
Mechanical Systems and Signal Processing 204 (2023) 110762

A
0

S
b
Y
a

b

c

d

C

A

C

K
A
N
N
K
P

1

e
s
p
i
G
s

m
h

(

h
R

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

imulation of non-stationary and non-Gaussian stochastic processes
y the AFD-Type Sparse Representations
ing Zhang a, Wei Qu b, He Zhang c, Tao Qian d,∗

Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau 999078, China
College of Sciences, China Jiliang University, Hangzhou 310018, China
Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
Macau Center for Mathematical Sciences, Macau University of Science and Technology, 999078, Macao Special Administrative Region of
hina

R T I C L E I N F O

ommunicated by I. Kougioumtzoglou

eywords:
daptive fourier decomposition
on-Gaussian stochastic process
on-stationary
arhunen–Loève expansion
olynomial chaos

A B S T R A C T

Simulation of a stochastic process to simultaneously meet a given marginal distribution
condition and be compatible with a given covariance function is a well-known problem called
the two-match problem in the sequel. We propose the adaptive Fourier decomposition (AFD)
type methods as constructive steps to solve the two-match problem. AFD-Type methods used
in the physical domain (e.g., time or frequency) are replacements of the Karhunen–Loève
expansion, or spectral decomposition, in general, while, when being used in the probability
space are replacements of the polynomial chaos or other types of chaos methods. The AFD-Type
methods in both circumstances play the role of an approximation. Being compared with the
Karhunen–Loève expansion, the proposed AFD-Type methods do not need to compute out the
eigenvalues and eigenfunctions of the kernel integral operator defined by the target covariance
function, while compared with the polynomial chaos or other chaos methods the AFD-Type
methods offer a great deal of flexibility and efficiency. The proposed methods can be applied
to stationary and non-stationary, weakly, and strongly non-Gaussian stochastic processes. We
provide several examples to show effectiveness and efficiency of the AFD-Type methods.

. Introduction

Stochastic processes are often used as mathematical models of systems in various fields, such as finance [1,2], biochemical
ngineering [3], and stochastic mechanics [4]. Generally, owing to the central limit theorem and simplicity of the form, most
tochastic processes are studied based on the Gaussian distribution. There exist several methods to simulate Gaussian stochastic
rocesses. For example, spectral representation, initially developed for stationary Gaussian stochastic processes [5], is implemented
n the frequency domain. The Karhunen–Loève (KL) expansion is usually used in the simulation of stationary and non-stationary
aussian stochastic processes [6]. Usually, the KL method requires the time or spatial domain to be within a compact set. In the

tationary Gaussian stochastic process case, the KL expansion is reduced to the spectral representation.
However, the observed data may exhibit prominent non-Gaussian characteristics. Non-Gaussian models are encountered in

any fields of applied science and engineering, such as astronomy [7], economy [8], environment [9–11], mechanics [12], and
ydrology [13]. There have been two classes of simulation schemes for generating sample functions of non-Gaussian stationary
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random processes. The first class generates realizations of stochastic processes based on their prescribed lower-order moments
(e.g., mean, variance, skewness, and kurtosis) and power spectral density function (PSDF). This class is suitable for the simulation
of wind and wave loads, and significant work has been done in this area [14,15]. The second class generates realizations of
stochastic processes based on their prescribed marginal probability distribution and power spectral density function. The primary
method in this class is the spectral representation method (SRM) [16], which relies on translation process theory [17]. This method
iteratively updates the PSDF of the underlying Gaussian process until the PSDF of the non-Gaussian sample function converges to
the desired target. However, this algorithm causes the underlying ‘‘Gaussian’’ process to deviate from Gaussianity as the iterations
progress, leading to ‘‘incompatibility’’ between the target PSDF and the target marginal distribution of the non-Gaussian stochastic
process [18]. Later, this issue was addressed in the article [19], particularly for strongly non-Gaussian distribution. The proposed
simulation technique in [20] improves the underlying Gaussian PSDF iteratively by relying on the computed non-Gaussian PSDF
at each iteration, thus eliminating the need to generate sample functions. The difficulty of the second class in simulating non-
Gaussian random processes is that all joint distribution functions are required to characterize the non-Gaussian properties fully.
SRM models, however, will not be considered in this work. Besides, other techniques have also been developed for the simulation of
stationary and non-stationary non-Gaussian stochastic processes, such as KL iterative algorithms are proposed in [21,22] to update
the non-Gaussian expanded random process, and they can be applied to highly skewed non-Gaussian marginal distribution functions.
Besides, the Polynomial Chaos (PC) method commonly represents stationary and non-stationary non-Gaussian random processes. A
procedure is presented in [23] for developing a representation of lognormal stochastic processes via the polynomial chaos expansion.
Such as this paper [24] proposes a general method to generate simulated paths of non-Gaussian homogeneous random on a Hermite
polynomial expansion, given the spectral measure of the random process and either the marginal distribution or statistical moments.
In paper [25], the non-Gaussian process is represented as a polynomial transformation of an appropriate Gaussian process. The
target correlation structure is decomposed according to the KL expansion of the underlying Gaussian process. Zheng et al. propose
a method [26] to generate random samples matching the covariance and non-Gaussian marginal distribution functions. The basic
idea is to generate random samples satisfying the target marginal distribution and then develop an iterative algorithm to reach the
target covariance function. The accuracy and efficiency of the simulation only depend on matching the target covariance function.
However, applying random samples to practical problems is usually not convenient. Zheng et al. use KL, PC, and KL+PC methods
to expand the samples they obtain in the discrete form to the continuous form, enhancing the applicability of their results in [26].

The primary purpose of this work is to simulate a stochastic process that simultaneously satisfies a marginal distribution condition
nd a covariance condition, provided the two given conditions are compatible. We will not discuss in detail the well-posedness of
uch a problem in the present paper but assume that processes satisfying simultaneously the two given conditions exist. This paper
ill refer to such a problem as a ‘‘two-match’’ problem.

In this paper, we show a uniform methodology using the AFD-type methods to deduce continuous forms of random functions
ased on discrete samples, such as what is done by using KL and PC methods in, for instance, [26]. The AFD-type algorithms
riginated from signal decomposition into basic signals of meaningful positive instantaneous frequencies formulated in the complex
ardy spaces [27]. The formulation is based on generalized backward shift operators. As an approximation method, it was later
xtended to general Hilbert spaces with a dictionary, the latter being called pre-orthogonal adaptive Fourier decomposition, or
OAFD in brief [28,29].

There exist three main matching pursuit algorithms. According to the order of increased efficiency, they are listed as the (pure)
reedy algorithm, orthogonal greedy algorithm [30], and POAFD. In the classical Hardy spaces, POAFD is identical to AFD (or, more
pecifically, Core AFD). Lately, stochastic counterparts of the deterministic AFD methods were developed [31]. This paper mainly
ses stochastic pre-orthogonal adaptive Fourier decomposition (SPOAFD) and POAFD-Chaos. The purpose or main contribution of
he present paper is to solve the two-match problem using the AFD-Type methods, which demonstrate great power and flexibility
ver the pre-existing methods [21,25]. For the first time, they are introduced to and implemented in the related problems. The
FD-related methods used to solve the two-match problem in this paper are three-fold based on Zheng’s sampling. The first fold

s to use Stochastic Core AFD (taking the real part afterward) or SPOAFD based on the Poisson kernel dictionary to replace the
L expansion as used in [26]. Since the SPOAFD methods do not need to compute the eigen-pairs, they significantly save the
elevant computation cost and obtain the same convergence rate 𝑂(𝑛−1∕2). The literature [32] establishes SAFD-type methods but

does not give application examples, nor numerical experiments. The second fold further expands the random coefficients 𝑐𝑘s in the
representation formula (24) produced in the first fold. This task is usually done by using polynomial chaos [24]. What we do, instead,
is to use rational chaos, or more generally AFD-Chaos, to replace PCs. At this point, we introduce our new AFD-Type method named
AFD-Chaos, that including Rational Chaos (RCs). The characteristic property of the new chaos methods is an adaptive selection
of dictionary parameters to maximize the modules of expectations of products of two random variables. In the twin paper [33],
the theory of AFD-Chaos, including Rational Chaos (RCs), is systematically developed. The third-fold contribution of the paper is
direct expansion using an adaptive system in the probability space defined similarly with one to the time or the spacial space (SAFD
types). This strategy is under the idea that a random field may also be expanded using a basis in the probability space (as using PCs
in [25]). For a Hilbert space, there may exist more than one dictionary. One can, therefore, select a dictionary for a specific task.
For instance, one uses the Szegö kernel dictionary for instantaneous frequency decomposition of signals and obtains an adaptive
Takenaka-Malmquist system [27]. To solve a Dirichlet boundary value problem, one uses the Poisson kernel dictionary, and to solve
an initial value problem with the heat equation, one uses the heat kernel dictionary. Once one obtains an efficient decomposition
of the boundary value or the initial value by the ‘‘lifting up’’ method, using the potential solution formulae and the semi-group
property of the kernels, one immediately obtains the solution to the corresponding problem [34]. A suitably selected dictionary
2

gives rise to an efficient solution. AFD-Chaos methods, too, enjoy flexibility and efficiency through adaptive selection of dictionary
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Fig. 1. Specific classification of AFD-Type sparse representations (see [35–37]).

and dictionary elements according to the task taken. The specific AFD-Type classification can refer to Fig. 1. We provide several
examples showing that SPOAFD and POAFD-Chaos are competitive with the traditional KL and PC methods.

The writing plan of the paper is as follows. The KL and Hermite PC expansion are briefly reviewed in Section 2 for the self-
containing purpose. In Section 3, the SPOAFD and POAFD-Chaos methods are sketched. In Section 4, SPOAFD and POAFD-Chaos are
used in simulating the non-Gaussian stochastic processes based on Zheng’s discrete samples. In Section 5, we include four examples
to show the feasibility and high accuracy of the proposed algorithms. In Section 6, we give conclusions.

2. Existing expansion of stochastic process

This section reviews some main existing expansion methods of a stochastic process. Given a probability space (𝛺, , 𝑃 ), we focus
on a second-order stochastic process {𝑓 (𝑡, 𝜔), (𝑡, 𝜔) ∈  ×𝛺} that belongs to the Bochner space defined below, where  corresponds
to the time domain or the spatial field in general.

Definition 1. The Bochner space 𝐿2( , 𝛺) [31,38] is defined to be the Hilbert space consisting of all 𝐿2( )-valued random variables
𝑓 ∶  ×𝛺 → R satisfying

‖𝑓‖2
𝐿2( ,𝛺)

∶= ∫𝛺 ∫
|𝑓 (𝑡, 𝜔)|2 𝑑𝑡𝑑P(𝜔) < ∞. (1)

For brevity, we also write  = 𝐿2( , 𝛺). The Bochner space  is a Hilbert space with the inner product defined through Bochner
integral [39,40]. For processes in  , we introduce the covariance function 𝐂(𝑠, 𝑡) ∶= E𝜔[𝑓 (𝑠, ⋅)𝑓 (𝑡, ⋅)]. In this paper, we focus on the
problem of generating stochastic processes satisfying the given marginal distributions and covariance function. The KL expansion
approaches the problem by expanding the stochastic process into an infinite sum of variable separation functions. Roughly speaking,
if one of the two spaces, namely  or 𝛺, has a ‘‘basis’’, then one can, through working out the necessary details, eventually have
an expansion of the form

𝑓 (𝑡, 𝜔) = 𝜇(𝑡) +
∞
∑

𝑘=0
𝜉𝑘(𝜔)𝑔𝑘(𝑡), (2)

where {𝜉𝑘(𝜔)}∞𝑘=0 is a set of random variables and {𝑔𝑘(𝑡)}∞𝑘=0 is a set of deterministic functions, 𝜇(𝑡) is the mean of stochastic
process 𝑓 (𝑡, 𝜔), i.e. 𝜇(𝑡) = E𝜔[𝑓 (𝑡, ⋅)]. One often works on the corresponding stochastic processes with zero mean, that is, 𝑓0(𝑡, 𝜔) ∶=
𝑓 (𝑡, 𝜔)−𝜇(𝑡). In later discussion, for simplicity, 𝑓 (𝑡, 𝜔) and 𝑓0(𝑡, 𝜔) are alternatively written as 𝑓 (𝑡) and 𝑓0(𝑡), respectively, hiding the
sample path 𝜔.

2.1. Karhunen–Loève expansion

The KL expansion is one of the most commonly used methods to represent stochastic processes. Consider the integral operator
 using the covariance 𝐂(𝑠, 𝑡),

(𝜑)(𝑠) ∶= ∫
𝐂(𝑠, 𝑡)𝜑(𝑡)𝑑𝑡, 𝑠, 𝑡 ∈  , 𝜑(𝑡) ∈ 𝐿2( ). (3)

The solutions of the homogeneous Fredholm integral equation of the second kind

𝐂(𝑠, 𝑡)𝜑𝑘(𝑡)𝑑𝑡 = 𝜆𝑘𝜑𝑘(𝑠), 𝑠 ∈  , (4)
3

∫
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give rise to eigenvalues and eigenfunctions of the integral operator . If the covariance function 𝐂(𝑠, 𝑡) meets the conditions required
by the Mercer Theorem [41] then it has the following decomposition:

𝐂(𝑠, 𝑡) =
∞
∑

𝑘=1
𝜆𝑘𝜑𝑘(𝑠)𝜑𝑘(𝑡), 𝑠, 𝑡 ∈  , (5)

where 𝜑𝑘’s are the orthonormal eigenfunctions in 𝐿2( ), and the positive 𝜆𝑘’s are in the descent order. Taking 𝑔𝑘(𝑡) =
√

𝜆𝑘𝜑𝑘(𝑡) in
(2), we obtain the KL expansion in 

𝑓0(𝑡, 𝜔) =
∞
∑

𝑘=1

√

𝜆𝑘𝜑𝑘(𝑡)𝜉𝑘(𝜔), (6)

where {𝜉𝑘(𝜔)}𝑘 are the random variables given by

𝜉𝑘(𝜔) =
1

√

𝜆𝑘 ∫
𝑓0(𝑡, 𝜔)𝜑𝑘(𝑡)𝑑𝑡, (7)

which satisfy E𝜔[𝜉𝑘] = 0, E𝜔[𝜉𝑘𝜉𝑚] = 𝛿𝑘𝑚, where 𝛿𝑚𝑛 is the Kronecker-delta function. If the process is Gaussian, then 𝜉𝑗 ∼ 𝑁(0, 1) i.
i. d. In practical applications, one adopts a finite truncated series expansion

𝑓0(𝑡, 𝜔) =
𝑛
∑

𝑘=1

√

𝜆𝑘𝜑𝑘(𝑡)𝜉𝑘(𝜔). (8)

Notice that the analytical solution of the integral Eq. (4) is not generally available, and one needs to solve the eigenvalue
problem numerically. Besides, the set of basis functions {

√

𝜆𝑘𝜑𝑘(𝑡)} are chosen as the leading eigenfunctions, which depend only
n the covariance function. In other words, we trade off the sparseness of the representation for the uniformity of the expansion
ormula (8). Thus, avoiding solving eigenvalue problems and looking for sparse representations are two primary motivations for
onsidering AFD-Type methods. Since the polynomial chaos expansion inspires the idea of the AFD-Chaos, we will briefly review
he theory in the following subsection.

.2. Generalized polynomial chaos expansion

The terminology generalized polynomial chaos (gPC) was first introduced by Xiu et al. in [42], including Hermite polynomial
haos, Legendre polynomial chaos, and Jacobi polynomial chaos, etc. Referred to Xiu’s book [43], we first review the concepts
f strong and weak convergence of gPC. The strong and weak convergences are also known as the mean-square convergence and
onvergence in distribution, respectively.

Let 𝑍 be a random variable with cumulative distribution function (CDF) 𝐹𝑍 (𝑧) = 𝑃 {𝑍 ≤ 𝑧}. For an integrable function 𝑔, there
olds E𝑍 [𝑔(𝑍)] = ∫𝐼𝑍 𝑔(𝑧)𝑑𝐹𝑍 (𝑧), where 𝐼𝑍 is the support of the random variable 𝑍. Let

𝐿2
𝑑𝐹𝑍

=
{

𝑔 ∶ 𝐼𝑍 → R||
|

E𝑍
[

𝑔2
]

< ∞
}

(9)

e the space of all mean-square integrable functions with norm ‖𝑔‖𝐿2
𝑑𝐹𝑍

=
(

E𝑍
[

𝑔2
])1∕2. Let

{

𝛹𝑘(𝑍)
}

𝑘 be an orthogonal polynomial
ystem of 𝑍, that is,

E𝑍
[

𝛹𝑚(𝑍)𝛹𝑛(𝑍)
]

= E𝑍
[

𝛹 2
𝑛 (𝑍)

]

𝛿𝑚𝑛. (10)

he strong convergence is formulated as follows.

roposition 1 ([43]). Let {𝛹𝑘(𝑍)}𝑘 be a basis of 𝐿2
𝑑𝐹𝑍

and 𝑔(𝑍) ∈ 𝐿2
𝑑𝐹𝑍

a mean-square integrable function. Set

𝑔𝑁 (𝑍) =
𝑁
∑

𝑘=0
𝑔̂𝑘𝛹𝑘(𝑍) ∈ P𝑁 (𝑍), where 𝑔̂𝑘 = E𝑍

[

𝑔(𝑍)𝛹𝑘(𝑍)
]

∕E𝑍
[

𝛹 2
𝑘 (𝑍)

]

, (11)

nd P𝑁 (𝑍) denotes the space of polynomials of 𝑍 of degree up to 𝑁 ≥ 0. Then we have ‖𝑔(𝑍) − 𝑔𝑁 (𝑍)‖𝐿2
𝑑𝐹𝑍

→ 0 as 𝑁 → ∞.

In practice, however, 𝑔 may not be in 𝐿2
𝑑𝐹𝑍

, and the strong convergence does not hold. In such a case, the gPC expansion may
onverge in a weak sense. Recall that, for any random variable 𝑌 and 𝑍, there hold 𝑈 = 𝐹𝑌 (𝑌 ) = 𝐹𝑍 (𝑍), where 𝑈 ∼  (0, 1). Thus,
e have the representation 𝑌 = 𝐹−1

𝑌 (𝑈 ) = 𝐹−1
𝑌

(

𝐹𝑍 (𝑍)
)

, where

𝐹−1
𝑌 (𝑢) ∶= inf{𝑦 ∶ 𝐹𝑌 (𝑦) ≥ 𝑢}, 0 < 𝑢 < 1.

see, for instance, Proposition 2.11 of [43]). For sample-based gPC, that is, the explicit CDF 𝐹𝑌 being unavailable, we can replace
𝑌 by the corresponding empirical CDF, which is a step function.

roposition 2 (Theorem 5.7 of [43]). Let 𝑌 be an arbitrary random variable of a finite second moment and CDF 𝐹𝑌 (𝑦). Let 𝑍 be a
andom variable with CDF 𝐹𝑍 (𝑧). Set

𝑌𝑁 =
𝑁
∑

𝑎𝑘𝛹𝑘(𝑍), where 𝑎𝑘 =
E
[

𝑌 𝛹𝑘(𝑍)
]

[ 2]
=

E𝑍
[

𝐹−1
𝑌 (𝐹𝑍 (𝑍))𝛹𝑘(𝑍)

]

[ 2]
. (12)
4
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Then 𝑌𝑁 converges to 𝑌 in probability. The convergence is also in distribution.

As an example of gPC, the homogeneous chaos, also called the Hermite polynomial chaos, was first proposed by Wiener [44],
which uses the Hermite polynomials as the orthogonal system of Gaussian random variables. Let 𝐻𝑗 (𝑍) be the 𝑗-order Hermite
polynomial satisfying

𝐻𝑗 (𝑍) = (−1)𝑗
𝜌(𝑗)(𝑍)
𝜌(𝑍)

, (13)

where 𝜌(𝑗)(𝑡) is the 𝑗𝑡ℎ derivative of the Gaussian density 𝜌(𝑡) = 1
√

2𝜋
𝑒−

𝑡2
2 .

Let 𝑓0(𝑡, 𝜔) be the corresponding zero-mean stochastic process. For each fixed 𝑡, 𝑓0(𝑡) is a random variable. Introducing the
orresponding CDF 𝐹−1

𝑓0(𝑡)
(𝑢), we again use the relation

𝑓0(𝑡) = 𝐹−1
𝑓0(𝑡)

(𝑈 ) = 𝐹−1
𝑓0(𝑡)

(

𝐹𝑍 (𝑍)
)

, (14)

nd the stochastic process 𝑓0(𝑡) then possesses a Herimite PC expansion in the probability sense

𝑓0(𝑡) =
∑

𝑘=0
𝑎𝑘(𝑡)𝐻𝑘(𝑍) = 𝑎0(𝑡) + 𝑎1(𝑡)𝑍 + 𝑎2(𝑡)(𝑍2 − 1) + 𝑎3(𝑡)(𝑍3 − 3𝑍) +⋯ , (15)

here

𝑎𝑘(𝑡) =
E
[

𝑓0(𝑡)𝐻𝑘(𝑍)
]

E𝑍
[

𝐻2
𝑘 (𝑍)

] =
𝐸𝑍

[

𝐹−1
𝑓0(𝑡)

(𝐹𝑍 (𝑍))𝐻𝑘(𝑍)
]

E𝑍
[

𝐻2
𝑘 (𝑍)

] , 𝑡 ∈  . (16)

Achieving weak convergence of a stochastic process expanded by PC requires determining its PC coefficients 𝑎𝑘(𝑡) (16) at each
time step. The numerical implementation involves fixing the variable 𝑡, discretizing the stochastic process into a set of random
variables, and calculating the corresponding inverse CDF. For gPC, unlike KL expansions, the basis functions are orthogonal
polynomials of random variable 𝑍 over 𝛺, and we do not need to solve the eigenvalue problems. Adopting the idea of gPC,
Section 3.2 presents our innovative approach to simulating stochastic processes with sparse representations.

3. AFD-Type sparse representations

In recent literature, there appear a variety of sparse representations referred to as adaptive Fourier decomposition (AFD) type
methods that do not fall into the greedy algorithm of common sense. Although they also use energy-matching pursuit, they adopt
different iterative designs. Compared with greedy algorithms, AFD methods directly obtain orthogonal sparse representations with
greedier effects in the one-by-one parameter selection pattern than that of the greedy algorithm. As a particular feature, they address
attainability at each step of the global optimal parameter selection and give rise to positive frequency decomposition as Fourier
expansions do [27,28].

The AFD-type representations are divided into deterministic and probabilistic categories as briefly classified in Fig. 1. They are
also overall called AFD-type methods, inducing the AFD-Chaos through the transform methods used in (12) and (16). Below we
provide detailed information for the AFD-Type methods used in this paper.

3.1. Expansion by SPOAFD

We now introduce the SPOAFD method aiming at solving the two-match problem with KL expansion as the baseline. Sparse
representation of Hilbert space is often under the assumption that the space has a dictionary that, by definition, is a collection of
unimodular elements whose span is dense in the Hilbert space. By a pre-dictionary, we mean a collection of elements (not necessarily
nimodular) whose span is dense in the Hilbert space. We adopt the parameter set 𝐃, the open unit disc in the complex plane with
𝐃 being the boundary of 𝐃.

We take  = 𝜕𝐃 as the time domain, and consider the 𝐿2(𝜕𝐃)-dictionary of the form {𝐾𝑞}𝑞∈𝐃, i.e., parameterized by elements in
. (A typical example is the Poisson kernel (23)) We recall that the dictionary satisfies the boundary vanishing condition (BVC) [27]

if any but fixed function 𝑓 ∈ 𝐿2(𝜕𝐃) there holds

lim
𝑞→𝜕𝐃

|⟨𝑓,𝐸𝑞⟩𝐿2(𝜕𝐃)| = 0, (17)

where ⟨⋅⟩ denotes the inner product, and 𝐸𝑞 is normalized kernel

𝐸𝑞 =
𝐾𝑞

‖𝐾𝑞‖𝐿2(𝜕𝐃)
, 𝑞 ∈ 𝐃.

It is necessary to introduce the notion of multiple kernels [31]. For an 𝑛-tuple (𝑞1,… , 𝑞𝑛) of elements in 𝐃, we denote the multiple
f 𝑞𝑘 in the 𝑘-tuple (𝑞1,… , 𝑞𝑘) as 𝓁(𝑘), 1 ≤ 𝑘 ≤ 𝑛. Then, the corresponding 𝑘th multiple kernel is defined as

𝐾̃𝑞𝑘 =

[

(

𝜕
𝜕𝑞

)(𝓁(𝑘)−1)
𝐾𝑞

]

, 𝑘 = 1, 2,… , 𝑛, (18)
5

𝑞=𝑞𝑘
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where 𝜕
𝜕𝑞 is interpreted as a directional derivative and 𝑞 is the complex conjugate of 𝑞. We also use 𝐸𝑞𝑘 to denote the corresponding

normalized kernel, that is,

𝐸𝑞𝑘 =
𝐾̃𝑞𝑘

‖𝐾̃𝑞𝑘‖𝐿2(𝜕𝐃)
, 𝑘 = 1, 2,… , 𝑛. (19)

Multiple kernels are generated from performing the stochastic pre-orthogonal maximal selection principle (SPOMSP) [31]. With
nly a little difference, the notation 𝐸𝑘 is preserved for a general entry in the orthonormal system (𝐸1,… , 𝐸𝑛), and 𝐸𝑞

𝑛 means
that the last used parameter in 𝐸𝑛 is 𝑞. The generating process consists of an optimization step deciding a point 𝑞 ∈ 𝐃 and an
rthogonalization step to ensure the orthogonality of the basis functions. We summarize the steps into the following proposition.

roposition 3 ([31]). Assume that the dictionary {𝐾𝑞} of 𝐿2(𝜕𝐃) satisfies BVC (17). Then for every 𝑓 (𝑡, 𝜔) ∈  there exists 𝑞𝑘 ∈ 𝐃 such
hat

𝑞𝑘 = arg sup
𝑞∈𝐃

E𝜔
|

|

|

⟨𝑓0(⋅, 𝜔), 𝐸
𝑞
𝑘⟩
|

|

|

2
, (20)

here the finiteness of the supreme is ensured by the Cauchy–Schwarz inequality, and {𝐸1,… , 𝐸𝑛−1, 𝐸
𝑞
𝑛} is the Gram–Schmidt (G-S)

orthonormalization of {𝐸1,… , 𝐸𝑛−1, 𝐾̃𝑞}.

The steps of G-S orthogonalization mentioned in Proposition 3 is computed through [29,45]

𝐸𝑛 = 𝐸𝑞𝑛
𝑛 =

𝐾̃𝑞𝑛 −
∑𝑛−1

𝑙=1 ⟨𝐾̃𝑞𝑛 , 𝐸𝑙⟩𝐸𝑙
√

‖𝐾̃𝑞𝑛‖
2 −

∑𝑛−1
𝑙=1

|

|

|

⟨𝐾̃𝑞𝑛 , 𝐸𝑙⟩
|

|

|

2
. (21)

For each 𝑘, the quantity E𝜔|⟨𝑓0(⋅, 𝜔), 𝐸
𝑞
𝑘⟩|

2 in (20) may be computed by [32]

E𝜔
|

|

|

⟨𝑓0(⋅, 𝜔), 𝐸
𝑞
𝑘⟩
|

|

|

2
= ∫𝜕𝐃 ∫𝜕𝐃

E𝜔

[

𝑓0(𝑡, 𝜔)𝑓0(𝑠, 𝜔)
]

𝐸𝑞
𝑘(𝑡)𝐸

𝑞
𝑘(𝑠)𝑑𝑡𝑑𝑠

= ∫𝜕𝐃 ∫𝜕𝐃
𝐂(𝑠, 𝑡)𝐸𝑞

𝑘(𝑡)𝐸
𝑞
𝑘(𝑠)𝑑𝑡𝑑𝑠.

(22)

Thus, the optimal parameters required for SPOAFD expansion are computed through the covariance function 𝐂(𝑠, 𝑡). Although
the resulting system {𝐸𝑘} by SPOAFD is not necessarily a basis, it generates efficient approximation to stochastic processes in
 = 𝐿2( , 𝜕𝐃). Multiple choices of dictionary or pre-dictionary can be adopted according to the context and the purpose. In this
paper, the pre-dictionary we adopt consists of the parameterized Poisson kernels 𝑃𝑞(𝑡),

𝑃𝑞(𝑡) =
1 − |𝑞|2

|𝑞 − 𝑒𝑖𝑡|2
, 𝑞 ∈ 𝐃, 𝑡 ∈ 𝜕𝐃, (23)

and we develop the corresponding SPOAFD expansion for a stochastic process.

Theorem 1. For any 𝑓 (𝑡, 𝜔) ∈  , its SPOAFD series is well-defined and converge to 𝑓 (𝑡, 𝜔) in  . That is, with the parameters {𝑞𝑘}𝑘
selected under SPOMSP (20), possibly with multiplicity, there holds

𝑓0(𝑡, 𝜔) =
∞
∑

𝑘=1
⟨𝑓0(⋅, 𝜔), 𝐸𝑘⟩𝐸𝑘(𝑡) =

∞
∑

𝑘=1
𝑐𝑘(𝜔)𝑃𝑞𝑘 (𝑡), 𝑡 ∈ 𝜕𝐃, (24)

where {𝐸𝑘}∞𝑘=1 is the G-S orthogonalization of the multiple kernels {𝑃𝑞𝑘}
∞
𝑘=1, and {𝑐𝑘(𝜔)}∞𝑘=1 is the corresponding coefficient converted to

the nonorthogonal basis {𝑃𝑞𝑘}
∞
𝑘=1.

In practice, we use a partial sum of the series in (24) to approximate 𝑓0(𝑡, 𝜔):

𝑓0(𝑡, 𝜔) =
𝑛
∑

𝑘=1
⟨𝑓0(⋅, 𝜔), 𝐸𝑘⟩𝐸𝑘(𝑡) =

𝑛
∑

𝑘=1
𝑐𝑘(𝜔)𝑃𝑞𝑘 (𝑡). (25)

Under mild conditions on 𝑓 (𝑡, 𝜔), the convergence rate of (25) is 𝑂
(

𝑛−
1
2
)

as proved in [31]. Notably, our method achieves the same
convergence order as KL and provides a continuous analytical expansion for stochastic processes. The critical components of this
approach involve performing G-S orthonormalization of the system and solving the coefficients of (24) via SPOMSP.

3.2. Expansion by AFD-Chaos

The gPCs inspire the creation of AFD-Chaos. To represent more general stochastic processes using AFD-Chaos, we are restricted
here to concern weak convergence. For more details of AFD-Chaos, including the strong convergence case, we refer the reader
to [33]. For later use, we denote 𝑈 (𝜔) as the uniformly distributed random variable on 𝜕𝐃 with CDF 𝐹𝑈 (𝑢) = 𝑃 (𝑈 ≤ 𝑢) = 𝑢∕2𝜋,
𝑢 ∈ 𝜕𝐃.
6
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Table 1
Different type expansions for stochastic processes.

Expanding system in different domains Existing expansion methods of RP Proposed new expansion methods of RP

Physical domain (e.g. time or space) e.g. Mercer-KL
𝑓0(𝑡, 𝜔) =

∑

𝑘
√

𝜆𝑘𝜉𝑘(𝜔)𝜑𝑘(𝑡)
SPOAFD
𝑓0(𝑡, 𝜔) =

∑

𝑘⟨𝑓0(⋅, 𝜔), 𝐸𝑘⟩𝐸𝑘(𝑡)

Probability space (chaos) e.g. Hermite-PC
𝑓0(𝑡, 𝜔) =

∑

𝑘 𝑎𝑘(𝑡)𝐻𝑘(𝑍(𝜔))
POAFD-Chaos
𝑓0(𝑡, 𝜔) =

∑

𝑘 𝑔𝑘(𝑡)𝐸𝑘(𝑈 (𝜔))

mixture of physical and probability space e.g. KL+PC
𝑓0(𝑡, 𝜔) =

∑

𝑘
∑

𝑙 𝑎𝑘𝑙
√

𝜆𝑘𝐻𝑙(𝑍𝑘(𝜔))𝜑𝑘(𝑡)
SPOAFD+AFD Chaos
𝑓0(𝑡, 𝜔) =

∑

𝑘
∑

𝑙 𝑔𝑘𝑙𝐸𝑙(𝑈 (𝜔))𝐸𝑘(𝑡)

There are two choices to expand 𝑓 (𝑡, 𝜔) by AFD-Chaos methods. The first is referred as combination method that is as the first
step expanding it for in variable 𝑡 by using a stochastic AFD methods [31], or any basis in the boundary 𝐿2 space, including the
ne asserted by Mercer’s Theorem (5) used in KL expansion (6), and get a series for each fixed sample path 𝜔 as a function of 𝑡 ∶

𝑓0(𝑡, 𝜔) =
∞
∑

𝑘=1
𝑐𝑘(𝜔)𝐸𝑘(𝑡),

where 𝑐𝑘(𝜔) = ⟨𝑓0(⋅, 𝜔), 𝐸𝑘⟩. When SPOAFD is used, that is, we have 𝑞1, 𝑞2,… ∈ 𝐃 are selected according to the SPOMSP to produce
the orthonormal system {𝐸𝑘}∞𝑘=1. Then, as the second step, we further expand each 𝑐𝑘(𝜔) by using any AFD-Chaos methods adapted
to the random variable 𝑐𝑘(𝜔). The parameters relevant to 𝑘 are 𝑞(𝑘)𝑛 , 𝑛 = 1, 2,…, selected according to

𝑞(𝑘)𝑛 = arg sup
𝑞

{

E𝜔

[

|

|

𝑐𝑘(𝜔)𝐸𝑞
𝑛 (𝑈 (𝜔))|

|

2
]

|

|

|

𝑞 ∈ 𝐃
}

. (26)

where the computation of the inside expectation E𝜔
|

|

[𝑐𝑘(𝜔)𝐸
𝑞
𝑛 (𝑈 (𝜔))]|

|

2 is referred to (12), in which we replace 𝑌 by 𝑐𝑘, 𝑍 by 𝑈 , 𝛹𝑛 by
𝐸𝑞
𝑛 , and E𝑍

[

𝛹 2
𝑛
]

simply by 1. In such a way, we get an expansion of 𝑓 (𝑡, 𝜔) strongly converge in  , while for each random coefficient
𝑐𝑘, we have an AFD-Chaos expansion with weak convergence. The literature [26] uses this two-step method, first expanding the
random signal in 𝑡 by KL and then expanding each of the coefficient random variables by Hermite PC. What we propose here is that
both KL and PC may be replaced, respectively, by stochastic AFD methods and AFD-Chaos methods expansions.

The POAFD-Chaos, in contrast with the combination method, belongs to the AFD category and is formulated as follows. For any
given 𝑓 (𝑡, 𝜔) ∈  , we have the optimal selections of the parameters

𝑞𝑘 = arg sup
𝑞

{

sup
𝑡∈𝜕𝐃

E𝜔

[

|

|

|

𝑓0(𝑡, 𝜔)𝐸
𝑞
𝑘(𝑈 (𝜔))||

|

2
]

|

|

|

𝑞 ∈ 𝐃
}

, (27)

where {𝐸1,… , 𝐸𝑘−1, 𝐸
𝑞
𝑘} is the G-S orthonormalization of stochastic Poisson kernel {𝐸𝑞1 ,… , 𝐸𝑞𝑘−1 , 𝑃𝑞𝑘}, assuming that 𝑞1,… , 𝑞𝑘 are

distinguished parameters. The orthonormalization formula is the same as (21). The randomized Poisson kernel is defined as

𝑃𝑞𝑘 (𝑈 (𝜔)) =
1 − |𝑞𝑘|

2

|𝑞𝑘 − 𝑒𝑖𝑈 (𝜔)
|

2
, 𝑞𝑘 ∈ 𝐃, 𝑈 (𝜔) ∈ 𝜕𝐃. (28)

The validity of the SPOMSP (27) is based on the Time-Uniform Boundary Vanishing Condition [33]

lim
𝑞→𝜕𝐃

sup
𝑡∈𝜕𝐃

E𝜔

[

|

|

|

𝑓0(𝑡, 𝜔)𝐸
𝑞
𝑘(𝑈 (𝜔))||

|

2
]

= 0.

The generated stochastic Poisson kernel orthonormal system {𝐸𝑘} satisfies

E𝜔
[

𝐸𝑘 (𝑈 (𝜔))𝐸𝑙 (𝑈 (𝜔))
]

= 1
2𝜋 ∫

2𝜋

0
𝐸𝑘(𝑢)𝐸𝑙(𝑢)𝑑𝑢 = 𝛿𝑘𝑙 . (29)

We can derive the following convergence theorem from the above conclusion and [33].

Theorem 2. Let the stochastic process 𝑓 (𝑡) ∈  . Set 𝑓0(𝑡) = 𝑓 (𝑡) − 𝜇(𝑡), 𝜇(𝑡) = E [𝑓 (𝑡)]. Under a set of consecutively and maximally
selected {𝑞𝑘}∞𝑘=1 according to (27), we have a chaos expansion converging in probability

𝑓0(𝑡) =
∞
∑

𝑘=1
𝑔𝑘(𝑡)𝐸𝑘(𝑈 ), (30)

where the deterministic function 𝑔𝑘(𝑡) is determined by the orthogonality of the G-S orthonormalization of the selected stochastic Poisson
kernels:

𝑔𝑘(𝑡) = E𝜔
[

𝑓0(𝑡)𝐸𝑘(𝑈 )
]

. (31)

In application, the random function 𝑓 (𝑡) is approximated by truncated series

𝑓0(𝑡) =
𝑛
∑

𝑔𝑘(𝑡)𝐸𝑘(𝑈 ) =
𝑛
∑

ℎ𝑘(𝑡)𝑃𝑞𝑘 (𝑈 ), (32)
7
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where (ℎ1(𝑡),… , ℎ𝑛(𝑡)) and (𝑔1(𝑡),… , 𝑔𝑛(𝑡)) are converted to each other by the relevant transform matrices. Referred to [43] or [33],
we note the computation formula of 𝑔𝑘(𝑡):

𝑔𝑘(𝑡) = E𝜔
{[

𝑓0 (𝑡)𝐸𝑘(𝑈 )
]}

= 1
2𝜋 ∫

2𝜋

0

[

𝐹−1
𝑓0(𝑡)

( 𝑢
2𝜋

)]

𝐸𝑘(𝑢)𝑑𝑢. (33)

Remark 1. Although we discuss the details based on stochastic Poisson kernel pre-dictionary over the unit circle, in the infinite time
region, the stochastic Poisson kernels on the upper half plane and other kernel systems such as the stochastic heat kernels can also
be chosen as pre-dictionaries. Furthermore, multidimensional kernels representing stochastic processes have also been investigated.
For more information, please refer to [33].

To compare various methods more clearly, Table 1 lists different methods to expand stochastic processes, including SPOAFD and
POAFD-Chaos methods, as newly proposed in this paper.

The following section provides detailed simulation algorithms for the method proposed in this study.

4. Simulation of non-Gaussian stochastic processes by AFD-type methods

Among others, Zheng gave a method [26] that successfully produces any required number of sample paths at any set of discrete
time points that provide a discrete solution to the two-match problem. He later combined his sampling method with the KL and PC
expansions to give continuous form stochastic process solutions to solve the two-match problem. The present paper aims to propose
AFD-type methods to solve the problem. We only adopt the Zheng’s sampling method, while using SPOAFD and POAFD-Chaos to
replace the KL and PC methods in Zheng’s paper. For the self-containing purpose, we will briefly recall Zheng’s algorithm in the
following subsection.

4.1. Simulation of discrete-time stochastic samples of Zheng

Assume that a stochastic process 𝑓 (𝑡, 𝜔) is specified by its marginal distribution function 𝐺(𝑦; 𝑡) and its covariance function 𝐂(𝑠, 𝑡).
Recall that the goal of two-match problems is re-constructing 𝑓 (𝑡, 𝜔) from 𝐺(𝑦; 𝑡) and 𝐂(𝑠, 𝑡). Zheng [26] proposes a method by which
a set of sample paths satisfying the target marginal distribution function are first found. Afterward, through an iterative procedure,
while keeping the marginal distribution unchanged, a sequence of sample paths of the identical marginal distributions converges to
one that satisfies the covariance condition. In such a way, the accuracy and efficiency of the simulation only depend on matching
the target covariance function. The algorithm corresponding to Zheng’s method is summarized in Algorithm 1.

Algorithm 1 Simulation method of stochastic samples.

1: Discretize the spatial domain 𝑡 = {𝑡1 , 𝑡2 ,⋯ , 𝑡𝑀} and generate samples of random variables as 𝐘(0) =
{

𝑓 (𝑡1 , 𝜔𝑗 ), 𝑓 (𝑡2 , 𝜔𝑗 ),⋯ , 𝑓 (𝑡𝑀 , 𝜔𝑗 )
}𝑁
𝑗=1 (𝑓 (𝑡𝑖 , ⋅) ∼ 𝐺(𝑦, 𝑡𝑖),

𝑖 = 1,⋯ ,𝑀), where 𝑁 is the sample size.
2: Compute the upper triangular matrix 𝐏 by use of a Cholesky decomposition of the target covariance function 𝐂 = 𝐏𝑇 𝐏.
3: Compute the simulated covariance matrix 𝐓(0) of samples of random variables 𝐘(0)

𝐓(0) =

(

𝐘(0))𝑇 𝐘(0)

𝑁 − 1
−

(

𝐘(0))𝑇 𝐔𝐔𝑇𝐘(0)

𝑁(𝑁 − 1)
, where 𝐔 = [1]𝑁×1 . (34)

4: Compute the upper triangular matrix 𝐐(0) by use of a Cholesky decomposition of the target covariance function 𝐓(0) =
(

𝐐(0))𝑇 𝐐(0).
5: Compute 𝐘̃(0) through 𝐘̃(0) = 𝐘(0) (𝐐(0))−1 𝐏 .
6: Reorder samples in each column of 𝐘(0) following the ranking of the realizations in each column of 𝐘̃(0). The rearranged matrix is 𝐘(1).
7: Compute the simulated covariance matrix 𝐓(1) of 𝐘(1) by (34)
8: Repeat steps 4 through 7 until ‖

‖

𝐓(𝑘) − 𝐂‖
‖

∕‖𝐂‖ < 𝜀, where 𝑘 is iteration number.

The key steps are the fifth and sixth steps of Algorithm 1. Sample realizations {𝑓 (𝑡𝑖, 𝜔𝑗 )}𝑁𝑗=1 in each column of 𝐘̃ in the fifth step
f Algorithm 1 are different from those in each column of 𝐘 due to the factor matrix 𝐐−1𝐏. Through the following Proposition 4,
e know that the simulated covariance 𝐓̃ of 𝐘̃ in step 5 is equal to the target covariance function 𝐂. However, the elements in each

olumn of 𝐘̃ change with the updated factor matrix 𝐐−1𝐏 but do not match the marginal distribution function 𝐹 (𝑦, 𝑡𝑖). Reordering
he sample elements will not change the distributions of random variables but will change the simulated covariance matrix. Hence,
y repeating step 6 of Algorithm 1, the simulated covariance functions in the process are getting closer to the target covariance
unction.

roposition 4 ([26]). Consider the upper triangular matrices 𝐐 and 𝐏 obtained by the Cholesky decompositions 𝐂 = 𝐏𝑇𝐏 and 𝐓 = 𝐐𝑇𝐐.
he simulated covariance matrix 𝐓̃ of the sample matrix 𝐘̃, obtained by 𝐘̃ = 𝐘𝐐−1𝐏, satisfies 𝐓̃ = 𝐂.

Algorithm 1 provides an efficient procedure to simulate samples of stochastic processes. It is desirable to develop methods to
epresent the stochastic process further. In article [26], Zheng combines Algorithm 1 with KL expansion, PC expansion, and KL+PC
xpansion to construct continuous stochastic processes solving the two-match problem. The primary study of this article, as shown
8
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Table 2
Relative errors of sample paths and covariance matrix of different terms.

Simulated method KL SPOAFD

term 1 9 19 29 1 9 19 29

1st sample path 0.9828 0.0097 2 × 10−4 7 × 10−5 0.2877 0.0009 2 × 10−4 8 × 10−5

31st sample path 0.6744 0.0103 2 × 10−4 5 × 10−5 0.4619 0.0006 1 × 10−4 8 × 10−5

1st row of covariance matrix 0.9331 0.0009 7 × 10−4 7 × 10−4 0.737 0.0024 8 × 10−4 7 × 10−4

31st row of covariance matrix 0.362 8 × 10−5 6 × 10−5 6 × 10−5 0.601 2 × 10−5 2 × 10−5 5 × 10−5

below, is to show that based on Algorithm 1 AFD-type algorithms and their corresponding chaos forms, as well as their combined
use, can replace the KL and PC methods with the same effectiveness and efficiency to solve the two-match problem.

4.2. The SPOAFD method based on stochastic samples

The SPOAFD method is used to recover the corresponding continuous-type stochastic signals. Note that the expansion is with
espect to an adaptive system in the  space. We use the maximal selection principle to get the optimal parameters (20). The
lgorithm steps are given by Algorithm 2.

Algorithm 2 Algorithm based on stochastic samples and SPOAFD method.

1: Generate stochastic samples
{

{

𝑓 (𝑡𝑖 , 𝜔𝑗 )
}𝑁
𝑗=1

}𝑀

𝑖=1
of the stochastic process 𝑓𝜔(𝑡) using Algorithm 1.

2: The simulated covariance function of stochastic samples
{

{

𝑓 (𝑡𝑖 , 𝜔𝑗 )
}𝑁
𝑗=1

}𝑀

𝑖=1
can be given as follows

𝐂̂(𝑠, 𝑡) = 1
𝑁 − 1

𝑁
∑

𝑗=1

[

𝑓 (𝑡, 𝜔𝑗 ) − 𝜇(𝑡)
] [

𝑓 (𝑠, 𝜔𝑗 ) − 𝜇(𝑠))
]

,

where 𝑠, 𝑡 ∈ {𝑡1 ,⋯ , 𝑡𝑀}.
3: Introduce the Poisson kernel 𝐾𝑞 , 𝑞 ∈ 𝐃 . The parameters {𝑞𝑘}𝑛𝑘=1 are selected by the SPOMSP (20)

𝑞𝑘 = argmax
𝑞∈𝐃

Ê𝜔
|

|

|

⟨𝑓0(⋅, 𝜔𝑗 ), 𝐸
𝑞
𝑘⟩
|

|

|

2
, (35)

where

Ê𝜔
|

|

|

⟨𝑓0(⋅, 𝜔𝑗 ), 𝐸
𝑞
𝑘⟩
|

|

|

2
∶= ∫𝜕𝐃 ∫𝜕𝐃

𝐂̂(𝑠, 𝑡)𝐸𝑞
𝑘 (𝑡)𝐸

𝑞
𝑘 (𝑠)𝑑𝑡𝑑𝑠, (36)

and the {𝐸𝑞
𝑘} is the 𝑘-th term of the G-S orthonormal system generated by the kernels 𝐾𝑞1 ,⋯ , 𝐾𝑞𝑘−1 , 𝐾𝑞 . Computation of the G-S orthonormalization of 𝐸𝑘

(or 𝐸𝑞𝑘
𝑘 ) is according to

𝐸𝑘 =
𝐾𝑞𝑘 −

∑𝑘−1
𝑗=1 ⟨𝐾𝑞𝑘 , 𝐸𝑗 ⟩𝐸𝑗

√

‖𝐾𝑞𝑘‖
2 −

∑𝑘−1
𝑗=1

|

|

|

⟨𝐾𝑞𝑘 , 𝐸𝑗 ⟩
|

|

|

2
.

4: The non-Gaussian stochastic process can simulate in the following form

𝑓0(𝑡, 𝜔) =
𝑛
∑

𝑘=1
⟨𝑓0(𝑡, 𝜔), 𝐸𝑘⟩𝐸𝑘(𝑡).

In step 3 of Algorithm 2, the parameters are adaptively selected by SPOMSP, where the optimization problem (35) can be
pproximately solved by exhaustive testing based on a finite pre-sampled subset of 𝐃 as the candidate of 𝑞. To compute the integral

in (36), notice that we only have access to 𝐂̂(𝑠, 𝑡) for 𝑠, 𝑡 ∈ {𝑡𝑖}𝑀𝑖=1, we shall perform numerical integration, e.g., trapezoid rule, based
n these grid points.

emark 2 (Computational Complexity of Algorithm 2 for SPOAFD). The computational complexity of step 2 is 𝑂(𝑀2𝑁), where 𝑀 is
umber of time steps and 𝑁 is sample size. ‘As for step 3 in Algorithm 2, let 𝑁𝐃 denote the number of candidates of 𝑞 ∈ 𝐃 considered
n the SPOMSP, finding each 𝑞𝑘 in (36) takes a total of 𝑂(𝑀2𝑁𝐃) operations in exhaustive testing and 𝑂(𝑛𝑀𝑁𝐃) operations in
erforming the G-S orthonormalization. Since, in practice, we have 𝑛 ≪ 𝑁, 𝑀 , the overall computational complexity of Algorithm
is 𝑂(𝑀2𝑁 + 𝑛𝑀2𝑁𝐃), consisting of evaluating the simulated covariance matrix via Monte Carlo and SPOMSP. In KL expansion,
e need to compute the simulated covariance matrix [𝐂̂(𝑡𝑖, 𝑡𝑗 )]𝑖,𝑗=1,…,𝑀 (same as in step 2 of Algorithm 2) and solve the eigenvalue
roblem (up to order-𝑛). A general estimation gives that the computational complexity is 𝑂(𝑀2𝑁 + 𝑛𝑀3). Therefore, when 𝑁𝐃
number of Poisson kernels considered in the SPOMSP) and 𝑀 (number of time steps) share a similar scale, the SPOAFD method
hown in Algorithm 2 has a similar computational complexity as KL expansion.
9
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Algorithm 2 provides an efficient method to expand stochastic samples obtained from Algorithm 1. The optimal parameters can
e selected based on the sampling points 𝑓 (𝑡𝑖, 𝜔𝑗 ) obtained from Algorithm 1 of the stochastic process. Those parameters are used

to generate a corresponding continuous type solution of the two-match problem. Through comparison, Section 5 shows that the
simulation is accurate with efficient. The main computational error of this algorithm is caused by G-S orthonormalization.

4.3. The POAFD-Chaos method based on stochastic samples

This method uses the adaptive random Poisson kernel to represent the stochastic process. The idea of this method is similar to
the PC method. Note that this time we expand with respect to a chaos system where the coefficients are functions of the variable 𝑡.
The algorithm is given in Algorithm 3.

Algorithm 3 Algorithm based on stochastic samples and adaptive POAFD-Chaos method.

1: Generate stochastic samples
{

{

𝑓 (𝑡𝑖 , 𝜔𝑗 )
}𝑁
𝑗=1

}𝑀

𝑖=1
of the stochastic process 𝑓𝜔(𝑡) using Algorithm 1.

2: Generate 𝑁 samples following uniform distribution on [0, 2𝜋], denoted by {𝑈 (𝜔𝑗 )}𝑁𝑗=1 and introduce the corresponding stochastic Poisson kernels using (28),
i.e.

{

𝑃𝑧
(

𝑈 (𝜔𝑗 )
)}𝑁

𝑗=1, where

𝑃𝑧(𝑈 (𝜔𝑗 )) =
1 − |𝑧|2

|

|

|

𝑧 − 𝑒𝑖𝑈 (𝜔𝑗 )|
|

|

2
,

parameterized by 𝑧 ∈ 𝐃
3: The parameters {𝑧𝑘}𝑛𝑘=1 are selected by the SPOMSP (27),

𝑧𝑘 = arg sup
𝑧

{

sup
𝑖=1,⋯,𝑀

E𝜔

[

|

|

𝑓0(𝑡𝑖 , 𝜔)𝐸𝑧
𝑘 (𝑈 (𝜔))|

|

2
]

|

|

|

𝑧 ∈ 𝐃
}

, (37)

where the {𝐸𝑧
𝑘} is the 𝑘-th term of the G-S orthonormal system generated by the kernels 𝑃𝑧1 ,⋯ , 𝑃𝑧𝑘−1 , 𝑃𝑧. Computation of the G-S orthonormalization of 𝐸𝑘

(or 𝐸𝑧𝑘
𝑘 ) is according to

𝐸𝑘 =
𝑃𝑧𝑘 −

∑𝑘−1
𝑗=1 ⟨𝑃𝑧𝑘 , 𝐸𝑗 ⟩𝐸𝑗

√

‖𝑃𝑧𝑘‖
2 −

∑𝑘−1
𝑗=1

|

|

|

⟨𝑃𝑧𝑘 , 𝐸𝑗 ⟩
|

|

|

2
.

4: Compute the coefficient 𝑔𝑘(𝑡𝑖) = E𝜔
[

𝑓0(𝑡𝑖 , 𝜔𝑗 )𝐸𝑘
(

𝑈 (𝜔𝑗 )
)]

by the expansion (33).
5: The non-Gaussian stochastic process is expanded

𝑓0(𝑡𝑖 , 𝜔) =
𝑛
∑

𝑘=1
𝑔𝑘(𝑡𝑖)𝐸𝑘 (𝑈 (𝜔)) , 𝑖 = 1,⋯ ,𝑀. (38)

The SPOMSP (37) in Algorithm 3 involves a two-layer optimization problem whose target function is defined as the supremum
f the expectation over {𝑡𝑖}𝑀𝑖=1. Same as in Algorithm 2, we estimate the expectation in (37) using Monte Carlo and solve (37) via
xhaustive testing over candidate points in 𝐃. In particular, following the relation in (14), we have

E𝜔

[

|

|

|

𝑓0(𝑡𝑖, 𝜔)𝐸𝑧
𝑘(𝑈 (𝜔))||

|

2
]

= E𝑋

[

|

|

|

𝐹−1
𝑓0(𝑡𝑖)

(𝐹𝑈 (𝑈 ))𝐸𝑧
𝑘(𝑈 )||

|

2
]

≈ 1
𝑁

𝑁
∑

𝑗=1

|

|

|

|

|

𝐹−1
𝑓0(𝑡𝑖)

(𝑈 (𝜔𝑗 )
2𝜋

)

𝐸𝑧
𝑘(𝑈 (𝜔))

|

|

|

|

|

2

,

where 𝐹𝑓0(𝑡) denotes the empirical estimate of the CDF function 𝐹𝑓0(𝑡) based on the samples in step 1.

emark 3 (Computational Complexity of Algorithm 3 for POAFD-Chaos). Performing a similar computational complexity analysis as for
Algorithm 2, we obtain 𝑂(𝑛𝑀𝑁𝑁𝐃) as the computational complexity of Algorithm 3, which is mainly contributed by the exhaustive
parameter testing in SPOMSP (37). Compared with the computational complexity of order-𝑛 PC, 𝑂(𝑛𝑀𝑁), the POAFD-Chaos method
s more expensive. In PC methods, the basis functions are pre-selected based on the orthogonal polynomials, while the POAFD-Chaos
ethod adaptively chooses the basis functions driven by the SPOMSP. As benefit we gain efficiency, explicitness and accuracy of

he approximation. In PC methods, the basis functions are pre-selected based on the orthogonal polynomials, while the POAFD-
haos method adaptively chooses the basis functions driven by the SPOMSP. In other words, we trade computational efficiency for

lexibility and effectiveness of the expansion formula.

The following section will demonstrate the performance of the proposed algorithm through numerical experiments in which
lgorithm 2 is mainly compared with the KL method, and Algorithm 3 is primarily compared with the PC method.

. Numerical examples

We will work with four numerical examples of stationary and non-stationary and strongly and weakly non-Gaussian processes to
erify the effectiveness of SPOAFD and POAFD-Chaos for expanding non-Gaussian stochastic processes. Each example uses Algorithm
SPOAFD and Algorithm 3 POAFD-Chaos to simulate the corresponding non-Gaussian processes. Among them, Algorithm 2 means
10

o be compared with KL, and Algorithm 3 is compared with Hermite PC. The first step for all models is to use Algorithm 1 with
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five iterations to generate random samples. In addition, the number of non-Gaussian sample points of each random variable for a
fixed time 𝑡𝑖 by Zheng’s method is 10 000. To resolve the Gibbs phenomenon, we adopt the methods of first compressing the graph
rom (0, 2𝜋) to (0, 𝜋) and then extending back to (0, 2𝜋) symmetrically with respect to the vertical line at 𝑡 = 𝜋. To apply Algorithm 2

SPOAFD, for the first two weakly non-Gaussian examples and the last two strongly non-Gaussian examples, the time interval [0, 2𝜋]
is equally discretized into 64 and 32 parts, respectively. To use Algorithm 3 POAFD-Chaos, for the first two weak non-Gaussian
examples, the interval [0, 2𝜋] is discretized into equally 40 parts, and the third non-Gaussian example into 30 parts, and the last
non-Gaussian example into 20 parts.

Example 5.1 (Stationary Weakly Non-Gaussian Process). The marginal non-Gaussian cumulative distribution function (CDF) is
assumed to be the Beta distribution, with the formula

𝐺(𝑦; 𝑝, 𝑞) =
𝛤 (𝑝 + 𝑞)
𝛤 (𝑝)𝛤 (𝑞) ∫

𝑢

0
𝑧𝑝−1(1 − 𝑧)𝑞−1𝑑𝑧 (39)

where 𝛤 (⋅) is the Gamma function, and

𝑢 =
𝑦 − 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
(40)

with the upper and lower bounds 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛. The distribution parameters are 𝑝 = 4 and 𝑞 = 2 so that the mean is zero and the
variance is one. The upper and lower bounds of the distribution are, respectively, 𝑦𝑚𝑖𝑛 = −3.74 and 𝑦𝑚𝑎𝑥 = 1.87. The target Beta
distribution is weakly non-Gaussian. The correlation distortion of this beta distribution is small [46]. The target covariance function
is

𝐂(𝑠, 𝑡) = 𝑒−(𝑠−𝑡)
2
, ∀𝑠, 𝑡 ∈ [0, 2𝜋]. (41)

Without loss of general, the 1st and 31st sample paths and the 1st and 31st rows of the covariance matrix are selected in Fig. 2
o compare the approximation of the partial sum of the truncated KL (8) and the truncated SPOAFD (25) expansions at 𝑛 = 9 and
= 29, respectively. In (a), the top graph illustrates the simulation of the sample path using 9 partial sums of KL (blue line) and

POAFD (red line), while the bottom graph shows the simulation using 29 partial sums of KL and SPOAFD. (b) also depicts different
ample paths using KL and SPOAFD simulations. On the other hand, (c) and (d) represent the simulation of covariance, with the
ashed line representing the target covariance function. The green line shows the sampling points found by Algorithm 1, the blue line
epresents the covariance simulated using the KL method, and the red line represents the covariance simulated using the SPOAFD
ethod. The relative errors of the 1st and 31st sample paths and the 1st and 31st row of the covariance matrix are given in Table 2,

espectively. At the 29th partial sums, both SPOAFD and KL expansions approximately recover the stochastic process with Zheng’s
ealizations and the target covariance function. In local details, it can be observed that the SPOAFD method seems to be better than
he KL method. It can be seen that Algorithm 2 SPOAFD has good convergence, resulting in high precision to simulate stationary
on-Gaussian stochastic processes. When higher-order partial sums are involved, SPOAFD performs better than KL in the example.
he Table 2 exhibits two more partial sum results.

Next, we test the POAFD-Chaos method with the same stochastic process as in Example 5.1. We compare two methods. One is
he POAFD-Chaos expansion, where the partial sum order 𝑛 = 40, as used in the formula (32), and the other is PC, where the order
f the one-dimensional Hermite polynomials is adopted as 5. The comparison between the target, the PC-simulated covariance, and
he POAFD-Chaos-simulated covariance are shown in Fig. 3, which demonstrates the high accuracy of the proposed Algorithm 3.

The marginal distribution function of a stationary stochastic process does not change with time. However, the marginal
istribution of a non-stationary process varies with the time change. In Example 5.2, we observe the high accuracy of the new
lgorithm in simulating non-Gaussian stochastic processes under non-stationary conditions.

xample 5.2 (Non-stationary Weakly Non-Gaussian Process). The example is also chosen as the Bata marginal distribution function
n (39). The target marginal distribution function changes with t. We can be rewrite (40) in this form

𝑢(𝑡) =
𝑦(𝑡) − 𝑦𝑚𝑖𝑛(𝑡)

𝑦𝑚𝑎𝑥(𝑡) − 𝑦𝑚𝑖𝑛(𝑡)
(42)

where

𝑦𝑚𝑖𝑛(𝑡) = 𝜇𝐵(𝑡) − 𝜎𝐵(𝑡)

√

𝑝(𝑝 + 𝑞 + 1)
𝑞

, (43)

𝑦𝑚𝑎𝑥(𝑡) = 𝜇𝐵(𝑡) + 𝜎𝐵(𝑡)

√

𝑞(𝑝 + 𝑞 + 1)
𝑝

. (44)

The covariance is based on the non-stationary Brown-Bridge covariance model. In the non-stationary case, the variance is related
to t. The Brown-Bridge covariance function is given by

𝐂(𝑠, 𝑡) = 𝑚𝑖𝑛(𝑠, 𝑡) − 𝑠𝑡
2𝜋

, ∀𝑠, 𝑡 ∈ [0, 2𝜋] (45)

and the variance is obtained to be

𝜎2 (𝑡) = 𝐂(𝑡, 𝑡) = 𝑚𝑖𝑛(𝑡, 𝑡) − 𝑠𝑡 = 𝑡 − 𝑡2 , ∀𝑡 ∈ [0, 2𝜋] (46)
11

𝐵 2𝜋 2𝜋



Mechanical Systems and Signal Processing 204 (2023) 110762Y. Zhang et al.
Fig. 2. Simulation of 9 and 29 partial sums by KL and SPOAFD.

Fig. 3. Comparison between target covariance (a), POAFD-Chaos-simulated covariance (b), and Hermite PC-simulated covariance (c); and the relative errors
between target and POAFD-Chaos-simulated covariance (d), target and Hermite PC-simulated covariance (e).

In this example, we also choose 𝑝 = 4, 𝑞 = 2. We set 𝜇𝐵(𝑡) to be zero for convenience. Solving (43) and (44) yields,

𝑦𝑚𝑖𝑛(𝑡) = −
√

14(𝑡 − 𝑡2
2𝜋

), 𝑦𝑚𝑎𝑥(𝑡) =
√

3.5(𝑡 − 𝑡2
2𝜋

). (47)

Without loss of the generality, the 2000th and 4000th sample paths and the 20th and 40th rows of the covariance matrix are
selected in Fig. 4 to compare the approximation of the partial sum of the truncated KL (8) and the truncated SPOAFD (25) expansions
at 𝑛 = 24 and 𝑛 = 64, respectively. The relative errors of the 2000th and 4000th sample paths and the 20th and 40th rows of the
12
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Fig. 4. Simulation of 24 and 64 partial sums by KL and SPOAFD.

Table 3
Relative errors of sample paths and covariance matrix of different terms.

Simulated method KL SPOAFD

term 4 24 44 64 4 24 44 64

2000th sample path 0.1306 0.0185 0.0072 2 × 10−31 0.1148 0.0199 0.0021 6 × 10−10

4000th sample path 0.0452 0.0075 0.0012 3 × 10−31 0.1499 0.0091 0.0007 2 × 10−10

20th row of covariance matrix 0.0035 0.0002 0.0001 2 × 10−4 0.0684 0.0001 0.0001 2 × 10−4

40th row of covariance matrix 0.0016 8 × 10−5 8 × 10−5 9 × 10−5 0.0460 9 × 10−5 8 × 10−5 9 × 10−5

covariance matrix are given in Table 3, respectively. Comparison between target, PC-simulated covariance, and POAFD-Chaos-
simulated covariance are shown in Fig. 5. The number of the partial sum selected for the POAFD-Chaos method is 40. Moreover, we
adopt the 5-order Herimite PC system. The experiment shows that AFD-type methods can simulate non-Gaussian stochastic processes
under non-stationary conditions and achieve excellent results.

Example 5.3 (Stationary Strongly Non-Gaussian Process). The marginal non-Gaussian cumulative distribution function in the third
xample is shifted log-normal distribution, with the CDF given by

𝐺(𝑦;𝜇, 𝜎, 𝛿) = 𝛷(
𝑙𝑛(𝑦 − 𝛿) − 𝜇

𝜎
) (48)

The distribution parameters 𝜇 = −0.7707, 𝜎 = 1, and 𝛿 = −0.7628 are selected to produce zero mean and unit variance. The target
shifted log-normal distribution is considered strongly non-Gaussian and deviates significantly from the Gaussian case [46,47].

And the target covariance function is given by the absolute value exponential covariance function,

𝐂(𝑠, 𝑡) = 𝑒−|𝑠−𝑡|, ∀𝑠, 𝑡 ∈ [0, 2𝜋]. (49)

To evaluate the accuracy of the KL and SPOAFD expansions, we selected the 1st and 5000th sample paths and the 1st and 10th
ows of the covariance matrix for comparison purposes. The results of our analysis are presented in Fig. 6. Specifically, we compared
he performance of the truncated KL expansion (8) and the truncated SPOAFD expansion (25) at 𝑛 = 16 and 𝑛 = 32, respectively.
emarkably, at the 32nd partial sum, both the SPOAFD and KL expansions could recover the target covariance function with high
recision. To quantify the accuracy of our methods, we computed the relative errors of the 1st and 5000th sample paths and the
st and 10th rows of the covariance matrix. The results of our analysis are presented in Table 4, which clearly illustrates the trend
f decreasing relative error with the increasing number of terms.

To further investigate the performance of our methods, we compared the target covariance (a), POAFD-Chaos-simulated
ovariance (b), and Hermite PC-simulated covariance (c) in Fig. 7. For this purpose, we selected a partial sum of 30 for the POAFD-
haos method and adopted a 3-order Herimite PC system. We compared the relative errors between the POAFD-Chaos-simulated
nd target covariance (d) and between the Hermite PC-simulated and target covariance (e). The results indicate that our method
chieves a comparable level of accuracy to Hermite PC. Furthermore, our approach provides an adaptive sparse representation,
hich offers more flexibility and convenience than the system selection process required by PC.

xample 5.4 (Non-stationary Strongly Non-Gaussian Process). The marginal distribution function is also the shifted lognormal in
13

48). In the non-stationary non-Gaussian case, the target marginal distribution function varies with 𝑡. In this case, the shape of the
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Fig. 5. Comparison between target covariance (a), POAFD-Chaos-simulated covariance (b), and Hermite PC-simulated covariance (c); and the relative errors
between target and POAFD-Chaos-simulated covariance (d), target and Hermite PC-simulated covariance (e).

Fig. 6. Simulation of 16 and 32 partial sums by KL and SPOAFD.

Table 4
Relative errors of sample paths and covariance matrix of different terms.

Simulated method KL SPOAFD

term 8 16 24 32 8 16 24 32

1st sample path 0.0249 0.0118 0.0056 2 × 10−31 0.0266 0.0050 0.0019 4 × 10−20

5000th sample path 0.0041 0.0019 9 × 10−4 2 × 10−31 0.0050 0.0012 3 × 10−4 3 × 10−20

1st row of covariance matrix 0.0309 0.0098 0.0041 7 × 10−4 0.0003 0.0005 0.0007 7 × 10−4

10th row of covariance matrix 0.0117 0.0023 0.0015 0.0010 0.0184 0.0016 0.0012 0.0010
14
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Fig. 7. Comparison between target covariance (a), POAFD-Chaos-simulated covariance (b), and Hermite PC-simulated covariance (c); and the relative errors
between target and POAFD-Chaos-simulated covariance (d), target and Hermite PC-simulated covariance (e).

Table 5
Relative errors of sample paths and covariance matrix of different terms.

Simulated method KL SPOAFD

term 8 16 24 32 8 16 24 32

10 000th sample path 0.0065 4 × 10−4 1 × 10−6 1 × 10−31 0.0007 8 × 10−5 4 × 10−7 2 × 10−19

55 050th sample path 0.0250 2 × 10−4 8 × 10−6 1 × 10−31 0.0166 3 × 10−5 8 × 10−7 2 × 10−16

1st row of covariance matrix 0.0101 0.0101 0.0101 0.0101 0.0100 0.0100 0.0101 0.0101
9th row of the covariance matrix 0.0042 0.0024 0.0024 0.0024 0.0160 0.0024 0.0024 0.0024

distribution is given by 𝜎, which is usually set to 1. Similarly, The parameters 𝜇 and 𝜎 can be represented by the mean and variance
of this distribution (48).

𝜇𝑆𝐿(𝑡) = 𝛿(𝑡) + 𝑒𝜇(𝑡)+
𝜎2
2 (50)

𝜎𝑆𝐿(𝑡) = (𝑒𝜎
2
− 1)𝑒2𝜇(𝑡)+𝜎

2 (51)

The target covariance function is the exponential covariance function,

𝐂(𝑠, 𝑡) = 𝑒−(𝑠+𝑡)−|𝑠−𝑡|, ∀𝑠, 𝑡 ∈ [0, 2𝜋]

The variance function is

𝜎2𝑆𝐿(𝑡) = 𝐂(𝑡, 𝑡) = 𝑒−(𝑡+𝑡)−|𝑡−𝑡| = 𝑒−2𝑡, ∀𝑡 ∈ [0, 2𝜋].

For simplicity, let 𝜇𝑆𝐿 = 0 and 𝜎 = 1. Solving (50) and (51) yield

𝜇(𝑡) = −𝑡 − 𝑙𝑛
√

𝑒(𝑒 − 1), 𝜎(𝑡) = (𝑒𝜎
2
− 1)𝑒2𝜇(𝑡)+𝜎

2
. (52)

Without loss of the generality, the 10 000th and 5050th sample paths and the 1st and 9th rows of the covariance matrix are
elected in Fig. 8 to compare the approximation of the partial sum of the truncated KL (8) and the truncated SPOAFD (25) expansions
t 𝑛 = 8 and 𝑛 = 32, respectively. At the 32nd partial sums, both SPOAFD and KL expansions fully coincide with Zheng’s discrete
ample paths. The Table 5 gives relative errors of the 1000th and 5050th sample paths and the 1st and 9th rows of the covariance
atrix. Comparison between target, PC-simulated covariance, and POAFD-Chaos-simulated covariance are shown in Fig. 9. The
artial sum order for the POAFD-Chaos method is 20. We adopt the 6-order Herimite PC system.

Our method has shown to be highly effective in simulating strongly non-stationary non-Gaussian processes, further emphasizing
ts versatility and adaptability. Based on the four examples presented above, it is evident that both SPOAFD and POAFD-Chaos
15

ethods are highly applicable to non-Gaussian processes, offering efficient and accurate simulation capabilities.
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Fig. 8. Simulation of 8 and 32 partial sums by KL and SPOAFD.

Fig. 9. Comparison between target covariance (a), POAFD-Chaos-simulated covariance (b), and Hermite PC-simulated covariance (c); and the relative errors
between target and POAFD-Chaos-simulated covariance (d), target and Hermite PC-simulated covariance (e).

6. Conclusion

This paper presents two new methods, SPOAFD and POAFD-Chaos, for simulating non-Gaussian stochastic processes specified by
covariance and marginal distribution functions. Such a two-match problem is usually solved first by obtaining a group of random
samples at discrete times and then using KL, PC, or their combinations to get continuous time approximations of the whole stochastic
process. This paper introduces the AFD-type methods to replace KL and PC and thus offers a uniform treatment in the second
step with at least equal power and efficiency. Not only in solving the two-match problem, the methodology itself has certain
advantages. The new algorithms do not need to compute the eigenvalues and the eigenfunctions of the integral operator defined
by the covariance kernel that, compared with the KL method, significantly reduces computation complexity and saves computer
consumption. Compared with the PC method, our AFD-Chaos also possesses the adaptive feature. The advantage is that it offers a
great deal of flexibility and efficiency. At the same time, the AFD-type methods have analytical representations for non-Gaussian
stochastic processes. The AFD-type algorithms can also be extended to multi-variate random fields.
16
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