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In signal analysis, among the effort of seeking for efficient representations of a signal into the basic 
ones of meaningful frequencies, to extract principal frequency components, consecutively one 
after another or 𝑛 at one time, is a fundamental strategy. For this goal, we define the concept of 
mean-frequency and develop the related frequency decomposition with the complete Szegö kernel 
dictionary, the latter consisting of the multiple kernels, being defined as the parameter-derivatives 
of the Szegö kernels. Several major energy matching pursuit type sparse representations, including 
greedy algorithm (GA), orthogonal greedy algorithm (OGA), adaptive Fourier decomposition 
(AFD), pre-orthogonal adaptive Fourier decomposition (POAFD), 𝑛-Best approximation, and 
unwinding Blaschke expansion, are analyzed and compared. Of which an order in reconstruction 
efficiency between the mentioned algorithms is given based on the detailed study of their 
respective remainders. The study spells out the natural connections between the multiple kernels 
and the related Laguerre system, and in particular, shows that both, like the Fourier series, extract 
out the 𝑂(𝑛−𝜎 ) order convergence rate from the functions in the Hardy-Sobolev space of order 
𝜎 > 0. The existence of the 𝑛-Best approximation with the complete Szegö dictionary is proved 
and the related algorithm aspects are discussed. The included experiments form a significant 
integration part of the study, for they not only illustrate the theoretical results but also provide 
cross comparison between various ways of combination between the matching pursuit algorithms 
and the dictionaries in use. Experiments show that the complete dictionary remarkably improves 
approximation efficiency.

1. Introduction

Matching pursuit, as a methodology to generate sparse representations of signals, is usually based on a dictionary of the underlying 
Hilbert space. The most basic matching pursuit algorithm would be one called greedy algorithm in the context of Hilbert space with 
a dictionary [1,2]. In 2011, Qian and Wang proposed AFD or Core AFD [3–5], which crucially uses energy matching pursuit, as well 
as the complex Hardy space techniques, to develop a sparse representation in the form of a Takenaka-Malmquist system. Ever since 
then, there have been generalizations and variations of AFD, including pre-orthogonal AFD [6], the 𝑛-Best AFD [7], and Unwinding 
AFD [8]. A closely related method, called unwinding Blaschke expansion was proposed early by R. Coifman et al. in 2000 [9,10]. 
AFD was further extended to multivariate and matrix-valued cases [6,11,12]. In this paper, we restrict ourselves only to the one 
dimensional cases with scalar function values. AFD and its one dimensional variations are all based on the Szegö kernel dictionary. 
We, however, adopt a general formulation as follows.
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Let  be a Hilbert space with a dictionary . That means that  consists of norm-one elements and span{} is a dense subset of 
. Each of the elements of the dictionary  is labeled by a parameter 𝑞 ∈  , and is denoted as 𝐸𝑞 . We will call a set  of elements 
in  a pre-dictionary if the unimodular normalizations of the elements in  form a dictionary. In a reproducing kernel Hilbert space 
(RKHS), for instance, 𝐾𝑞(𝑝) ≜𝐾(𝑞, 𝑝) form a pre-dictionary. The parameter set  is usually an open set of Euclidean space. We usually 
assume that the concerned 𝐸𝑞 and 𝐾𝑞 are smooth in 𝑞, and in particular, have as many orders of derivatives in  as we use. The 
boundary of  in the Euclidean topology is denoted 𝜕 . The concerned general theory will be applied to RKHS and many non-RKHS 
cases as well.

In the present paper, we will study the case where  is the complex Hardy space

𝐻2(𝐃) = {𝑓 ∶𝐃→𝐂 ∶ 𝑓 is analytic in 𝐃, ‖𝑓‖2
𝐻2(𝐃)

= sup
0<𝑟<1

1
2𝜋

2𝜋

∫
0

|𝑓 (𝑟𝑒𝑖𝑡)|2𝑑𝑡 <∞} (1)

together with the Szegö dictionary,

 = {𝑒𝑎}𝑎∈𝐃, 𝑒𝑎(𝑧) =
√
1 − |𝑎|2
1 − 𝑎𝑧

, 𝑎, 𝑧 ∈𝐃. (2)

It is noted that for every 𝑓 ∈𝐻2(𝐃)

lim
𝐃∋𝑧→𝑒𝑖𝑡

𝑓 (𝑧) exist for a.e. 𝑡 ∈ [0,2𝜋],

where the limit 𝑧 → 𝑒𝑖𝑡 takes the non-tangential manner. The mapping that sends 𝑓 (𝑧) ∈𝐻2(𝐃) to its non-tangential boundary limit 
𝑓 (𝑒𝑖𝑡) on the unit circle is an isometric isomorphism between 𝐻2(𝐃) and a closed subspace 𝐻2(𝜕𝐃) of 𝐿2(𝜕𝐃). In terms of the 
non-tangential boundary limit functions the inner product of 𝐻2(𝐃) may be defined through that of the 𝐿2(𝜕𝐃) space, namely,

⟨𝑓, 𝑔⟩𝐻2 = 1
2𝜋

2𝜋

∫
0

𝑓 (𝑒𝑖𝑡)𝑔(𝑒𝑖𝑡)𝑑𝑡. (3)

Using this inner product, as a consequence of the Cauchy formula, 𝐻2(𝐃) is a RKHS having 𝑘𝑎(𝑧) as its reproducing kernel, where

𝑘𝑎(𝑧) =
1

1 − 𝑎𝑧
.

The Szegö dictionary element 𝑒𝑎 is the norm-1 normalization of the Szegö kernel 𝑘𝑎. The collection  = {𝑘𝑎}𝑎∈𝐃 is a pre-dictionary.

The space of the boundary limit functions can be alternatively defined as

𝐻2(𝜕𝐃)

= {𝑓 ∶ 𝜕𝐃→𝐂 ∶ 𝑓 (𝑒𝑖𝑡) =
∞∑
𝑘=0

𝑐𝑘𝑒
𝑖𝑘𝑡,

‖𝑓‖2
𝐻2(𝜕𝐃) ≜

∞∑
𝑘=0

|𝑐𝑘|2 <∞}. (4)

Remark 1. For any real-valued function of finite energy 𝑔 ∈𝐿2(𝜕𝐃),

𝑔+ ≜ 1
2
(𝑔 + 𝑖𝐻𝑔 + 𝑐0) ∈𝐻2(𝐃),

𝑔− ≜ 1
2
(𝑔 − 𝑖𝐻𝑔 − 𝑐0) ∈𝐻2(𝐃

𝑐
),

the latter being the complex Hardy space outside the closure of the unit disc, and

𝑔 = 𝑔+ + 𝑔− = 2Re𝑔+ − 𝑐0, (5)

where 𝑐0 is the average of 𝑔 over the unit circle:

𝑐0 =
1
2𝜋

2𝜋

∫
0

𝑔(𝑒𝑖𝑡)𝑑𝑡,

𝐻 is the circular Hilbert transform. For proofs of these fundamental relations, see, for instance, [13] or [14]. The relation (5), in 
particular, reduces the analysis of the real-valued functions on compact intervals to that of the functions in the Hardy space. The 
2

latter is, in fact, the space of the 𝑍-transforms.
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There exists a parallel theory for functions 𝑔 defined on the real line with finite energy in which 𝑔± ≜ 1
2 (𝑔 + 𝑖𝐻𝑔), where 𝐻

is the Hilbert transform on the line and 𝑔 = 2Re𝑔+. 𝑔+ is identical to the Laplace transform of 𝑔. In both cases, 𝑔+ is interpreted 
as the Gabor analytic signal associated with 𝑔. In the real line case, the associated Hardy space is 𝐻2(𝐂+) that is isometric with 
𝐻2(𝜕𝐂+) =𝐻2(𝐑).

The same philosophy is obeyed by signals of several complex and several real variables (with the Clifford algebra setting), and of 
scalar- or vector-, and even matrix-values. Some of the cases have been developed. See [6,11,12,15] and the references therein.

In the rest of the paper we concentrate on developing the theory and practice in the unit disc case, and when we use the notation 
𝐻2 and the terminology “the Hardy space” we refer to just the unit disc case.

With the matching pursuit idea, the following 𝑛-Best question is natural.

The Ill-Posed 𝑛-Best Question:

Let 𝑓 ∈ and 𝑛 be a fixed positive integer. Can one find 𝑛 distinguished parameters 𝑞1, ⋯ , 𝑞𝑛 and 𝑛 complex numbers 𝑐1, ⋯ , 𝑐𝑛
such that for the corresponding pre-dictionary elements 𝐾𝑞1

, ⋯ , 𝐾𝑞𝑛
, there holds

‖𝑓 −
𝑛∑

𝑘=1
𝑐𝑘𝐾𝑞𝑘

‖ = inf{‖𝑓 −
𝑛∑

𝑘=1
𝑑𝑘𝐾𝑝𝑘

‖ ∶

all distinguished 𝑝𝑘 ∈  and all 𝑑𝑘 ∈𝐂 }. (6)

The answer to this question is dependent on the underlying Hilbert space  and the pre-dictionary in use. Even for 𝑛 = 1 the answer 
is not necessarily “Yes”. See, for instance, [16], for some counterexamples as weighted Hardy type spaces.

Definition 1. In the study of matching pursuit, the concept boundary vanishing condition (BVC) is established: A pair (, ) is said 
to satisfy BVC if for every 𝑓 ∈ there holds

lim
𝑞→𝜕⟨𝑓,𝐸𝑞⟩ = 0. (7)

If (, ) satisfies BVC, then through a Bolzano-Weierstrass type compact argument the above 𝑛-Best problem has a solution for 
𝑛 = 1. It is proved in [3] that the Hardy space 𝐻2 and the Szegö dictionary, as a pair, satisfies BVC, and hence there exist 1-Best 
solutions in the case. Verification of BVC usually involves detailed analysis. In general, if (, ) satisfies BVC, then the powerful 
POAFD matching pursuit is available. See §3 below for details.

When 𝑛 > 1 the answer to the 𝑛-Best question is “No” even for the Hardy space and the Szegö dictionary case. The following is 
an example of the ill-posed-ness for 𝑛 > 1.

Example 1. We take 𝑓 (𝑧) = 1
(2−𝑧)2 , which is a function in the Hardy space 𝐻2(𝐃), and take 𝑛 = 2. The function can be infinitely 

approximated by linear combinations of two distinguished Szegö kernels. Or, the infimum error is zero. However, any two-term 
approximation cannot get a zero error.

However, if in the 𝑛-Best question the phrase “all distinguished 𝑝𝑘 ∈ ” is modified to be “all multiple kernels �̃�𝑝𝑘
, 𝑝𝑘 ∈  ,”, then 

the problem in many cases becomes well-posed. In the Hardy space and Szegö dictionary case, for instance, multiple kernels are 
defined to be derivatives of 𝐾𝑎 with respect to 𝑎.

We now introduce multiple Szegö kernels and the complete Szegö kernel dictionary as follows [17]. Denote the set of non-negative 
integers by 𝐍. Generating the notations in (2), we have

Definition 2. The set of multiple Szegö kernels

̃ = {𝑘𝑛,𝑎}𝑛∈𝐍,𝑎∈𝐃,

is a pre-dictionary consisting of

𝑘𝑛,𝑎(𝑧) =
(

𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑧) = 𝐶𝑛,𝑎

𝑧𝑛

(1 − 𝑎𝑧)𝑛+1
, (8)

where 𝐶𝑛,𝑎 are constants depending on 𝑛 and 𝑎. The totality of their unimodular normalizations

̃ = {𝑒𝑛,𝑎(𝑧) =
𝑘𝑛,𝑎‖𝑘𝑛,𝑎‖}𝑛∈𝐍,𝑎∈𝐃 (9)

is called the complete Szegö dictionary with the parameter set
3

 = {(𝑛, 𝑎)}(𝑛,𝑎)∈𝐍×𝐃.
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Returning to Example 1, 𝑓 (𝑧) = 1∕(𝑧 − 2)2 may be expressed as 𝐶 𝜕

𝜕𝑎
𝑘𝑎, where 𝑎 = 1∕2 and 𝐶 is a complex number. The 2-Best 

approximation (with infimum error 0) is then reached.

The multiple kernel notion may be extended to general Hilbert spaces  with a pre-dictionary  = {𝐾𝑞}, 𝑞 ∈  . To simplify the 
terminology we will call all the subjects 𝐾𝑞, 𝐸𝑞, 𝑒𝑎, 𝑘𝑎, etc., by kernel, although some are normalized and some are not, and we will 
normally denote

{𝐸𝑞} = {
𝐾𝑞‖𝐾𝑞‖}, 𝑞 ∈  . (10)

Note that for a kernel 𝐾𝑞(𝑥) the domain  for the parameter 𝑞 and that for the spatial or the time variable 𝑥 may not be the same. 
Let 𝑙 be a positive integer, and (𝑞1, ⋯ , 𝑞𝑙) an 𝑙-tuple of parameters in  , allowing multiplicity. Define 𝑙(𝑞1, ⋯ , 𝑞𝑙) be the repeating 
number of 𝑞𝑙 in 𝑞1, ⋯ , 𝑞𝑙, 1 ≤ 𝑙 ≤ 𝑛. Without ambiguity, we write 𝑙(𝑞1, ⋯ , 𝑞𝑙) as 𝑙(𝑞𝑙) in short. As examples, 𝑙(𝑞1) = 1, and 𝑙(𝑞𝑙) = 1 if 
𝑞𝑙 is different from the proceeding 𝑞1, ⋯ , 𝑞𝑙−1. For  being an open set of the complex number field, we define

�̃�𝑞𝑙
=
[(

𝜕

𝜕𝑞

)(𝑙(𝑞𝑙)−1)
𝐾𝑞

]
(𝑞𝑙) (11)

to be the 𝑙-th multiple kernels with respect to (𝑞1, ⋯ , 𝑞𝑙), and �̃�𝑞𝑙
the norm-1 normalization of �̃�𝑞𝑙

. The differential operation 𝜕

𝜕𝑞
in below 

will also be denoted as 𝜕. If 𝑞𝑙 are several or hyper-complex variables, then the derivatives are replaced by directional derivatives. 
In the RKHS case there exists the following useful relation:

𝜕
𝑙(𝑞𝑙)−1

𝑓𝑞𝑘
= 𝜕

𝑙(𝑞𝑙)−1⟨𝑓,𝐾𝑞𝑘
⟩ = ⟨𝑓, �̃�𝑞𝑘

⟩. (12)

Under the multiple kernel concept, the question (1) may be re-formulated to become well-posed:

The 𝑛-Best Question (reformulation): Let 𝑓 ∈ ,  a pre-dictionary, and 𝑛 a fixed positive integer. Can one find 𝑛 parameters 
𝑞1, ⋯ , 𝑞𝑛, with multiplicity when necessary, and 𝑛 complex numbers 𝑐1, ⋯ , 𝑐𝑛, such that for the multiple kernels �̃�𝑞1

, ⋯ , �̃�𝑞𝑛
there 

holds

‖𝑓 −
𝑛∑

𝑘=1
𝑐𝑘�̃�𝑞𝑘

‖ = inf{‖𝑓 −
𝑛∑

𝑘=1
𝑑𝑘𝐾𝑝𝑘

‖ ∶

all distinguished 𝑝𝑘 ∈  and all 𝑑𝑘 ∈𝐂 }, (13)

where �̃�𝑞𝑘
, 𝑘 = 1, ⋯ , 𝑛, are, consecutively, the multiple kernels associated with (𝑞1, ⋯ , 𝑞𝑛).

Under the new formulation, the existence of a solution to the 𝑛-Best problem has been proved for a number of most commonly 
studied Hilbert spaces of a BVC dictionary, including the Hardy space, the Bergman space, and the weighted Bergman spaces together 
with the dictionaries naturally induced by their respective reproducing kernels. See [7,18] and the references therein. The 𝑛-Best 
approximation problem in the Hardy space is, in fact, equivalent to the best approximation problem by rational functions in the 
space of degrees not exceeding 𝑛 [19]. Several practical algorithms for the Hardy 𝑛-Best have been proposed that, however, cannot 
prevent from sinking into the local minima [20–23]. Through generalizing the techniques in relation to the backward shift operator, 
the existence of the 𝑛-Best approximation was lately extended to a class of RKHSs, including the weighted Bergman and weighted 
Hardy spaces as particular cases [24]. These existence proofs also play a definitive role in seeking for a theoretical algorithm to 
obtain all the 𝑛-tuple minimizers. In the present paper, we prove the existence of the 𝑛-Best approximation for the Hardy space under 
the complete Szegö kernel dictionary. See §6.

Besides the one for the n-Best approximation, there is another reason that motivates the study of multiple kernels: We are to 
decompose a signal into its principal frequency components in terms of the energy, not in the degree of the frequency. In §2 we 
define the notion mean-frequency for functions in the Hardy space. Mean-frequency is a measurement of the total amount of the 
frequencies in an analytic signal by which Szegö kernels possess zero mean-frequency. All the concerned matching pursuit algorithms 
in the context are to select one after another dictionary elements, but unfortunately restricted to only the zero mean-frequency ones. 
In such a way, the high frequency terms are generated by the GS orthogonalization process, in which the order of applying GS process 
is a matter. What is desirable in frequency decomposition, however, would be the principal components directly related to the signal. 
They should be selected in terms of the greatest energy matching to the complete dictionary elements possessing any frequency, 
or, in other words, not be restricted to prescribed frequency levels. This question was also raised by [25] who pointed out that the 
existing analytic frequency decomposition, i.e., adaptive Fourier decomposition is not according to principal frequency components, 
but constructed from representatives of the lowest frequency. The present study points out how by using the complete dictionary and 
performing POAFD the goal of the principal frequency component may be achieved.

The writing plan for this paper is as follows. In §2 we establish the notion of mean-frequency and prove some basic results. 
Mean-frequency is used to measure the total amount, or degree level, of frequencies that an analytic signal contains. In §3 we give 
a concise summary but detailed analysis of the most commonly concerned matching pursuit algorithms. The analyzed algorithms 
include AFD, GA, OGA, POAFD, and 𝑛-Best. We establish an order between them in accordance with their re-constructing efficiencies. 
§4 is devoted to a detailed study of POAFD over the complete Szegö dictionary. In §5 we study convergence rates in relation to the 
multiple Szegö kernels and the Laguerre systems. The main results include that, as a generalized form of the Riemann-Lebesgue 
Lemma, ⟨𝑓, 𝑒𝑘,𝑎⟩ tends to zero with the order 𝑂(𝑛−𝜎) for functions 𝑓 in the Hardy-Sobolev space of order 𝜎 > 0; and as for the 
4

Fourier series, the Fourier-Laguerre series in the 𝜎-Hardy-Sobolev space is of the same convergence rate 𝑂(𝑛−𝜎). In §6 we prove 
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the existence of the 𝑛-Best approximation with the complete Szegö kernel dictionary. The existence cannot be deducted from the 
existing results for RKHSs. We also discuss theoretical and practical algorithms of the 𝑛-Best solutions. §7 contains a great number 
of experiments for comparison between the reconstruction efficiencies of AFD, GA, OGA, POAFD, and 𝑛-Best over, respectively, the 
Szegö and the complete Szegö dictionaries, as well as with the Unwinding Blaschke expansion. They stand as a significant integration 
part of the paper. The experiments may be divided into two types, of which one is to verify the theoretical ordering of strongness of 
the concerned matching pursuit algorithms; and the other is to show the strongness of the complete dictionary itself: The complete 
Szegö dictionary with weaker algorithms may be stronger than the Szegö dictionary used with stronger type algorithms. In §8

conclusions and comments are drawn.

2. Mean-frequency of signals in the Hardy space

It is basic knowledge that any Hardy space function 𝑓 ∈ 𝐻2(𝐃) has a factorization 𝑓 (𝑧) = 𝜙(𝑧)𝑠(𝑧)𝑜(𝑧), where 𝜙(𝑧), 𝑠(𝑧) and 
𝑜(𝑧) are, respectively, the Blaschke product, the singular inner function, and the outer function parts of 𝑓 [13]. The factorization 
is unique up to unimodular constants. The non-tangential boundary limits of the three functions have, respectively, the forms (in 
almost everywhere sense on the boundary)

𝜙(𝑒𝑖𝑡) = 𝑒𝑖𝜃𝜙(𝑡), 𝑠(𝑒𝑖𝑡) = 𝑒𝑖𝜃𝑠(𝑡), 𝑜(𝑒𝑖𝑡) = 𝜌𝑜(𝑡)𝑒𝑖𝜃𝑜(𝑡), (14)

where 𝜌𝑜(𝑡) ≥ 0, and 𝜃𝜙(𝑡), 𝜃𝑠(𝑡) and 𝜃𝑜(𝑡) are real-valued. As proved in [26],

𝜃′
𝜙
≥ 0, 𝜃′

𝑠
≥ 0, a.e., (15)

and

2𝜋

∫
0

𝜃′
𝜙
(𝑡)𝑑𝑡 =𝑁 ≥ 0, (16)

where 𝑁 is the number of zeros (can be zero or ∞) of the Blaschke product 𝜙. Moreover, with mild conditions on 𝑓 to guarantee 
absolute continuity of 𝜃𝑜(𝑡), there holds

2𝜋

∫
0

𝜃′
𝑜
(𝑡)𝑑𝑡 = 0. (17)

The last equation shows that the frequency function of an outer function is negative on a set of positive Lebesgue measures if the 
outer function itself is not identical to the zero function. Signals that have the property

𝜃′
𝜙
(𝑡) + 𝜃′

𝑠
(𝑡) + 𝜃′

𝑜
(𝑡) ≥ 0, a.e., (18)

are called mono-components [26]. A Hardy space function may not be a mono-component. However, any Hardy space function has a 
none-negative mean-frequency, as defined in

Definition 3. For a Hardy space function 𝑓 the quantity

2𝜋

∫
0

𝜃′
𝜙
(𝑡)𝑑𝑡+

2𝜋

∫
0

𝜃′
𝑠
(𝑡)𝑑𝑦 (19)

is called the mean-frequency of 𝑓 , denoted as MF(𝑓 ).

We note that MF is additive in the sense MF(𝑓𝑔) =MF(𝑓 ) +MF(𝑔).
The phase derivative of a Möbius transform

𝜏𝑎(𝑧) =
𝑧− 𝑎

1 − 𝑎𝑧

is easily computed. Let 𝜏(𝑒𝑖𝑡) = 𝑒𝑖𝜓𝑎(𝑡). Then 𝜓 ′
𝑎
(𝑡) is the Poisson kernel [13]

𝑃|𝑎|(𝑒𝑖(𝑠−𝑡)), 𝑎 = |𝑎|𝑒𝑖𝑠.
Therefore,

MF(𝜏𝑎(𝑧)) =
1

2𝜋

𝑃|𝑎|(𝑒𝑠−𝑡) = 1.
5

2𝜋 ∫
0
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Due to the additivity, for 𝑛, 𝑚 ≥ 0, MF(𝑧𝑛) = 𝑛, and

MF(
𝑚∏

𝑘=1

𝑧− 𝑎𝑘

1 − 𝑎𝑘𝑧
) =𝑚.

Since the Szegö kernel 𝑘𝑎 and Szegö dictionary elements 𝑒𝑎, are outer functions,

MF(𝑘𝑎(𝑧)) =MF(𝑒𝑎(𝑧)) = 0.

There exist standard models of functions in the Hardy space that form systems with increasing mean-frequencies. Let 𝐚 = (𝑎1, ⋯ , 𝑎𝑛)
be an 𝑛-tuple of elements in the unit disc 𝐃. Associated with 𝐚 there exists an order-𝑛 Takenaka-Malmquist (TM) system,

{𝐵𝑘}𝑛𝑘=1, 𝐵𝑘(𝑧) = 𝑒𝑘(𝑧)
𝑘−1∏
𝑙=1

𝑧− 𝑎𝑙

1 − 𝑎𝑙𝑧
.

𝐵𝑘 is also denoted as 𝐵𝑎1 ,⋯,𝑎𝑘
to specify the dependence on 𝑎1, ⋯ , 𝑎𝑘. The 𝑛-tuple 𝐚 can be extended to become an infinite sequence 

in 𝐃, and thus define an order-∞ TM system {𝐵𝑘}∞𝑘=1. We use the notation {𝐵𝑘} to denote either a finite or an infinite TM system. 
In this paper, unless otherwise specified, in an 𝑛-tuple or an infinite sequence of {𝑎𝑘}, multiplicities of the number 𝑎𝑘 is allowed. A 
system {𝐵𝑘} is, although not necessarily complete, orthonormal in 𝐻2(𝐃) =𝐻2(𝜕𝐃) with the inner product given by (3). It is known 
that an infinite TM system is a basis of 𝐻2(𝐃) if and only if the sequence 𝐚 satisfies the hyperbolic non-separability condition

∞∑
𝑘=1

(1 − |𝑎𝑘|) =∞.

The Fourier basis {𝑧𝑘}∞
𝑘=0 is a particular case corresponding to all 𝑎𝑘 ≡ 0, 𝑘 = 1, ⋯

We have the following result.

Theorem 1. MF(𝑘𝑛,𝑎) =MF(𝑒𝑛,𝑎) = 𝑛, and MF(𝐵𝑛) = 𝑛 − 1.

Proof. We note that 1
(1−𝑎𝑧)𝑛+1 is an outer function. As a consequence of the additivity, there holds

MF(𝑘𝑛,𝑎) =MF(𝑧𝑛) +MF

(
1

(1 − 𝑎𝑧)𝑛+1

)
= 𝑛.

As a consequence of MF(𝜏𝑎𝑙 ) = 1 and MF(𝑒𝑎𝑛 ) = 0, we have

MF(𝐵𝑛) =MF

(
𝑛−1∏
𝑙=1

𝑧− 𝑎𝑙

1 − 𝑎𝑙𝑧

)
= 𝑛− 1.

Definition 4. A consecutive multiple Szegö kernel �̃�𝑎 with respect to the 𝑚-tuple (𝑎1, ⋯ , 𝑎𝑚−1, 𝑎) is defined to be

�̃�𝑎(𝑧) ≜ 𝑘𝑙(𝑎)−1,𝑎(𝑧),

where 𝑙(𝑎), with a little abuse of notation, denotes the repeating number of 𝑎 in (𝑎1, ⋯ , 𝑎𝑚−1, 𝑎). In particular, if there is no repeating, 
that is 𝑙(𝑎) = 1, then �̃�𝑎(𝑧) = 𝑘𝑎(𝑧).

Computation gives

𝑘𝑙(𝑎)−1,𝑎 = (−1)𝑙(𝑎)−1(𝑙(𝑎) − 1)! 𝑧𝑙(𝑎)−1

(1 − 𝑎𝑧)𝑙(𝑎)
.

In [27] the following result is proved.

Theorem 2. Let {𝐵𝑘} be the TM system corresponding to any given finite or infinite sequence (𝑎1, ⋯). Then, up to unimodular multiplicative 
constants, {𝐵𝑘} is the consecutive Gram-Schmidt orthonormalization of the consecutive multiple Szegö kernel �̃�𝑎𝑘 .

3. Algorithms adopting matching pursuit methodology: analysis and comparison

Apart from 𝑛-Best approximation in Hilbert spaces with a BVC dictionary, there exist a number of iterative type algorithms 
adopting the matching pursuit methodology. These algorithms have common, as well as different features and individual effectiveness 
in terms of the reconstruction of signals. In this section, we review and analyze AFD, GA, OGA, and POAFD. With a criterion, we 
compare them and give them an order in terms of their reconstruction efficiencies. Among the four methods, AFD and POAFD 
belong to the same class (the AFD type), and GA and OGA belong to another (the greedy type). The AFD type is based on delicate 
6

complex and harmonic analysis aiming at frequency decomposition and attainability of the supreme energy matching pursuit, while 
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the greedy type is mostly in the general functional analysis context applicable to a Hilbert space with any dictionary. The AFD 
type is a generalization of Fourier theory, applicable for the reproducing kernel Hilbert space setting, having generalizations to 
multivariate functions (several complex variables and Clifford algebra variables) with vector- and matrix-values [6,11,12,15]. We 
below concentrate on the basic unit disc context.

3.1. Adaptive Fourier decomposition: AFD [28]

Let (, ) = (𝐻2(), {𝑒𝑎}𝑎∈𝐃). It is proved in [3] that  is a dictionary in 𝐻2() satisfying BVC. For 𝑓 ∈𝐻2(), 𝑓1 = 𝑓 , as a 
consequence of BVC, one can find

𝑎1 = argmax{|⟨𝑓1, 𝑒𝑏⟩| ∶ 𝑏 ∈𝐃},

and

‖𝑓 − ⟨𝑓1, 𝑒𝑎1⟩𝑒𝑎1‖2
is hence minimized over all one-dimensional linear spaces generated by 𝑒𝑏, 𝑏 ∈. Define, for 𝑘 ≥ 2,

𝑓𝑘(𝑧) =
𝑓𝑘−1(𝑧) − ⟨𝑓𝑘−1, 𝑒𝑎𝑘−1⟩𝑒𝑎𝑘−1 (𝑧)

𝑧−𝑎𝑘−1
1−𝑎𝑘−1𝑧

,

and select

𝑎𝑘 = argmax{|⟨𝑓𝑘, 𝑒𝑏⟩| ∶ 𝑏 ∈𝐃}. (20)

We call 𝑓𝑘 the reduced remainder, being the image of the 𝑎𝑘-generalized backward shift operator to 𝑓𝑘−1. It can be shown, inductively, 
𝑓𝑘 ∈𝐻2(), and

𝑓 (𝑧) =
𝑘∑

𝑙=1
⟨𝑓𝑙, 𝑒𝑎𝑙

⟩𝐵𝑙(𝑧) + 𝑓𝑘+1(𝑧)
𝑘∏

𝑙=1

𝑧− 𝑎𝑙

1 − 𝑎𝑙𝑧
, (21)

where {𝐵𝑙}𝑘𝑙=1 is the 𝑘-TM system defined by (𝑎1, ⋯ , 𝑎𝑘). We note that the above procedure allows multiplicity of the parame-

ter 𝑎𝑘 selection. We note that the generalized backward shifts automatically generate the orthonormal 𝑘-TM system {𝐵𝑙}𝑘𝑙=1. The 
orthogonality relations imply the useful relations

⟨𝑓𝑙, 𝑒𝑎𝑙
⟩ = ⟨𝑓 †

𝑙
,𝐵𝑙⟩ = ⟨𝑓,𝐵𝑙⟩, (22)

where

𝑓
†
𝑙
≜ 𝑓 −

𝑙−1∑
𝑗=1
⟨𝑓𝑗 , 𝑒𝑎𝑗

⟩𝐵𝑗 (𝑧) = 𝑓𝑙(𝑧)
𝑙−1∏
𝑗=1

𝑧− 𝑎𝑗

1 − 𝑎𝑗𝑧
(23)

is the 𝑙-th-(AFD) orthogonal remainder. We note that from the first identical relation in (23) the 𝑙-th-(AFD) orthogonal remainder 
𝑓
†
𝑙
(𝑧) is orthogonal with all the terms 𝐵𝑗, 𝑗 < 𝑙; and, from the second identical relation in (23),

𝑙−1∑
𝑗=1
⟨𝑓𝑗 , 𝑒𝑎𝑗

⟩𝐵𝑗 (𝑧)

is an interpolation rational function of 𝑓 at the points 𝑎1, ⋯ , 𝑎𝑙−1.

It turns out that the partial sums converge to the original function 𝑓 [3].

𝑓 (𝑧) =
∞∑
𝑙=1
⟨𝑓𝑙, 𝑒𝑎𝑙

⟩𝐵𝑙(𝑧).

We will the convergence rates in the latter part of this section.

3.2. Greedy algorithm: GA [1,2,29]

Greedy algorithm is applicable to a general Hilbert space  with a dictionary . To compare it with other matching pursuit 
algorithms we assume that  satisfies BVC.

Let 𝑓 ∈, and 𝑔1 = 𝑓 . The first matching pursuit step is the same as AFD: Owing to BVC we can select

𝑞1 = argmax{|⟨𝑔1,𝐸𝑝⟩| ∶ 𝑝 ∈ }. (24)
7

There holds
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𝑓 = ⟨𝑓1,𝐸𝑞1
⟩𝐸𝑞1

+ 𝑔2.

Since 𝑔2 is orthogonal with 𝐸𝑞1
, we have

‖𝑓‖2 = |⟨𝑓1,𝐸𝑞1
⟩|2 + ‖𝑔2‖2.

Due to the maximal selection of 𝑞1 in (24) the remaining energy in 𝑔2 is minimized. Iteratively, define 𝑔𝑘 to be the 𝑘-th iterative 
remainder given by

𝑓 =
𝑘−1∑
𝑙=1
⟨𝑔𝑙,𝐸𝑞𝑙

⟩𝐸𝑞𝑙
+ 𝑔𝑘, (25)

where

𝑞𝑙 = argmax{|⟨𝑔𝑙,𝐸𝑝⟩| ∶ 𝑝 ∈ }, 𝑙 = 1,⋯ , 𝑘− 1. (26)

We note that for each 𝑙 = 1, ⋯ , 𝑘, the remainder 𝑔𝑙 is orthogonal with the last 𝐸𝑞𝑙−1
. There follows

‖𝑓‖2 = |⟨𝑔1,𝐸𝑞1
⟩|2 + |⟨𝑔2,𝐸𝑞2

⟩|2 + ‖𝑔3‖2
=

𝑘−1∑
𝑙=1

|⟨𝑔𝑙,𝐸𝑞𝑙
⟩|2 + ‖𝑔𝑘‖2.

The energy of 𝑔𝑘 decays to zero, and, as a consequence,

𝑓 =
∞∑
𝑙=1
⟨𝑔𝑘,𝐸𝑞𝑘

⟩𝐸𝑞𝑘
. (27)

3.3. Orthogonal greedy algorithm: OGA [1,2,29]

We are under the same assumptions as for GA: We have a pair (, ), where  = {𝐸𝑞}, 𝑞 ∈  , is a dictionary of  satisfying 
BVC. Let 𝑓 ∈ and ℎ1 = 𝑓 . The first parameter selection is the same as that for AFD and GA: BVC implies that we are able to select

𝑞1 = argmax{|⟨ℎ1,𝐸𝑝⟩| ∶ 𝑝 ∈ }.
There follows then

ℎ2 = 𝑓 − Proj{𝐸𝑞1 }
(𝑓 ) = 𝑔2 ⟂𝐸𝑞1

,

where we adopt the notation Proj(𝑓 ) for the orthogonal projection of 𝑓 into the linear span of the functions in . We also use 
the notation 𝑄 ≜ 𝐼 −Proj = Proj⟂ . 𝑄 is also called the Gram-Schmidt orthogonalization operator (GS operator) with respect to the 
function set .

We select

𝑞2 = argmax{|⟨ℎ2,𝐸𝑝⟩| ∶ 𝑝 ∈ }. (28)

Since ℎ2 = 𝑔2, this maximal selection principle is the same as for GA. Note that 𝐸𝑞1
and 𝐸𝑞2

are not necessarily orthogonal. Define 
the 3𝑟𝑑 orthogonal remainder

ℎ3 = 𝑓 − Proj{𝐸𝑞1 ,𝐸𝑞2 }
(𝑓 ).

The Hilbert space property implies

‖ℎ3‖ ≤ ‖𝑔3‖. (29)

We will refer to this fact as “OGA is superior to GA”, or say that as a matching pursuit algorithm “OGA is stronger than GA”. Proceeding 
like this, we obtain the selections {𝐸𝑞1

, ⋯ , 𝐸𝑞𝑘−1
} and formulate the 𝑘-th remainder ℎ𝑘 with the relation

𝑓 = Proj{𝐸𝑞1 ,⋯,𝐸𝑞𝑘−1 }
(𝑓 ) + ℎ𝑘, (30)

where

𝑞𝑙 = argmax{|⟨ℎ𝑙,𝐸𝑝⟩| ∶ 𝑝 ∈ }, 𝑙 = 1,⋯ , 𝑘− 1. (31)

Consecutively, we select
8

𝑞𝑘 = argmax{|⟨ℎ𝑘,𝐸𝑝⟩| ∶ 𝑝 ∈ }.
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It may be proved that ‖ℎ𝑘‖ → 0 as 𝑘 →∞. As a consequence, there holds

𝑓 = lim
𝑘→∞

Proj{𝐸𝑞1 ,⋯,𝐸𝑞𝑘
}(𝑓 ) =

∞∑
𝑙=1
⟨𝑓,𝐸𝑞1 ,⋯,𝑞𝑙

⟩𝐸𝑞1 ,⋯,𝑞𝑙
,

where (𝐸𝑞1
, 𝐸𝑞1 ,𝑞2

, ⋯ , 𝐸𝑞1 ,⋯,𝑞𝑙
) is the consecutive GS orthogonalization of (𝐸𝑞1

, 𝐸𝑞2
, ⋯ , 𝐸𝑞𝑙

). We note that like GA under OGA the 
selected parameters have no multiplicity.

3.4. Pre-orthogonal adaptive Fourier decomposition: POAFD

As for GA and OGA we assume that  is a general Hilbert space with a BVC dictionary  = {𝐸𝑞}, 𝑞 ∈  . Since we will involve 
multiple kernels, we assume 𝐸𝑞 to be differentiable with respect to 𝑞 up to the needed orders. When 𝑞 is a vector, the existence of 
directional derivatives is assumed.

The first step matching pursuit is again the same as that for AFD, GA, and OGA:

𝑞1 = argmax{|⟨𝑓,𝐸𝑝⟩| ∶ 𝑝 ∈ }.
The selection of the second parameter 𝑞2 now is different from that for GA and OGA (the latter two being the same at the 𝑞2 selection):

𝑞2 = arg sup{|⟨𝑓,𝐸𝑞1 ,𝑞
⟩| ∶ 𝑞 ∈ }, (32)

where 𝐸𝑞1 ,𝑞
is defined by the relation that (𝐸𝑞1

, 𝐸𝑞1 ,𝑞
) is the GS orthonormalization of (𝐸𝑞1

, �̃�𝑞). The function 𝐸𝑞1 ,𝑞
is unique up to 

an unimodular complex multiplicative constant. Owing to this step the algorithm is called “pre-orthogonal”: The orthogonalization 
is done prior to the maximal selection. In general, the POAFD maximal selection principle is

𝑞𝑛 = arg sup{|⟨𝑓,𝐸𝑞1 ,⋯,𝑞𝑛−1 ,𝑞
⟩| ∶ 𝑞 ∈ }, (33)

where (𝐸𝑞1
, 𝐸𝑞1 ,𝑞2

, ⋯ , 𝐸𝑞1 ,⋯,𝑞𝑛−1
, 𝐸𝑞1 ,⋯,𝑞𝑛−1 ,𝑞

), regarded as TM system generated by  in , is the consecutive GS orthogonalization 
of

(𝐸𝑞1
, �̃�𝑞2

,⋯ , �̃�𝑞𝑛−1
, �̃�𝑞).

The 𝑘-th POAFD remainder denoted as ℎ𝑘†, is defined through

𝑓 =
𝑘−1∑
𝑙=1
⟨𝑓,𝐸𝑞1 ,⋯,𝑞𝑙

⟩𝐸𝑞1 ,⋯,𝑞𝑙
+ ℎ𝑘†, (34)

where the parameters are selected according to the POAFD maximal selection principle (33). Both being orthogonal remainders, 
the ℎ†

𝑘
’s are different from the ℎ𝑘 ’s for the latter are orthogonal remainders for OGA defined by (30) depending on the parameters 

selected according to OGA. POAFD was, in fact, suggested by the relation (22) in AFD in the Hardy space setting. In fact, writing 
𝑄�̃�𝑞1 ,⋯,�̃�𝑞𝑙

briefly as 𝑄𝑞1 ,⋯,𝑞𝑙
, due to its properties as a projection, there holds

⟨𝑓,𝐸𝑞1 ,⋯,𝑞𝑙
⟩ = ⟨𝑓,𝑄𝑞1 ,⋯,𝑞𝑙−1

𝐸𝑞1 ,⋯,𝑞𝑙
⟩ = ⟨ℎ𝑙†,𝐸𝑞1 ,⋯,𝑞𝑙

⟩,
which is (22) in which ℎ†

𝑙
was written as 𝑓 †

𝑙
to indicate its connection with the reduced AFD remainder 𝑓𝑙 . The coefficients in (34)

can also be written in the following forms⟨
𝑓,

𝑄𝑞1 ,⋯,𝑞𝑘−1
(�̃�𝑞𝑘

)‖𝑄𝑞1 ,⋯,𝑞𝑘−1
(�̃�𝑞𝑘

)‖
⟩

=

⟨
𝑄𝑞1 ,⋯,𝑞𝑘−1

(𝑓 ),
𝑄𝑞1 ,⋯,𝑞𝑘−1

(�̃�𝑞𝑘
)‖𝑄𝑞1 ,⋯,𝑞𝑘−1

(�̃�𝑞𝑘
)‖
⟩

=

⟨
𝑄𝑞1 ,⋯,𝑞𝑘−1

(𝑓 )‖𝑄𝑞1 ,⋯,𝑞𝑘−1
(�̃�𝑞𝑘

)‖ ,𝐸𝑞𝑘

⟩
. (35)

As a reformulation of (22) this exhibits that, in a general Hilbert space with a BVC dictionary, POAFD is an analogous algorithm to 
Core AFD for the Hardy space. In such formation, in particular,

𝑄𝑞1 ,⋯,𝑞𝑘−1
(𝑓 )‖𝑄𝑞1 ,⋯,𝑞𝑘−1
(�̃�𝑞𝑘

)‖
has the same role as the 𝑘-th reduced remainder, being obtained in the Hardy space case through the generalized backward shift 
9

operators. Adopting the notation for the classical TM system,
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𝐵
𝑞𝑘
𝑘

≜ 𝑄𝑞1 ,⋯,𝑞𝑘−1
(�̃�𝑞𝑘

)‖𝑄𝑞1 ,⋯,𝑞𝑘−1
(�̃�𝑞𝑘

)‖
can be said from the TM system in the context. And

𝑄𝑞1 ,⋯,𝑞𝑘−1
(𝑓 )

is the 𝑘-th orthogonal remainder with respect to the POAFD selected parameters 𝑞1, ⋯ , 𝑞𝑘−1. The relation (35) in particular, shows 
that the POAFD maximal selection principle corresponding to (33) is performable.

For all four types of matching pursuit algorithms, we have the following fundamental results [1–3,6,29].

Theorem 3. Corresponding to the four different types (or contexts) of parameter maximal selection principles, namely (20), (26), (31), 
and (33), the four remainders 𝑓 †

𝑘
, 𝑔𝑘, ℎ𝑘 and ℎ†

𝑘
defined respectively through (23), (25), (30), and (34), all tend to zero in their respective 

Hilbert norms. Hence the corresponding partial sums all converge to the originally given signal 𝑓 . Moreover, if 𝑓 belongs to

𝐻𝑀 = {𝑓 ∈ ∶ ∃{𝑞𝑘} ⊂  , 𝑓 =
∞∑
𝑘=1

𝑐𝑘𝐸𝑞𝑘
,

∞∑
𝑘=1

|𝑐𝑘| ≤𝑀},

then the norm of each of the above four types of 𝑘-remainders is dominated by 𝑀√
𝑘

.

Remark 2. The rate 𝑂( 1√
𝑛
) of convergence is valid for all matching pursuit algorithms [29]. The reference [29] constructs concrete 

examples to show that the convergence rate cannot be improved. The existence of such examples may also be asserted from the 
Karhunen-Loeve (KL) expansions. In fact, the KL expansion of the Brownian bridge, as an example, can be precisely estimated by

𝔼
[‖𝐵 −𝑆𝑛‖2𝐿2[0,1]

]
=

∞∑
𝑗=𝑛+1

1
𝜋2𝑗2

∼ 1
𝜋2𝑛

(page 206 of [30]). This estimation shows that there exist sample paths of Brownian bridge whose eigenfunction expansions have 
convergence rates as worse as 𝑂( 1√

𝑛
). On the other hand, due to the optimality of the KL expansion over all orthonormal expansions, 

there must exist matching pursuit expansions whose convergence rates are as worse as 𝑂( 1√
𝑛
) as well.

Efficiencies of the individual matching pursuit algorithms cannot be well compared in general. The parameters that give rise to 
the best matching pursuit may not be unique. The step by step optimality does not accumulate, and finally may not result in the 
overall optimality. Nevertheless, we can still draw a comparison under an intuitive criterion. We will first analyze the optimality of 
POAFD.

By using the GS operator, there holds, for 𝑞 ≠ 𝑞1,

𝐸𝑞1 ,𝑞
=

𝐸𝑞 − ⟨𝐸𝑞,𝐸𝑞1
⟩𝐸𝑞1‖𝐸𝑞 − ⟨𝐸𝑞,𝐸𝑞1
⟩𝐸𝑞1

‖ =
𝑄𝐸𝑞1

(𝐸𝑞)√
1 − |⟨𝐸𝑞,𝐸𝑞1

⟩|2 .
Since 𝑄𝐸𝑞1

is self-adjoint, there follows

⟨𝑓,𝐸𝑞1 ,𝑞
⟩ = ⟨𝑓,𝑄𝐸𝑞1

(𝐸𝑞)⟩√
1 − |⟨𝐸𝑞,𝐸𝑞1

⟩|2 =
⟨𝑄𝐸𝑞1

𝑓,𝐸𝑞⟩√
1 − |⟨𝐸𝑞,𝐸𝑞1

⟩|2 .
Replacing ℎ2 =𝑄𝐸𝑞1

𝑓 , we have

sup
𝑞

|⟨𝑓,𝐸𝑞1 ,𝑞
⟩| = sup

𝑞

|⟨ℎ2,𝐸𝑞1 ,𝑞
⟩|

= sup
𝑞

| ⟨ℎ2,𝐸𝑞⟩√
1 − |⟨𝐸𝑞,𝐸𝑞1

⟩|2 |
≥ sup

𝑞

|⟨ℎ2,𝐸𝑞⟩|. (36)

Due to the continuity, this argument is also valid for the limiting case 𝑞 = 𝑞1. Recalling (32), the last inequality shows that the POAFD 
energy matching is superior to that for OGA given in (28). As a consequence we have
10

‖ℎ†3‖ ≤ ‖ℎ3‖. (37)
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In the analyzed cases with the convention 𝑓 = 𝑓
†
1 = 𝑔1 = ℎ1 = ℎ

†
1, we have 𝑔2 = ℎ2, 𝑓

†
𝑘
= ℎ

†
𝑘
, 𝑘 ≥ 3. It is observed that examples for 

which the strict inequality signs in (29) or (37) hold may be constructed. The above argument may be generalized: For ℎ𝑘 being in 
the orthogonal complement of span{𝐵1, ⋯ , 𝐵𝑘−1},

⟨𝑓,𝐵𝑞

𝑘
⟩ = ⟨ℎ𝑘,

𝑄𝑞1 ,⋯,𝑞𝑘−1
𝐸𝑞√

1 −
∑𝑘−1

𝑙=1 |⟨𝐸𝑞,𝐵𝑙⟩|2 ⟩
= ⟨ℎ𝑘,

𝐸𝑞√
1 −

∑𝑘−1
𝑙=1 |⟨𝐸𝑞,𝐵𝑙⟩|2 ⟩

=
⟨ℎ𝑘,𝐸𝑞⟩√

1 −
∑𝑘−1

𝑙=1 |⟨𝐸𝑞,𝐵𝑙⟩|2 .
In the next inequality-equality chain the left-end is the maximal selection principle of OGA, and the right-end is for POAFD, showing 
that POAFD is superior to OGA.

sup{|⟨ℎ𝑘,𝐸𝑞⟩| | 𝑞 ∈ }
≤ sup{

|⟨ℎ𝑘,𝐸𝑞⟩|√
1 −

∑𝑘−1
𝑙=1 |⟨𝐸𝑞,𝐵𝑙⟩|2 | 𝑞 ∈ }

= sup{|⟨𝑓,𝐵𝑞

𝑘
⟩| | 𝑞 ∈ }.

Let, in general, Algorithm 1 and Algorithm 2 be among the concerned algorithms AFD, GA, OGA, and POAFD, etc. If there exists 
a positive integer 𝑘0 such that

(i): for any signal 𝑓 the energies of the 𝑙-remainders for 𝑙 < 𝑘0 of the two algorithms can be made to be the same through their 
respective optimal matching pursuit selections; and

(ii): the energies of the 𝑘0th remainder of Algorithm 1 are not larger than those of Algorithm 2, and for some particular signals 𝑓
strictly less than those of Algorithm 2,

then we say that Algorithm 1 is superior to (or stronger than) Algorithm 2. In this case we write Algorithm 1 ≥ Algorithm 2.

Theorem 4. For any Hilbert space with a dictionary satisfying BVC the associated algorithms satisfy

𝑃𝑂𝐴𝐹𝐷 ≥𝑂𝐺𝐴 ≥𝐺𝐴.

When the 𝑛-Best approximation exists, there holds

𝑛−Best ≥ any matching pursuit algorithm.

4. Pre-orthogonal adaptive Fourier decomposition with the complete Szegö dictionary

This section will be devoted to a detailed study of POAFD on the complete Szegö dictionary. Recall that in (8) and (9) we defined 
the multiple kernel 𝑘𝑛,𝑎 and their normalizations, the dictionary elements 𝑒𝑛,𝑎. The Szegö complete dictionary is denoted ̃. The 
quantity of the norm of 𝑘𝑛,𝑎 is computed as follows.

Lemma 1.‖‖‖‖
(

𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑧)
‖‖‖‖
2

=
𝑛∑

𝑚=0
𝐶𝑚
𝑛
𝑛! (2𝑛−𝑚)!

(𝑛−𝑚)!
(𝑎�̄�)𝑛−𝑚(1 − �̄�𝑎)𝑚−2𝑛−1. (38)

Proof.‖‖‖‖
(

𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑧)
‖‖‖‖2

=
⟨(

𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑧),
(

𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑧)
⟩

(
𝜕
)𝑛⟨(

𝜕
)𝑛 ⟩
11

=
𝜕𝑎 𝜕�̄�

𝑘𝑎(𝑧), 𝑘𝑎(𝑧)
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=
(

𝜕

𝜕𝑎

)𝑛(
𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑎).

Through induction, we can show(
𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑎) =
𝑛!𝑎𝑛

(1 − �̄�𝑎)𝑛+1
.

Therefore,(
𝜕

𝜕𝑎

)𝑛(
𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑎)

=
(

𝜕

𝜕𝑎

)𝑛(
𝑛!𝑎𝑛

(1 − �̄�𝑎)𝑛+1

)
=

𝑛∑
𝑚=0

𝐶𝑚
𝑛
(𝑛!𝑎𝑛)(𝑚)[(1 − �̄�𝑎)−𝑛−1](𝑛−𝑚)

=
𝑛∑

𝑚=0
𝐶𝑚
𝑛
𝑛! (2𝑛−𝑚)!

(𝑛−𝑚)!
(𝑎�̄�)𝑛−𝑚(1 − �̄�𝑎)𝑚−2𝑛−1

= (2𝑛)! |𝑎|2𝑛
(1 − |𝑎|2)2𝑛+1 +⋯ . (39)

Lemma 2. Let 𝑓 ∈𝐻2(𝔻). There holds for all |𝑎| < 1 uniformly

lim
𝑛→∞

|⟨𝑓, 𝑒𝑛,𝑎⟩|(𝑧) = 0. (40)

Proof. For any 𝜀 > 0, due to 𝐿2-convergence of Fourier series, there exists a polynomial ℎ(𝑧) such that

‖𝑓 − ℎ‖ < 𝜀.

Denote by 𝑁 the degree of the polynomial ℎ. When 𝑛 >𝑁 , in view of the Cauchy-Schwarz inequality and (12), there holds for any 
𝑎 ∈𝐃

|⟨𝑓, 𝑒𝑛,𝑎⟩| ≤ |⟨𝑓 − ℎ, 𝑒𝑛,𝑎⟩|+ |⟨ℎ, 𝑒𝑛,𝑎⟩|
< 𝜀+ |⟨ℎ(𝑧), 𝑒𝑛,𝑎⟩|
= 𝜀+

⟨
ℎ(𝑧),

( 𝜕

𝜕�̄�

)𝑛
𝑘𝑎(𝑧)‖( 𝜕

𝜕�̄�

)𝑛
𝑘𝑎(𝑧)‖

⟩
= 𝜀+ 1‖( 𝜕

𝜕�̄�

)𝑛
𝑘𝑎(𝑧)‖

⟨
ℎ(𝑧)(𝑛), 𝑘𝑎(𝑧)

⟩
= 𝜀.

Lemma 3. For 𝑓 ∈𝐻2(𝔻) there holds uniformly for 𝑛 ∈𝐍

lim|𝑎|→1
|⟨𝑓, 𝑒𝑛,𝑎⟩| = 0. (41)

Proof. Given 𝜀 > 0. Due to Lemma 2, we can restrict ourselves to verifying the convergence for 𝑛 ≤ 𝑁 . Since the span of the 
parametrized Szegö kernels is dense in the whole space, the verification is further reduced to a Szegö kernel. For any but fixed 𝑏 ∈𝐃,

||||
⟨
𝑘𝑏,

( 𝜕

𝜕�̄�

)𝑛
𝑘𝑎‖( 𝜕

𝜕�̄�

)𝑛
𝑘𝑎‖

⟩||||
= 1‖( 𝜕

𝜕�̄�

)𝑛
𝑘𝑎‖

⟨
𝐾𝑏,

(
𝜕

𝜕�̄�

)𝑛

𝑘𝑎

⟩
= 1‖( 𝜕

𝜕�̄�

)𝑛
𝑘𝑎‖

||||
(

𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑏)
||||

(1 − |𝑎|2)𝑛+ 1
2 𝑛!|𝑏|𝑛
12

≤ √
(2𝑛)!|𝑎|𝑛 |(1 − �̄�𝑏)|𝑛+1
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(using the 𝑚 = 0 term in (39))

≤ (1 − |𝑎|2)𝑛+ 1
2√

(2𝑛)!|𝑎|𝑛 𝑛!|𝑏|𝑛
(1 − |𝑏|)𝑛+1 → 0, as |𝑎|→ 1.

Lemma 2 and Lemma 3 together show that the complete dictionary satisfies BVC:

Theorem 5. For 𝑓 ∈𝐻2(𝔻) there holds

lim|𝑎|→1 𝑜𝑟 𝑛→∞
|⟨𝑓, 𝑒𝑛,𝑎⟩| = 0. (42)

In the last section, we deduced that in any Hilbert space with a BVC differentiate dictionary GA, OGA and POAFD can be 
performed. Owing to Theorem 5, taking  to be the Hardy space in the disc, and ̃ = {𝐸𝑞}, 𝑞 ∈  , the complete Szegö dictionary, 
where

 = {𝑞 ∈𝐍 ×𝐃 = {(𝑛, 𝑎) ∶ 𝑛 ∈𝐍, 𝑎 ∈𝐃}

and

𝐸𝑞 = 𝑒𝑛,𝑎,

we conclude that GA, OGA, and POAFD can be performed with respect to the Szegö complete dictionary.

The general theory of POAFD especially implies

Theorem 6. For any 𝑚 − 1 previously given distinguished 2-tuples

(𝑛1, 𝑎1),⋯ , (𝑛𝑚−1, 𝑎𝑚−1),

each in 𝐍 ×𝐃, there holds

lim|𝑎|→1 𝑜𝑟 𝑛→∞
|⟨𝑓,𝐵𝑘𝑛,𝑎

𝑚 ⟩| = 0, (43)

where 𝐵
𝑘𝑛𝑚,𝑎𝑚
𝑚 is the Hardy space function, unique up to unimodular multiple constants, characterized by the condition that

(𝐵
𝑘𝑛1 ,𝑎1
1 ,⋯ ,𝐵

𝑘𝑛𝑚−1 ,𝑎𝑚−1
𝑚−1 ,𝐵

𝑘𝑛𝑚,𝑎𝑚
𝑚 )

is the GS orthonormalization of (𝐵
𝑘𝑛1 ,𝑎1
1 , ⋯ , 𝐵

𝑘𝑛𝑚−1 ,𝑎𝑚−1
𝑚−1 , ̃𝑘𝑛𝑚,𝑎𝑚

). We note that POAFD through the multiple kernel notion induces the com-

pletion of the dictionary in use. In our case, the dictionary in use by itself is a complete dictionary, whose completion, therefore, remains as 
just the same dictionary. As a consequence, there exists (𝑛𝑚, 𝑎𝑚) ∈𝐍 ×𝐃 such that

(𝑛𝑚, 𝑎𝑚) = argmax{|⟨𝑓,𝐵𝑘𝑛,𝑎
𝑚 ⟩| | (𝑛, 𝑎) ∈𝐍 ×𝐃}. (44)

The system {𝐵𝑘𝑛,𝑎
𝑚 } has the role as the TM system made by the multiple Szegö kernels, where they can be further specified by

𝐵
𝑘𝑛,𝑎
𝑚 =

𝑄(𝑛1 ,𝑎1),⋯,(𝑛𝑚−1 ,𝑎𝑚−1)𝑘𝑛,𝑎‖𝑄(𝑛1 ,𝑎1),⋯,(𝑛𝑚−1 ,𝑎𝑚−1)𝑘𝑛,𝑎‖
=

𝑘𝑛,𝑎 −
∑𝑚−1

𝑙=1 ⟨𝑘𝑛,𝑎,𝐵𝑙⟩𝐵𝑙‖𝑘𝑛,𝑎 −∑𝑚−1
𝑙=1 ⟨𝑘𝑛,𝑎,𝐵𝑙⟩𝐵𝑙‖

=
𝑒𝑛,𝑎 −

∑𝑚−1
𝑙=1 ⟨𝑒𝑛,𝑎,𝐵𝑙⟩𝐵𝑙‖𝑒𝑛,𝑎 −∑𝑚−1
𝑙=1 ⟨𝑒𝑛,𝑎,𝐵𝑙⟩𝐵𝑙‖ .

5. Behavior of multiple Szegö kernel and Laguerre system in Hardy-Sobolev space

For 𝜎 > 0, denoted by 𝐻2
𝜎
(𝐃) the order-𝜎 Hardy-Sobolev space:

𝐻2
𝜎
(𝐃) = {𝑓 (𝑧) =

∞∑
𝑛=0

𝑐𝑛𝑧
𝑛 ∶

∞∑
𝑛=0

|(1 + 𝑛𝜎)𝑐𝑛|2 <∞}.
13

The space is briefly denoted 𝐻2
𝜎
. For 𝑓 ∈𝐻2

𝜎
, define
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‖𝑓‖
𝐻2

𝜎
≜
( ∞∑

𝑛=0
|(1 + 𝑛𝜎)𝑐𝑛|2)

1
2

.

𝐻2
𝜎

is a subset of 𝐻2, being, by itself, a reproducing kernel Hilbert space. We will consider in this section expansions of 𝑓 ∈𝐻2
𝜎

by 
multiple Szegö kernels in the norm of 𝐻2. By definition, 𝑓 ∈𝐻2

𝜎
means that 𝑓 has up to the 𝜎-th derivatives (𝜎 can be non-integer) 

of which all are of finite energy. Below we restrict ourselves to the integer 𝜎 cases.

Theorem 7. If 𝑓 ∈𝐻2
𝜎
, where 𝜎 is a non-negative integer, then

|⟨𝑓, 𝑘𝑛,𝑎‖𝑘𝑛,𝑎‖ ⟩| ≤ 𝐶(𝜎, 𝑎) 1
𝑛𝜎
‖𝑓‖

𝐻2
𝜎
, (45)

where 𝐶(𝜎, 𝑎) is a constant depending only on 𝜎 and 𝑎.

If 𝑎 = 0, then 𝑘𝑛,𝑎‖𝑘𝑛,𝑎‖ = 𝑧𝑛, and the theorem reduces to a known classical result. In the general multiple kernel case, the proof uses 
estimates of the kernel function.

Proof. For 𝑓 ∈𝐻2
𝜎
,

|⟨𝑓, 𝑘𝑛,𝑎‖𝑘𝑛,𝑎‖ ⟩|
= 1‖𝑘𝑛,𝑎‖ |⟨𝑓,𝑘𝑛,𝑎⟩|
= 1‖𝑘𝑛,𝑎‖ |⟨𝑓 (𝜎), 𝑘𝑛−𝜎,𝑎⟩|
≤ ‖𝑘𝑛−𝜎,𝑎‖‖𝑘𝑛,𝑎‖ ‖𝑓‖

𝐻2
𝜎
.

By 
(

𝜕

𝜕�̄�

)𝑛

𝑘𝑎(𝑎) =
𝑛!𝑎𝑛

(1−𝑎𝑎)𝑛+1 , we get

‖𝑘𝑛−𝜎,𝑎‖2‖𝑘𝑛,𝑎‖2
=

𝑘𝑛−𝜎,𝑎(𝑎)
𝑘𝑛,𝑎(𝑎)

=

(
𝜕

𝜕�̄�

)2(𝑛−𝜎)
𝑘𝑎(𝑎)(

𝜕

𝜕�̄�

)2𝑛
𝑘𝑎(𝑎)

=
[2(𝑛−𝜎)]!𝑎2(𝑛−𝜎)
(1−𝑎𝑎)2(𝑛−𝜎)+1

(2𝑛)!𝑎2𝑛
(1−𝑎𝑎)2𝑛+1

= (2𝑛− 2𝜎)!
(2𝑛)!

(
1 − 𝑎𝑎

𝑎

)2𝜎
.

By Stirling’s formula,

(2𝑛− 2𝜎)!
(2𝑛)!

(
1 − 𝑎𝑎

𝑎

)2𝜎

=

√
2𝜋(2𝑛− 2𝜎)( 2𝑛−2𝜎

𝑒
)2𝑛−2𝜎√

2𝜋(2𝑛)( 2𝑛
𝑒
)2𝑛

(
1 − 𝑎𝑎

𝑎

)2𝜎

= 1
22𝜎

(𝑛− 𝜎)2𝑛−2𝜎+
1
2

𝑛
2𝑛+ 1

2

𝑒2𝜎
(
1 − 𝑎𝑎

𝑎

)2𝜎

≤ 1
22𝜎

𝑒2𝜎
(
1 − 𝑎𝑎

𝑎

)2𝜎
3−

𝜎

𝑛
(2𝑛+ 1

2 ) 1
𝑛2𝜎

.

14

Hence,
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|⟨𝑓, 𝑘𝑛,𝑎‖𝑘𝑛,𝑎‖ ⟩|
≤ 1

2𝜎
𝑒𝜎
(
1 − 𝑎𝑎

𝑎

)𝜎

3−
𝜎

𝑛
(𝑛+ 1

4 ) 1
𝑛𝜎
‖𝑓‖

𝐻2
𝜎

tending to zero with the rate 1
𝑛𝜎

.

When all the parameters 𝑎𝑛 are identical to 0 the system of the normalized multiple kernels is a half of the Fourier orthonormal 
system. When all 𝑎𝑛 are identical to some 𝑎 ≠ 0, then the multiple kernels 𝑘𝑛,𝑎 form a complete but unorthogonal system. The GS 
orthonormalization of such multiple kernels forms the complete orthonormal Laguerre System

𝐵𝑛,𝑎(𝑧) =
√
1 − |𝑎|2
1 − �̄�𝑧

( 𝑧− 𝑎

1 − �̄�𝑧
)𝑛−1, 𝑛 = 1,⋯

(see Appendix of [27]). A Laguerre System is a particular TM system in which all 𝑎𝑛 are equal to a non-zero 𝑎 ∈𝐃.

It is a classical result that Fourier series of functions in the 𝐻2
𝜎

have convergence rate 𝑂(𝑛−𝜎). This result is available for Laguerre 
Systems as well.

Theorem 8. For a function 𝑓 in the Sobolev space 𝐻2
𝜎

there holds

‖𝑓 −
∞∑
𝑙≤𝑛
⟨𝑓,𝐵𝑙,𝑎⟩𝐵𝑙,𝑎‖ ≤ 𝐶𝑎

1
𝑛𝜎
‖𝑓‖

𝐻2
𝜎
. (46)

Proof. Performing change of variable 𝑒𝑖𝜃 = 𝑒𝑖𝑡−𝑎
1−�̄�𝑒𝑖𝑡 , simple computation gives 𝑑𝑡 = |1−�̄�𝑒𝑖𝑡|2

1−|𝑎|2 𝑑𝜃 and

⟨𝑓,𝐵𝑛,𝑎⟩
= 1

2𝜋

2𝜋

∫
0

𝑓 (𝑒𝑖𝑡)
√
1 − |𝑎|2

1 − 𝑎𝑒−𝑖𝑡
( 𝑒−𝑖𝑡 − �̄�

1 − 𝑎𝑒−𝑖𝑡
)𝑛−1𝑑𝑡

= 1
2𝜋

1√
1 − |𝑎|2

2𝜋

∫
0

𝑓 (𝑒𝑖𝑡)(1 − �̄�𝑒𝑖𝑡)𝑒−𝑖(𝑛−1)𝜃𝑑𝜃

= 1
2𝜋

1√
1 − |𝑎|2

2𝜋

∫
0

𝑓 ( 𝑒𝑖𝜃 + 𝑎

1 + �̄�𝑒𝑖𝜃
)(1 − �̄�

𝑒𝑖𝜃 + 𝑎

1 + �̄�𝑒𝑖𝜃
)𝑒−𝑖(𝑛−1)𝜃𝑑𝜃

= 1
2𝜋

1√
1 − |𝑎|2

2𝜋

∫
0

𝐹𝑎(𝜃)𝑒−𝑖(𝑛−1)𝜃𝑑𝜃

= 1√
1 − |𝑎|2 ⟨𝐹𝑎, 𝑒𝑛,0⟩,

where 𝐹𝑎(𝜃) = 𝑓 ( 𝑒𝑖𝜃+𝑎
1+�̄�𝑒𝑖𝜃 )(1 − �̄�

𝑒𝑖𝜃+𝑎
1+�̄�𝑒𝑖𝜃 ). Since |𝑎| has a positive distance to 1, we have ‖𝐹𝑎‖𝐻2

𝜎
≃ ‖𝑓‖

𝐻2
𝜎
. Hence, through a brutal 

estimation,

‖ ∞∑
𝑙≥𝑛
⟨𝑓,𝐵𝑙,𝑎⟩𝐵𝑙,𝑎‖2

=
∞∑
𝑙≥𝑛

|⟨𝑓,𝐵𝑙,𝑎⟩|2
= 1√

1 − |𝑎|2
∞∑
𝑙≥𝑛

|⟨𝐹𝑎, 𝑒𝑛,0⟩|2
≤ 1√

1 − |𝑎|2 1
(1 + 𝑛𝜎)2

∞∑
𝑙≥𝑛

|(1 + 𝑙𝜎)⟨𝐹𝑎, 𝑒𝑛,0⟩|2
= 1√

1 − |𝑎|2 1
(1 + 𝑛𝜎)2

‖𝐹𝑎‖2𝐻2
𝜎

1 2
15

⪅ 𝐶𝑎 (1 + 𝑛𝜎)2
‖𝑓‖

𝐻2
𝜎

.
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Below we provide the explicit transformation matrices between the 𝑛-Laguerre system and the corresponding first 𝑛 multiple 
kernels.

Proposition 1. For arbitrary but fixed 𝑛 and 𝑎 ∈ 𝔻, 𝑎 ≠ 0, denote by the row matrix  = {𝐵𝑙,𝑎}𝑛𝑙=1 the 𝑛-Laguerre system, and the row 
matrix  = {𝑘𝑙,𝑎}𝑛𝑙=1 the corresponding 𝑛-tuple of multiple kernels. Then the invertible transformation matrix  such that  =   is given 
by  = {𝑐𝑘𝑗}𝑛×𝑛,

𝑐𝑘𝑗 =
⎧⎪⎨⎪⎩

(𝑗+1)!
(𝑘−𝑗)!

𝑎𝑘−𝑗

(1−|𝑎|2)𝑘+ 1
2
, 𝑗 ≤ 𝑘 ≤ 𝑛,

0, 𝑛 ≥ 𝑗 > 𝑘,

and  =  −1 with  −1 = {𝑑𝑘𝑗}𝑛×𝑛,

𝑑𝑘𝑗 =
⎧⎪⎨⎪⎩

(−𝑎)𝑘−𝑗 (1−|𝑎|2)𝑗− 1
2

𝑘!(𝑘−𝑗)! , 𝑗 ≤ 𝑘 ≤ 𝑛,

0, 𝑛 ≥ 𝑗 > 𝑘.

Proof. Since span  = span  and 𝐵𝑙,𝑎 are orthonormal, we have 𝑘𝑘,𝑎 =
∑𝑘

𝑗=1 𝑐𝑘𝑗𝐵𝑗,𝑎, where 𝑐𝑘𝑗 = ⟨𝑘𝑘,𝑎, 𝐵𝑗,𝑎⟩. For 𝑗 ≤ 𝑘 ≤ 𝑛,

𝑐𝑘𝑗 = ⟨𝐵𝑗,𝑎, 𝑘𝑘,𝑎⟩
=
⟨√

1 − |𝑎|2
1 − �̄�𝑧

( 𝑧− 𝑎

1 − �̄�𝑧
)𝑗−1, 𝑧𝑘−1

(1 − �̄�𝑧)𝑘

⟩

= 1
2𝜋

2𝜋

∫
0

√
1 − |𝑎|2
1 − �̄�𝑒𝑖𝑡

( 𝑒𝑖𝑡 − 𝑎

1 − �̄�𝑒𝑖𝑡
)𝑗−1 𝑒−𝑖(𝑘−1)𝑡

(1 − 𝑎𝑒−𝑖𝑡)𝑘
𝑑𝑡

= 1
2𝜋
√
1 − |𝑎|2 2𝜋

∫
0

(𝑒𝑖𝑡 − 𝑎)𝑗−1

(1 − �̄�𝑒𝑖𝑡)𝑗
1

(𝑒𝑖𝑡 − 𝑎)𝑘
𝑑𝑒𝑖𝑡

= 1
2𝜋
√
1 − |𝑎|2 ∫

𝜕𝐃

(𝜉 − 𝑎)𝑗−1

(1 − �̄�𝜉)𝑗
1

(𝜉 − 𝑎)𝑘
𝑑𝜉

= 1
2𝜋
√
1 − |𝑎|2 ∫

𝜕𝐃

1
(1 − �̄�𝜉)𝑗

1
(𝜉 − 𝑎)𝑘+1−𝑗

𝑑𝜉

= 𝑗!
(𝑘− 𝑗)!

�̄�𝑘−𝑗

(1 − |𝑎|2)𝑘− 1
2

.

For 𝑛 ≥ 𝑗 > 𝑘, 𝐵𝑗,𝑎⊥span  = span , and thus 𝐵𝑗,𝑎⊥𝑘𝑘,𝑎. We hence have 𝑐𝑘𝑗 = 0, 𝑗 > 𝑘.

To compute the entries 𝑑𝑘𝑗 of the inverse matrix  −1, by using mathematical induction, we have 𝑑𝑘𝑗 =
(−𝑎)𝑘−𝑗 (1−|𝑎|2)𝑗− 1

2

𝑘!(𝑘−𝑗)! , 𝑗 ≤ 𝑘, and 
𝑑𝑘𝑗 = 0, 𝑗 > 𝑘.

6. 𝒏-Best approximation with the complete Szegö kernel dictionary: existence and algorithm

Since derivatives of parameterized Szegö kernels and multiple Szegö kernels are still multiple Szegö kernels, the completion of 
the Szegö complete dictionary {𝑒𝑚,𝑎}, 𝑚 = 0, 1, 2, ⋯ , 𝑎 ∈𝐃, is itself. Hence the 𝑛-Best problem with (1) returns to one with (1).

Theorem 9. In the setting of the Hardy 𝐻2 space with the complete Szegö dictionary there exist solutions to the 𝑛-Best approximation 
problem.

It is noted that the 𝑛-Best approximation with the complete Szegö dictionary is different from that with the Szegö kernel dictionary. 
For the former, the total number of the involved multiple kernels is required not exceeding 𝑛, and for the latter, the sum of all the 
multiples of the involved parameters is required not exceeding 𝑛. The theorem cannot be proved by directly invoking the existing 
𝑛-Best results [7,18,24]. We outline a proof by referring to the one in [7].

Proof. Let 𝑓 be a fixed function in the Hardy space. We assume that 𝑓 is not identical to any 𝑗-Best approximation for 𝑗 < 𝑛, and 
hence exactly 𝑛 parameters are necessary to get an 𝑛-Best approximation. In this case, suppose that we have a sequence of 𝑛-tuples 
16

of parameter pairs
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(𝑎(𝑙)1 ,𝑚

(𝑙)
1 ),⋯ , (𝑎(𝑙)

𝑛
,𝑚(𝑙)

𝑛
)
)
, 𝑙 = 1,2,⋯ ,

such that the corresponding 𝑛-tuples of multiple kernels 𝑘
𝑎
(𝑙)
𝑗
,𝑚

(𝑙)
𝑗

, 𝑗 = 1, ⋯ , 𝑛, give rise to, with the limit procedure 𝑙 → ∞, the 

infimum of (1). We claim that the integers 𝑚(𝑙)
𝑗

for 𝑗 = 1, ⋯ , 𝑛 and 𝑗 = 1, 2, ⋯, have to be bounded, and the complex numbers 
𝑎
(𝑙)
𝑗

’s for 𝑗 = 1, ⋯ , 𝑛 and 𝑗 = 1, 2, ⋯, have to be in a compact disc contained in 𝐃. Once these claims are proved, by invoking the 
Bolzano-Weierstrass Theorem on the existence of a convergent subsequence in the compact set we conclude the existence of 𝑛-Best 
approximation in our case.

The boundedness of 𝑚(𝑙)
𝑗

is assured through the argument employed in the proof of Lemma 2. Next, by Proposition 1, each of 
the involved multiple kernels 𝑘

𝑎
(𝑙)
𝑗
,𝑚

(𝑙)
𝑗

is a linear combination of the first 𝑚(𝑙)
𝑗

functions of the corresponding Laguerre system. Then 

(𝑎(𝑙)1 , 𝑚(𝑙)
1 ), ⋯ , (𝑎(𝑙)𝑛 , 𝑚(𝑙)

𝑛 ) altogether induce 𝑛 finite Laguerre systems of, respectively, the orders 𝑚(𝑙)
1 , ⋯ , 𝑚(𝑙)

𝑛 . Put the 𝑛 finite Laguerre 
systems together and construct the equivalent orthonormal system by using the GS process. The obtained orthonormal system is a 
finite TM system. The argument of the proof of the main result of [7] can be adopted to obtain that any |𝑎(𝑙)

𝑗
| tending to 1 along with 

𝑙→∞ will result in that the sequence 𝑘
𝑎
(𝑙)
𝑗
,𝑚

(𝑙)
𝑗

having no contribution in the approximation, and thus may be deleted. This concludes 
𝑛 parameters are unnecessary. This is contradictory to the assumption at the beginning of the proof.

Remark 3. Since the Fourier system is contained in the complete Szegö dictionary, the 𝑛-Best approximation to functions in 𝐻2
𝜎

by 
the complete dictionary has a convergence rate at least as good as 𝑂(𝑛−𝜎). Taking into account the convergence rate 𝑂(𝑛−1∕2) for 
general matching pursuit algorithms, it is natural to guess, but we are unable to prove so far, that the 𝑛-Best approximation in 𝐻2

𝜎

by the complete dictionary has the convergent rate 𝑂(𝑛−𝜎−1∕2).

We hereby cite two types of algorithms for finding one or all the 𝑛-Best solutions.

6.1. A global and theoretical algorithm for finding all the 𝑛-Best solutions

By a global method, we refer to finding all the global minimum solutions, and, in particular, not being trapped in the local 
minimums. Such methods, therefore, have to be theoretical. Since, as asserted, the 𝑚(𝑙)

𝑗
are altogether bounded, say, by 𝑁 , and all 

𝑎
(𝑙)
𝑗

are in a compact disc 𝐃𝑟, 0 < 𝑟 < 1, we reduce the problem to finding 
(
𝑘𝑚1 ,𝑎1

,⋯ , 𝑘𝑚𝑛,𝑎𝑛

)
such that (𝑚𝑗, 𝑎𝑗 ) ∈ {1, ⋯ , 𝑁} × 𝐃𝑟. 

This is to find all the global minimizers of the Lipschitz target function defined in the compact set. There exist theoretical, as well as 
practical methods to solve the type of problems in the optimization specialty. See, for instance, [24,31], and the references thereby.

6.2. A practical algorithm for finding an 𝑛-Best solution

Practically, by the Gaussian gradient type or other similar methods based on local comparison of the target function values one 
may find an 𝑛-Best solution. By local comparison, although there is no guarantee of finding a global solution, it is practical and 
can often be used [20–23]. We hereby recommend a local comparison type method, Cyclic POAFD, with theoretical clarity and 
computational simplicity. It can be used with any dictionary [22].

Suppose we have an initial 𝑛-tuple of dictionary elements (𝑒
𝑞
(0)
1
, ⋯ , 𝑒

𝑞
(0)
𝑛
). The 𝑛-tuple of parameters (𝑞(0)1 , ⋯ , 𝑞(0)𝑛 ) may be obtained 

randomly, or through an 𝑛-POAFD procedure. We rather use the kernels 𝑘
𝑞
(0)
𝑗

(pre-dictionary) instead of using the dictionary elements 
𝑒
𝑞
(0)
𝑗

to save the computation of normalization. The idea is to improve the already obtained 𝑛-tuple of parameters in one by one cyclic 
manner: At each iteration step we replace a kernel already existing in the n tuple of kernels, and keep the other 𝑛 − 1 kernels 
unchanged. This cyclic procedure is performed continuously until each of the 𝑛-tuple of parameters cannot be improved with respect 
to a tolerant error threshold.

7. Experiments

The experiments will select parameters in 𝐃 which are expressed in polar coordinates:

𝑎 = 𝑥− 1
𝑋

𝑒
𝑖2𝜋 𝑦−1

𝑌 , (49)

for 𝑥 = 1, 2, … , 𝑋, and 𝑦 = 1, 2, … , 𝑌 , where 𝑋, 𝑌 correspond to the radial and angular discretization of the unit disc, respectively. 
We let 𝑋 = 100, 𝑌 = 100 in the following experiments. The abbreviations of the algorithms with the specifications including the type 
of dictionary in use, the type of matching pursuit algorithms, the iteration times, and whether it is 𝑛-Best etc. are given in Table 1. 
For Complete POAFD as an example, we obtain the partial sum series:

𝑆𝐾 =
𝐾∑
𝑘=1

⟨𝑔𝑘,𝐵𝑘⟩𝐵𝑘, (50)
17

with the relative error given by
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Table 1

Abbreviations of the algorithms.

p-GA p iterations of GA algorithm with the Szegö dictionary

p-OGA p iterations of OGA algorithm with the Szegö dictionary

p-POAFD p iterations of POAFD algorithm with the Szegö dictionary

p-Best p-Best approximation with the Szegö dictionary through some cycles

p-Complete GA p iterations of GA algorithm with the complete Szegö dictionary

p-Complete OGA p iterations of OGA algorithm with the complete Szegö dictionary

p-Complete POAFD p iterations of POAFD algorithm with the complete Szegö dictionary

p-Best Complete p-Best approximation with the complete Szegö dictionary through some cycles

p-unwinding p iterations of unwinding algorithm

Table 2

Parameters.

Experiment 1

𝑘 𝑏𝑘 𝑐𝑘

1 -0.4750 + 0.3050i -0.5861 - 0.04445i

2 -0.1800 + 0.7150i 0.2428 - 0.6878i

3 0.2600 - 0.7300i 0.4423 - 0.3309i

4 0.5400 + 0.3600i -0.2703 - 0.8217i

5 -0.4850 - 0.2150i -0.8085 + 0.3774i

Table 3

Relative error.

Experiment 1 Fig. 1.

3 iterations GA OGA POAFD 3-Best

relative error 0.4581 0.4314 0.4246 0.2613

‖𝑓 −𝑆𝐾‖‖𝑓‖ . (51)

We take a similar definition to get the relative energy and relative error of other methods. Below we use the following convention 
and notation: If for a particular signal 𝑓 the relative approximation error (51) of Algorithm 1 is less than that of Algorithm 2, then 
we denote this fact by

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝑓 ) ≥𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2(𝑓 ).

The simulations are performed in a MATLAB environment using the data collected from the formula of the signal 𝑓 (𝑧), 𝑧 = 𝑒𝑖𝑡. 
The samples of 𝑓 are from 𝑡𝑗 =

2𝜋(𝑗−1)
100 , 𝑗 = 1, 2, ..., 100. Six experiments are included.

Experiment 1. This experiment contains two lots of comparisons of which one is 3 iterations of, respectively, GA, OGA, POAFD, 
and n-Best algorithm, with respect to the Szegö kernel dictionary; and the other is the same but with respect to the complete Szegö 
dictionary. The tested toy function 𝑓1 is given by the finite Blaschke form

𝑓1(𝑧) =
5∑

𝑘=1
𝑐𝑘𝐵{𝑏1 ,...,𝑏𝑘}(𝑒

𝑖𝑡), (52)

where 𝐵{𝑏1 ,...,𝑏𝑘} is the TM system

𝐵{𝑏1 ,...,𝑏𝑘} =
√
1 − |𝑎𝑘|2
1 − �̄�𝑘𝑧

𝑘−1∏
𝑙=1

𝑧− 𝑎𝑙

1 − �̄�𝑙𝑧
, 𝑎 ∈𝔻, 𝑘 = 1,2, ...,

and 𝑡 ∈ (0, 2𝜋). The parameters (𝑏𝑘, 𝑐𝑘), 𝑘 = 1, 2, … , 5 are given in Table 2.

We note that 3-Best by using POAFD with the Szegö dictionary to create the initial 3-tuple, and 3-Best Complete by using POAFD 
with the complete Szegö dictionary to create the initial 3-tuple.

According to the relative error given in Table 3, and the results in Fig. 1, we conclude that 𝑛-Best(𝑓1) ≥ POAFD(𝑓1) ≥ OGA(𝑓1) ≥
GA(𝑓1).

From Table 4, and the results in Fig. 2 we see that 𝑛-Best Complete(𝑓1) ≥ Complete POAFD(𝑓1) ≥ Complete OGA(𝑓1) ≥ Complete 
GA(𝑓1). The order of superiority of the algorithms remains unchanged when using the complete dictionary, but by using the complete 
dictionary the approximation is more accurate.

Comparing POAFD and Complete GA algorithm, the results in Fig. 3, and the relative error given in Table 3, 4, we conclude that 
18

Complete GA(𝑓1) ≥ POAFD(𝑓1).
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Fig. 1. 3 iterations with the Szegö dictionary.

Table 4

Relative error.

Experiment 1 Fig. 2.

3 iterations Complete GA Complete OGA Complete POAFD 3-Best Complete

relative error 0.2941 0.2733 0.2590 0.0671

Fig. 2. 3 iterations with the complete Szegö dictionary.

Experiment 2. This experiment is to evaluate the performance of POAFD with the two dictionaries: the Szegö one and the complete 
Szegö one. The toy function is still (52) but with the parameters (𝑏𝑘, 𝑐𝑘), 𝑘 = 1, 2, … , 5 given in Table 5 that we note it 𝑓2.

From Table 6, and the results in Fig. 4, 5 we know that Complete POAFD can give a good approximation to 𝑓 through 9 iterations, 
while POAFD gives an approximation at a similar level through 18 iterations. Hence, Complete POAFD(𝑓2) ≥ POAFD(𝑓2).

Experiment 3. This experiment is to evaluate the performance of 𝑛-Best with the two dictionaries: the Szegö one and the complete 
Szegö one. The toy function is still (52) but with the parameters (𝑏𝑘, 𝑐𝑘), 𝑘 = 1, 2, … , 4 given in Table 7 that we note it 𝑓3.

We note that 8-Best by using POAFD with the Szegö dictionary to create the initial 8-tuple, and 4-Best Complete by using POAFD 
with the complete Szegö dictionary to create the initial 4-tuple.

From Table 8, and the results in Fig. 6, 7 we know that 4-Best Complete POAFD can give a good approximation to 𝑓 by 3 cycles, 
while 8-Best POAFD gives an approximation at a similar level by 5 cycles. Hence, 𝑛-Best Complete (𝑓3) ≥ 𝑛-Best (𝑓3).

Experiment 4. We note that unwinding Blaschke expansion is not a matching pursuit type algorithm, it, however, is of the same 
nature. As a very effective signal analysis method we add it to the pool of comparison [32]. This experiment is to compare unwinding, 
19

Complete POAFD, and 𝑛-Best algorithm, the signal is given by the samples of the following function
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Fig. 3. 3 iterations of POAFD and Complete GA.

Fig. 4. POAFD iterations with the Szegö dictionary.
20

Fig. 5. POAFD iterations with the complete Szegö dictionary.
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Table 5

Parameters.

Experiment 2

𝑘 𝑏𝑘 𝑐𝑘

1 -0.5850+0.2930i -0.3861-0.0515i

2 0.4806+0.2513i -0.2802-0.7235i

3 0.2505-0.6823i 0.4505-0.4325i

4 -0.2005+0.6950i 0.2539-0.7136i

5 -0.4512-0.1825i -0.7562+0.4265i

Table 6

Relative error.

Experiment 2

Fig. 4. / Fig. 5. POAFD Complete POAFD

𝐾 iterations 𝐾=1 𝐾=4 𝐾=18 𝐾=1 𝐾=4 𝐾=9

relative error 0.7906 0.4259 0.0173 0.7306 0.1334 0.0173

Table 7

Parameters.

Experiment 3

𝑘 𝑏𝑘 𝑐𝑘

1 -0.4750+0.3050i -0.5861-0.4444i

2 0.3600-0.6300i 0.4423-0.3308i

3 0.5400+0.4600i -0.2702-0.8217i

4 -0.4850-0.2150i -0.7085+0.3773i

Fig. 6. 8-Best approximation with the Szegö dictionary through 5 cycles.

Table 8

Relative error.

Experiment 3

Fig. 6. / Fig. 7. 8-Best POAFD 4-Best Complete POAFD

𝐾 iterations 𝐾=8 𝐾=4

𝑙 cycles 𝑙=5 𝑙=3

relative error 0.0224 0.0200
21
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Fig. 7. 4-Best approximation with the complete Szegö dictionary through 3 cycles.

Table 9

Parameters.

Experiment 4

𝑘 𝑑𝑘

1 3.1017-2.5305i

2 -6.1205+2.3674i

3 -5.4678-2.2502i

4 -4.4217+7.6913i

Fig. 8. 2 iterations of unwinding, Complete POAFD and 2-Best Complete.

Table 10

Relative error.

Experiment 4 Fig. 8.

2 iterations unwinding Complete POAFD 2-Best Complete

relative error 0.2113 0.0863 0.0082

𝑓4(𝑧) =
(𝑧4 − 𝑑1)(𝑑2 − 𝑧)5

(𝑑3 − 𝑧)3(𝑑4 − 𝑧)2
,

where 𝑡 ∈ (0, 2𝜋). The parameters 𝑑𝑘, 𝑘 = 1, 2, … , 4 are given in Table 9.

We note that 2-Best Complete by using POAFD with the complete Szegö dictionary to create the initial 2-tuple.
22

From Table 10, and the results in Fig. 8, it is seen that 𝑛-BestComplete(𝑓4) ≥ Complete POAFD(𝑓4) ≥ unwinding(𝑓4).
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Fig. 9. Denoising the chirp signal by Complete POAFD.

Experiment 5. Using Complete POAFD algorithm to denoise a noisy signal, the data are collected from the chirp signal without noise

𝑓 (𝑧) = 𝑒
𝑖
𝑡2
𝜋 ,

where 𝑡 ∈ (0, 2𝜋). And the original signal is a noisy signal with additive Gaussian white noise of 𝑓 .

From the denoising effect given in Fig. 9, we see Complete POAFD may denoise noisy signals.

To summarize the experiments:

1. GA, OGA, POAFD (=AFD in HARDY), 𝑛-BEST with either the Szegö or the complete Szegö dictionary, and unwinding have the 
signal reconstruction efficiency following this order: 𝑛-Best Complete(𝑓1) ≥ Complete POAFD(𝑓1) ≥ Complete OGA(𝑓1) ≥ Complete 
GA(𝑓1) ≥ POAFD(𝑓1) ≥ OGA(𝑓1) ≥ GA(𝑓1), 𝑛-Best Complete (𝑓3) ≥ 𝑛-Best(𝑓3), and 𝑛-Best Complete(𝑓4) ≥ Complete POAFD(𝑓4) ≥
unwinding(𝑓4).

2. In spite of the ordering theoretically or experimentally proved, referring to 1., experiments show that the differences between 
their efficiencies are not much.

3. Experiments show that Complete GA(𝑓1) ≥ POAFD(𝑓1). A weaker algorithm with the complete dictionary is usually stronger 
than a stronger algorithm with a weaker dictionary, say the original Szegö dictionary. This shows that it is the dictionary that is 
important.

4. Complete POAFD algorithm shows promising denoise effect.

8. Conclusion

The necessity of the notion multiple kernels is justified by the existence of the natural question on 𝑛-Best kernel approximation, 
and by the desire for principal frequency decomposition of signals. For the latter, the concept mean-frequency is introduced. As 
the Fourier basis functions do, multiple kernels can extract the same rates of decaying to zero of signals in the Sobolev spaces. 
The work spells out the natural connections between the multiple Szegö kernels and the Laguerre system. Well-posed-ness of 𝑛-Best 
approximation with the complete Szegö dictionary is proved. With any dictionary, 𝑛-Best is the strongest, and POAFD is superior to 
all the other concerned matching pursuit methods in the one by one manner. Precisely, it is proved that the concerned matching 
pursuit methods from strong to weak are in the order n-Best, POAFD, OGA, and GA. Through concrete examples, we show that the 
complete Szegö dictionary has great potential in sparse representation, for, especially, the weakest matching pursuit GA combined 
with the complete dictionary can inspire greater efficiency than what POAFD with the Szego dictionary does.

Future works include reducing the computational complexity and increasing the speed of the algorithm process.
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