonalization
process. In general, when m(an) >

∑k−1
i=0

(i+m−1
m−1

) = (k+m−1
m

)
, then the kth-order

partial derivatives of Sy at the point an must appear.
Observe that in complex analysis the TM systems for the unit disc and upper

half space can be generated by Szegö or higher order Szegö kernels through GS
orthogonalization process ([20]). Heuristically, we propose the following definition.

Definition 4.3 We call {Bn}∞n=1 the Takenaka–Malmquist system for Bm+1. If the kth
parameter ak = 0, then Bk is called a Blaschke product of order k − 1 for Bm+1.

By the orthogonality of {Bn}∞n=1 and the reproducing property of the Szegö kernel
we easily get the following property similar to the complex TM systems.

Proposition 4.4 For any Ba1,...,an in the TM system, ai (i ≤ n − 1) is a zero point of
Ba1,...,an with multiplicity m(ai ).
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For the cases of half space and general domains (provided that the Szegö kernels
exist) we have similar results. Let Rm+1+ := {x ∈ R

m+1 : Sc x > 0} be the half space
in Rm+1, the Szegö kernel we use for Rm+1+ is

Sa(x) = x + a

|x + a|m+1 , x, a ∈ R
m+1+ .

5 Adaptive Clifford TM system approximation

Let us first have a brief review of adaptive TM system approximation. Consider the
complex Hardy spaceH2(D), whereD denotes the unit disc in the complex plane. For
f ∈ H2(D), in adaptive TMsystem approximation f is associatedwith the expansion:

f =
∞∑

k=1

〈 f , Bk〉Bk =
∞∑

k=1

〈 fk, Bk〉Bk =
∞∑

k=1

〈gk, eak 〉Bk,

where {Bk(z)}∞k=1 is the Takenaka–Malmquist (TM) system on D determined by a
sequence {ak}∞k=1 inD specially selected according to theMaximal Selection Principle
(see below) of the context,

Bk(z) =
√
1 − |ak |2
z − ak

k∏

l=1

z − al
1 − al z

,

fk is the kth standard remainder, defined by

fk := f −
k−1∑

l=1

〈 f , Bl〉Bl = f −
k−1∑

l=1

〈gl , eal 〉Bl ,

and gl is the lth reduced remainder, defined by

gl(z) = fl(z)
l−1∏

j=1

1 − a j z

z − a j
,

and

eal (z) =
√
1 − |al |2
1 − al z

being the normalized Szegö kernel of D, that plays the role as reproducing kernel
of the Hilbert space H2(D). When a1, a2, . . . are mutually different, B1, B2, . . . are
consecutivelyGS orthonormalizations of ea1 , ea2 , . . .; and if a1, a2, . . . havemultiples,
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in the GS process ea1 , ea2 , . . . are replaced by the so called higher order Szegö kernels
involving derivatives of the Szegö kernels (see below).

The approximation is said to be adaptive, because the parameters in TM system are
adaptively chosen to best match the kth reduced reminder at each step according to
the Maximum Selection Principle:

ak = argmax
a∈D

|〈gk, ea〉|2 = argmax
a∈D

(1 − |a|2)|gk(a)|2.

Note that if all the parameters are zero, then the TM system reduces to the half Fourier
system. If ak = 0, then Bk becomes a Blaschke product. If the first parameter a1 is
chosen to be zero, then we get an adaptive mono-components decomposition, i.e.,
every Bk is a mono-component that possesses a non-negative analytic instantaneous
frequency function. The case for the upper half plane is similar, and was discussed in
[9].

The advantages of adaptive TM system approximation compared with the usual
greedy algorithms ([18]) include that at each step the former attains the optimal energy
pursuit and at the same time contributes a term possessing positive analytic frequency.
Adaptive TM system approximation has been extended to the general type Hilbert
spaces with a dictionary satisfying the boundary vanishing condition ([10]).

Generalization of adaptive TM system approximation into higher dimensions now
has two routes. One is based on several complex variables ([1, 10]), the other is the
quaternionic ([15]) and Clifford analysis direction. In the context of several complex
variables, in [1] the Drury–Arveson space of functions analytic in the unit ball of
C

N was discussed. In [10] two different approaches were discussed, of which one
used product-TM systems in the context of the n-torus T n , and the other used the
pre-orthogonal adaptive TM system method on product-Szegö dictionaries. The sev-
eral complex variables contexts that have been achieved were inspired by the fact
that complex TM systems can be generated by the Szegö and higher order Szegö ker-
nels through GS orthogonalization process. The case for matrix-valued functions was
studied in [2].

Since the Euclidean space R
n can be naturally embedded into quaternions or a

Clifford algebra, it is natural to perform quaternionic or Clifford GS orthogonal-
ization process in constructing an analogous adaptive approximation theory. Due to
unavailability of Clifford GS orthogonalization process in the earlier times the pre-
vious studies in this direction were mostly execution of greedy algorithm ([16, 19]).
The significance of an orthogonalization process in general Clifford module Hilbert
spaces, and therefore, a TM systems theory in the Clifford algebra setting is that they
give rise to rational and orthogonal approximations in monogenic functional spaces.

As in the one complex variable case the adaptiveClifford TMsystem approximation
proposed below gives rise to sparse, therefore, fast approximations to monogenic
functions.

Let f ∈ H2(Bm+1). We associate f with the Fourier-type series:

f (x) ∼
∞∑

n=1

Bn(x)cn,
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where the coefficients cn’s are given by

c1 = 〈B1, B1〉−1〈 f , B1〉 = (1 − |a1|2)m
2 f (a1),

and for n ≥ 2,

cn =〈Bn, Bn〉−1〈 f , Bn〉

=〈Bn, Bn〉−1

〈
f ,

San − ∑n−1
i=1 Ta1,...,ai 〈Ta1,...,ai , Ta1,...,ai 〉−1〈San , Ta1,...,ai 〉

‖Ta1,...,an‖

〉

=〈Bn, Bn〉−1

〈
f − ∑n−1

i=1 Ta1,...,ai 〈Ta1,...,ai , Ta1,...,ai 〉−1〈 f , Ta1,...,ai 〉, San
〉

‖Ta1,...,an‖
.

Let

fn(x) = f (x) −
n−1∑

i=1

Ta1,...,ai (x)〈Ta1,...,ai , Ta1,...,ai 〉−1〈 f , Ta1,...,ai 〉

= f (x) −
n−1∑

i=1

Bi (x)〈Bi , Bi 〉−1〈 f , Bi 〉.

If m(an) = 1, then

cn = 〈Bn, Bn〉−1

‖Ta1,...,an‖
fn(an) = ‖Ta1,...,an‖〈Ta1,...,an , Ta1,...,an 〉−1 fn(an), (5.1)

‖Bncn‖2 = Sc〈Bncn, Bncn〉

= Sc

〈
Bn

〈Bn, Bn〉−1

‖Ta1,...,an‖
fn(an), Bn

〈Bn, Bn〉−1

‖Ta1,...,an‖
fn(an)

〉

= Sc( fn(an)
〈Bn, Bn〉−1

‖Ta1,...,an‖2
fn(an))

= Sc( fn(an)〈Ta1,...,an , Ta1,...,an 〉−1 fn(an))

= Sc((1 − |an|2)m fn(an)((1 − |an|2)m〈Ta1,...,an , Ta1,...,an 〉)−1 fn(an)),
(5.2)
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and

(1 − |an|2)m〈Ta1,...,an , Ta1,...,an 〉

= (1 − |an|2)m
(

〈San , San 〉 −
n−1∑

i=1

〈Ta1,...,ai , San 〉〈Ta1,...,ai , Ta1,...,ai 〉−1〈Ta1,...,ai , San 〉
)

= 1 − (1 − |an|2)m
n−1∑

i=1

Ta1,...,ai (an)〈Ta1,...,ai , Ta1,...,ai 〉−1Ta1,...,ai (an). (5.3)

If m(an) > 1, cn and ‖Bncn‖2 are taken in the limit sense as before.

Lemma 5.1 Let a1, . . . , an−1 ∈ Bm+1 be fixed, a = |a|ξ = rξ , then

lim
r→1− ‖Ba1,...,an−1,a〈Ba1,...,an−1,a, Ba1,...,an−1,a〉−1〈 f , Ba1,...,an−1,a〉‖2 = 0

holds uniformly in |ξ | = 1.

Proof Note that when r → 1−, a must be different from ai (i ≤ n − 1), then (5.3)
clearly shows that

lim
r→1−(1 − |a|2)m〈Ta1,...,an−1,a, Ta1,...,an−1,a〉 = 1.

On the other hand, according to Lemma 3.2 in [16] we have

lim
r→1−(1 − |a|2)m

2 fn(a) = 0

uniformly in |ξ | = 1. Therefore, from (5.2), we immediately get the desired result. 	

Lemma 5.1 implies

Theorem 5.2 (Maximum Selection Principle) For any f ∈ H2(Bm+1) and any fixed
a1, . . . , an−1 ∈ Bm+1, there exist an an ∈ Bm+1, such that

‖Ba1,...,an−1,an 〈Ba1,...,an−1,an , Ba1,...,an−1,an 〉−1〈 f , Ba1,...,an−1,an 〉‖
= sup

a∈Bm+1
‖Ba1,...,an−1,a〈Ba1,...,an−1,a, Ba1,...,an−1,a〉−1〈 f , Ba1,...,an−1,a〉‖. (5.4)

The maximum selection principle enables us to obtain the best approximation to f
step by step, by choosing a suitable parameter an at the nth step, such that the energy
of the nth term Bn〈Bn, Bn〉−1〈 f , Bn〉 attains its maximum, or equivalently, making
the energy of the residue fn attain its minimum, so that the adaptive Fourier series
associated with f converges in a fast way. Note that the choice of an in (5.4) may not
be unique.

We now proceed to prove the convergence of the adaptive Fourier series. First we
show a technical lemma.
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Lemma 5.3 For any a1, . . . , an ∈ Bm+1, we have

‖Ba1,...,an 〈Ba1,...,an , Ba1,...,an 〉−1〈 f , Ba1,...,an 〉‖
≥ ‖Ban 〈Ban , Ban 〉−1〈 fn, Ban 〉‖
= |〈 fn, Ban 〉|
= (1 − |an|2)m

2 | fn(an)|.

Proof Since fn and Bn are both orthogonal to B1, B2, . . . , Bn−1, we have

‖Ba1,...,an 〈Ba1,...,an , Ba1,...,an 〉−1〈 f , Ba1,...,an 〉‖2
= ‖Ba1,...,an 〈Ba1,...,an , Ba1,...,an 〉−1〈 fn, Ba1,...,an 〉‖2
= ‖Ba1〈Ba1 , Ba1〉−1〈 fn, Ba1〉‖2 + ‖Ba1,a2〈Ba1,a2 , Ba1,a2〉−1〈 fn, Ba1,a2〉‖2

+ · · · + ‖Ba1,...,an 〈Ba1,...,an , Ba1,...,an 〉−1〈 fn, Ba1,...,an 〉‖2. (5.5)

Note that for any f ∈ H2(Bm+1), the orthogonal projection of f onto the space
spanned by B1, B2, . . . , Bn is uniquely determined by a1, . . . , an , regardless of their
orders. Therefore

Ba1〈Ba1 , Ba1〉−1〈 fn, Ba1〉 + Ba1,a2〈Ba1,a2 , Ba1,a2〉−1〈 fn, Ba1,a2〉
+ · · · + Ba1,...,an 〈Ba1,...,an , Ba1,...,an 〉−1〈 fn, Ba1,...,an 〉

= Ban 〈Ban , Ban 〉−1〈 fn, Ban 〉 + Ban ,a1〈Ban ,a1 , Ban ,a1〉−1〈 fn, Ban ,a1〉
+ · · · + Ban ,a1,...,an−1〈Ban ,a1,...,an−1 , Ban ,a1,...,an−1〉−1〈 fn, Ban ,a1,...,an−1〉,

and (5.5) equals

‖Ban 〈Ban , Ban 〉−1〈 fn, Ban 〉‖2 + ‖Ban ,a1〈Ban ,a1 , Ban ,a1〉−1〈 fn, Ban ,a1〉‖2
+ · · · + ‖Ban ,a1,...,an−1〈Ban ,a1,...,an−1 , Ban ,a1,...,an−1〉−1〈 fn, Ban ,a1,...,an−1〉‖2

≥ ‖Ban 〈Ban , Ban 〉−1〈 fn, Ban 〉‖2.

	

Theorem 5.4 Subject to the maximum selection principle (5.4) we have

∥∥∥∥∥

N∑

n=1

Bn〈Bn, Bn〉−1〈 f , Bn〉 − f

∥∥∥∥∥ → 0 (N → ∞). (5.6)

Proof From Bessel’s inequality, we have

∞∑

n=1

∥∥∥Bn〈Bn, Bn〉−1〈 f , Bn〉
∥∥∥
2 ≤ ‖ f ‖2,
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which implies that there exists a function g ∈ H2(Bm+1), such that

∞∑

n=1

Bn〈Bn, Bn〉−1〈 f , Bn〉 = g

holds in the sense ofH2(Bm+1). If (5.6) is not true, then

h := f − g �= 0,

so there exists a point a ∈ Bm+1\⋃∞
i=1{ai }, such that

‖Ba〈Ba, Ba〉−1〈h, Ba〉‖ = |〈h, Ba〉| = (1 − |a|2)m
2 |h(a)| = δ > 0.

Let

fN = f −
N−1∑

n=1

Bn〈Bn, Bn〉−1〈 f , Bn〉, rN = −
∞∑

n=N

Bn〈Bn, Bn〉−1〈 f , Bn〉.

When N is large enough,

|〈rN , Ba〉| = ‖Ba〈Ba, Ba〉−1〈rN , Ba〉‖

≤ ‖rN‖ =
( ∞∑

n=N

‖Bn〈Bn, Bn〉−1〈 f , Bn〉‖2
)1/2

< δ/2. (5.7)

Therefore

|〈 fN , Ba〉| = |〈h − rN , Ba〉| ≥ |〈h, Ba〉| − |〈rN , Ba〉| > δ/2.

By Lemma 5.3 we get

‖Ba1,...,aN−1,a〈Ba1,...,aN−1,a, Ba1,...,aN−1,a〉−1〈 f , Ba1,...,aN−1,a〉‖
≥ ‖Ba〈Ba, Ba〉−1〈 fN , Ba〉‖ = |〈 fN , Ba〉| > δ/2.

On the other hand, from (5.7) we know that

‖Ba1,...,aN−1,aN 〈Ba1,...,aN−1,aN , Ba1,...,aN−1,aN 〉−1〈 f , Ba1,...,aN−1,aN 〉‖
= ‖BN 〈BN , BN 〉−1〈 f , BN 〉‖ < δ/2.

Therefore, we arrive at

‖Ba1,...,aN−1,aN 〈Ba1,...,aN−1,aN , Ba1,...,aN−1,aN 〉−1〈 f , Ba1,...,aN−1,aN 〉‖
< ‖Ba1,...,aN−1,a〈Ba1,...,aN−1,a, Ba1,...,aN−1,a〉−1〈 f , Ba1,...,aN−1,a〉‖,
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which contradicts with the maximum selection principle that we should not have
chosen aN at the N th step. 	


Next we consider a convergence rate for adaptive Clifford TM system approxima-
tion. To deal with this, as in [8] we introduce a subclass ofH2(Bm+1):

H2(Bm+1, M) :=
{
f ∈ H2(Bm+1) : f =

∞∑

k=1

Bbk ck with
∞∑

k=1

|ck | ≤ M < ∞
}

.

We also need the following lemma.

Lemma 5.5 ([8]) Let {dn}∞n=l be a sequence of non-negative numbers satisfying the
inequalities

d1 ≤ A, dn+1 ≤ dn(1 − dn/A), n = 1, 2, . . . .

Then, we have for each n

dn ≤ A/n.

Now, we can prove a convergence rate result.

Theorem 5.6 If f ∈ H2(Bm+1, M), then

‖ fN‖ ≤ M√
N

,

where fN is the residue produced from the adaptive TM system approximation of f
at the Nth step.

Proof Since H2(Bm+1) is a right Am-module normed space, we have

‖ f1‖ = ‖ f ‖ ≤
∞∑

k=1

‖Bbk ck‖ =
∞∑

k=1

(Sc(ckck))
1/2 =

∞∑

k=1

|ck | ≤ M,

and

‖ fN‖2 = Sc〈 fN , fN 〉
= Sc〈 fN , f 〉

= Sc

〈
fN ,

∞∑

k=1

Bbk ck

〉
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=
∞∑

k=1

Sc〈 fN , Bbk ck〉

=
∞∑

k=1

Sc(ck〈 fN , Bbk 〉)

≤
∞∑

k=1

|ck ||〈 fN , Bbk 〉|

≤ M sup
k≥1

|〈 fN , Bbk 〉|

≤ M sup
a∈Bm+1

|〈 fN , Ba〉|. (5.8)

By Lemma 5.3 we get

‖BN 〈BN , BN 〉−1〈 f , BN 〉‖
= sup

a∈Bm+1
‖Ba1,...,aN−1,a〈Ba1,...,aN−1,a, Ba1,...,aN−1,a〉−1〈 f , Ba1,...,aN−1,a〉‖

≥ sup
a∈Bm+1

|〈 fN , Ba〉|. (5.9)

So, from (5.8) and (5.9) we obtain

‖ fN+1‖2 = ‖ fN − BN 〈BN , BN 〉−1〈 f , BN 〉‖2
= ‖ fN‖2 − ‖BN 〈BN , BN 〉−1〈 f , BN 〉‖2

≤ ‖ fN‖2
(
1 − ‖ fN‖2

M2

)
.

By Lemma 5.5, we conclude the proof. 	

Remark 5.7 Let f ∈ L2(Sm) (square integrable on Sm), where f in not necessarily
monogenic. To get the adaptive approximation of f , without loss of generality we
assume that f is real-valued, and take

F(x) := T ( f )(x) :=
∫

ω∈Sm
S(x, ω) f (ω)dS, |x | < 1,

where

S(x, ω) = P(x, ω) + Q(x, ω)

is the monogenic Schwarz kernel,

P(x, ω) = 1

ωm

1 − |x |2
|x − ω|m+1
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is the Poisson kernel and

Q(x, ω) = NSc

(∫ 1

0
tm−1(DP)(t x, ω)xdt

)

=
(

1

ωm

∫ 1

0

(m + 1)tm−1(1 − t2|x |2)
|t x − ω|m+3 dt

)
NSc(ωx)

is the Cauchy-type harmonic conjugate of P(x, ω) on the unit sphere Sm , which can be
computed out explicitly with an expression in elementary functions. As a consequence
of boundedness of Hilbert transform on the sphere ([13]), T is a bounded operator
from L2(Sm) toH2(Bm+1). Therefore, F ∈ H2(Bm+1). The adaptive approximation
of f can be obtained by the adaptive TM system approximation of F through the
relation:

lim
r→1− Sc(F(rξ)) = f (ξ)

for a.e. ξ ∈ Sm .

Remark 5.8 The above theory can be similarly formulated in the context of the half
space Rm+1+ . While for a real-valued function f ∈ L2(Rm) we consider the Cauchy
integral of f :

F(x) = C( f ) := −1

ωm

∫

Rm

y − x

|y − x |m+1 f (y)dy, x ∈ R
m+1+ ,

where y = y1e1 + · · · + ymem , dy = dy1 . . . dym . We have F ∈ H2(Rm+1+ ), and by
Sokhotsky–Plemelj formula, we get

lim
x0→0+ F(x0 + x) = 1

2
f (x) + 1

2
H( f )(x),

where H( f ) = ∑m
i=1 ei Ri ( f ), and

Ri ( f )(x) := 2

ωm
p.v.

∫

Rm

yi − xi
|y − x |m+1 f (y)dy

is the i th (1 ≤ i ≤ m) Riesz transform of f . The adaptive approximation of f is then
obtained by the adaptive TM system approximation of F through

2 lim
x0→0+ Sc (F(x0 + x)) = f (x)

for a.e. x ∈ R
m .
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