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Abstract
If y) = x + id(x), tan "4’ <w<n/2 ,
S’ ={zeC| largz| < w, or, Jarg(~z)| < w}.

We have proved that if ¢ is a holomorphic function in S: and |o(z)| < % , denoting

TAz) = frp(z — DADAL, ¥ feC,(y), ¥ zesuppf,

where C c(y) denotes the class of continuous functions with compact supports, then the follow-
ing two conditions are equivalent:
1° T can be extended to be a bounded operator on Lz(y);

2°  there exists a function @ eHm(S:) such that ¢’ (2) = ¢(z) + ¢(—2), ¥ zeS:.

§ 1 Introduction

The following formula between the Hibert transform and its multiplier representation
is well known:

i 1 1 ® ix¢ -~
p.v- J fy)dy =+~ J e sgnéf(§)dé, ¥ feS(K). (n
n] x—y 2z

R -

In [1], [3], [4] the authors developed a generalized Fourier transform theory related to
Lipschitz curves. In the theory it was proved that with respect to any Lipschitz curve the
multiplier associated to the Cauchy integral along this curve is still the signum function.
Exactly there exists
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for all functions fbelonging to a nice subclass of Lz(y), where y = {x + id(x)|— 0 < x
< 0},4(x) is a bounded Lipschitz function, ie., 4’| /=M <o, |4l _ =N <o and

e = J e “F(z)dz. 3)

Y

If y= R, then formula (2) reduces to formula (1). In the following we denote

L*(3) = {fy— C|f is measurable w.r. t. d{and [f], = (J If(C)IZIdCD% <),
¥

S, ={zeCllarg(+2)l <p}, O<p<n/2,

S =5, Us”,_

and
C,, ={zeCitImz>0}Js .
For any open sets P and Q in the complex plane C , denote
H”(P)={b:P->C| b is holomorphic and bounded}
and

K(Q)={p:0 - C| ¢ is holomorphic and F C s.t.|p(z) < % ze0}.

2, _Q° [ _ 0 .
Later we'll use P = S“’i or S“ and Q = Cﬂ,i,S“ respectively.

For beHw(S:'“) and zeCZ , » define
1 iz
F®)z) = o(2) =§;f e"b (0L,
0

where —u<—f<arg(z)<n—f<n+p and pf={se":0 < S < oo}. The defintion is indepen-

dent of §. When zeSl we define
G @)X =9 ()= j o(D)d,
&(z)
where the integral is along a contour 6(z), from —z to z in C:+ .

Similarly, for be (S| _) and zeC’ , define
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iz

-1
G b)z) = ¢(Z)=FJ e " b({d¢,
8
where —m—p< —f@<arg(z)<n—0 <y and pf={se”:0<s < co}. The definition is

independent of §. When zeS :, define

F (b)) = 0, (2) =j ()L,

&)
. . s 14
where this time the contourisin C__, from —ztoz.

Now assume that tan 'M <w <z /2. For any function beH m(S:) one can asso-

ciateit witha L 2(y) bounded operator defined formally by

B(D ) = ﬁf " bOROL,

-

where f is defined by (3) and we use notation b(Dy) in a similar way as we use &(D) for

the Classical Fourier multiplier operator while D = %dix But here D’ is the differential

operator along curve y:D_ = (1 + i4d’(x)) “'p.
7

In this paper, however, we’ll use the definition by A. McIntosh? which is equivalent
to the above mentioned one. By this approach one first define b(D7) for the following

subclass of H (S ; )

¥(s, )= {beyw(s;_inac, 5>0 st lb(C)lsl—%, fes; , }

and for be'¥(S, . ), define

b(D )f = ﬁ;j bOAI-D ) fdl, feL’@), @
r

where the integral contour I is as shown in the picture(A).
The integral in the right hand side in the formula (4) is absolutely convergent in the
operator norm and independent of I'. Having done this then we can extend to define (D 1)

for b in a bigger class of functions including H Q(S:H_). And, since D7 satisfies the
quadratic estimates, we can conclude that b(D') are bounded operators for all b

eHm(S: ,) (See [2]). The same is ture for beH” (S: _). By noticing that H” (S; s ) are
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subclasses of H ™ (S') and every functionin H"(S) has a decomposition into a sum of
a function in H m(S: ,) and of a function in H (S : _) in an obvious manner, we obtain
a definition of b(D’),beH (s :) which is a bounded operator in Lz(y). We note that in

this approach we don’t assume y bounded.

4 3See

3Sus

picture (A)

@ o o n
H (S‘H)—» Uk“mK(C‘H),O <p<w<=

2
one to one, onto, and for every be H™ (S : R ), by denoting ¢ = g(b),tpl = 91 (b) we have

Theorem 1. Mapping g:UMW , s

b(D )f(z)= limj @z —§ + infd¢

t~ot

- (]

where (z) is the unit tangent vector to y which is defined at almost all ze 7.

The same conclusion holds for Q:UM“WHQ(S:,_ Y- U K(C:_ ), 0<pu<o

w(z—C)f(C)d(C)+¢,(st(2))f(z)), ae., feL'(y), (5)

—(i>e

fcu<am

< g , except unsing limit t—~0—,
For beHm(S:,) we define &b =&b .t &b _ and

Fb=F b, +G b, whereb =by .  ,cH (Sm,.’c)'
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If we look the mapping &%:|J Hm(S:)—» U K(C:). O<pu<w< E, it is still

O<pu<o O<p<o

one to one, but no longer “onto”. It does map |J

U

H”(S°) onto a nice subclass of
<< I3

K(S:), however.

O<p<o

Theorem 2. Mapping F:| ) Hw(S:)—» U <I>(S:) is one to one and onto,

d<pu<o O<u<o

where 0<u<w<§ and

0($) = {0:57+C1 p=0,+9',, 0, , are odd and p,eK(S),0,eH™(5)}.

©, 0 1 1
For every be H (S“) we have ¢ =Fb=o, +(p’] =@,+ ('2-9117)',(2, =59]b, and

b(D Mfiz) = lim (J oz — DAY + 2¢,(st(2)f(2)>, ae., feL’(). ©)

s=004 >

Theorem 3. Let ¢ be a function holomorphic and satisfy |o{z)| S% on S : .y =X

+iA4(x) is a Lipschitz curve, | 4’| <tanw. Then there exists a Lz(y) bounded operator
T such that Tf(z) = [o(z — DAY, ¥ fe Cc(y),’v‘ zesuppf, where C _(y) denotes the class
of continuous functions with compact support on vy, if and only if there exists a function

(pleHm(S:) such that (p’l(z)=%((p(z)+ o(—2)), zeS:.

This work was supported by the Commonwealth of Australia through the Australian
Research Council. It is a plearsure to thank the School of Mathematical Sciences in the
Flinders University of South Australia for its hospitality where the final write—up was pre-
pared. The authors also with to thank Miss Jolie Hutchinson for the time she spent in typ-
ing an early draft of this work.

§ 2 Proffs of the Theorems

Proof of Theorem 1. The ray p# has been chosen so that the integrand in the
defintion of & is expoenentially decreasing at oo. This permits to verify directly that

-1

0@l < {2n distz.€\C? )} bl

which shows that <peK(C: , ) withany psuch that 0<pu<o.
To prove that & is one to one, let us show that gb =0 for zec::,+ implies 5=0in

R, and so that 5=0in §_ . Infact, for &>0
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0= GFb)x +ie,) = ﬁf e b=, )" (),
[

-5t

where b, =e "' b({)x +(¢)eL2(R). From the inverse formula of fourier transform we
(]

have b =0 ae.in R, and, so, b, =0 and b has to be zero on R.
] (]
To prove that & is onto we use the following mapping

71K(C:+)"HW(S,,,+ ), O<p, <p

F o) =J- o “ol)dz, (eS:

6"
L]

where

19 .
Jte , t is from A4 to oo,
A
[¢2 =

i(x - .
e a), t is from o to 4,

i .
Ae', t is from 7 to 0

with 4>0, 6<0, || > |arg{|. The defintion is independent of A4, 6. Since the integrand in the
defintion is expoenentially decreasing, it is drect to verify that

7]tpeH°°(S:l'+ ) 4 tpeK( s, )

We'll prove gar,qz =@,V ¢eK( S:+ ) and so & is “onto” . In fact, for a fixed ¢>0,
chose integral contours p, and a: such that 8 <y <|6], 8 <0 and 4 >0 is small enough so

that Tm({z) < 0,Im(¢{)> 0 and Im({(¢ — 2)) > 0 for all {ep,,zeq,, then from a partial

inverse of Fubini’s theorem we have

‘,4
]

1 K& —1) _ 1 @,
_2RJ4¢(Z)<J e dC>dZ—2niJ‘z_¢d2—¢(¢)-

9y [)

GF 1¢‘5’=217J e"‘(J e " o)dzdl
Py

This concludes that #F ¢ = ¢ on the positive part of the real line. Since FPF N
and ¢ are both holomorphic we proved ¥F ,9=9 on S: . which shows that & is
onto.

To prove the equalities (5) we need the following lemma:

Lemmal. 1° If beHm(S';'+ ) satisfies |b({) < C,lCI' for some se(— 1,00), then
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C 0
PO < . zeCt .
27z|:dist(z,aC:;'+ )]

2° .Ifbe‘P( s°, ) then 9= FbeL' () and b(D Y=g * f for fe L” (3),1 < p
< 0.

Proof.1° Let z=|zle o eC: , - By choosing an appropriate contour p, we have

C B sin ¢ 3
Ig(b)(z)KE.t'_J o T HROFON 1
0

1 C 1

<2 —
(zlsin(@+8,)' ™~ 2% (dist(z,0C" '

(o
T

2° be‘P(S:H) implies that 2 5e(0,1) and C, such that |b(C)l<C'min{IC|',

R CeS: , - By using the result in 1 ° we have lo(z)| < Cmin{——l—— ,—1—} eLl(y).
’ |

142 1-2
z|

Iz

49} is from 0 to +oo, 0 <tan 'M <6< . Then from formula 4)

Denote p ye=Te

we have

BD D) =5 J BOEI—D )™ o)

©, U6 _

-1 iz—8)
= f R j O f9a
+2lnj b(:)dcj * e ORDA) = —1, +1,,

where we used the convolution expression of resolvent ({1 — DT) -l (See [3] and yf = {¢

€yl + Re(z — &) > 0}. By the proof of the fact gpelL : (y), we actually have

Ke-8 1 ¥
f " PallagleL’ (), ey’
Pie
Since feL’(y),1<p< oo,goeLl(y), by the Hansdoff—-Young inequality and a partial con-
verse of Fubini’s theorem, we have

’l

~I = j /(c)dcz‘—nj e“"“’bgc)dc=f &0 (z — &)dE
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1= f f(c)d(c)ﬁf e“"“’b(c>dc=J A0z — EdE.

7y Py

By adding the last two formulas we conclude b(D 7)/ =@ *f.

Now we prove the equalities (5). First fora fixed ¢t > 0, b . )= ” 4 Cz' b(De -
+

e‘I-‘(S: +) are uniformly bounded in H°°(Sl+) and lim »© = b‘(() =b({e “% uni-

-0 1

formly in any compact set contained in S: , - Therefore by [2], § 4

limb, (D )f=b (D),

S-0

in Lz(y) norm for every feLz(y). Denote ?,, =9b“, by2° of Lemma 1

b, (D )fz)= Jcpu (z — OALE.

Since # «, f >0 such that

2

o,z &)l <f e ~%b (©Olld7| = eL’(y)

Pye

¢
Bt +alz -]
and

l'igfco,,(z -8=9,(z-0),
by the Lebesgue dominated convergence theorem, we have

b (D )flz) = fqa,(z — OfO)AE

= J¢(z — &+ iNfE)E, feL’@).

Using the convergence theorem in [2] § 4 once again to the left hand side of the above
equality, we have

-0+

b(D )fiz) = lim jrp(z —(+IOfQE, ¥ feL’W), ™

where the convergence is in Lz(y) norm.
To prove the second part of the equalities (5) we first assume
feL“w(y) ={fiy—> C|f is a Lipschitz function with compact support}.

Then we can prove
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b(D z) - J oz — DAYAL - flz) oz —Dd{
ls

—{>e /GC,:
<Ce- IIfIILw(,,, @®
where
C.,={eCli{—z=¢ Im{>A(ReD}
In fact,
b(D )(z) = lim J o(z — { +infld)dl
t—=o0+ Ix—(|>c
+ lim J o(z — { + i)(AD) — fiz))d¢
Otk
+ lim f(Z)f ez—{+indl=YJ,
ot PPy i3
where
J, = J o(z — DAL,
lz—{I>e
V,l< J. lo(z — DIAL — L < Cellfll =,
lz—{I<e
J, = lim flz) oz — { + i)dl = flz) o(z — {)d{.
-0+ “C; {ec;
These prove (8).
By noticing that

limJ @(z — D)d{ = limg_ (et(2))

-0 (GC:‘ =0
and taking limit &0 in (8), we conclude

b(Dr)f(z) = lim (J

s=0
lz={l>e

oz — DAL)AL +/(2)¢,(8t(2))), aezey ¥feL, (¥). (9)

To extend feL“pc(y) to feLz(y) in (9) we need the following lemma. We omit the

standard proof of it.
Lemma 2. Denote
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T flz) = f o(z — DAVL,

lz=¢{i>s

T flz) = sup»olT‘/(z)[
Then
I7°A,<CIfl,, 1<p<o.
Now let feLz(y). For any >0, afJean (y) such that ||f— £l Ly S 8. Then for

any x>0

{Ze 5 1b(D )Az) ~ lim (J o(z = DAL + e 1(est(Z)))l > a}]

(£

lz~{i>s
< l{ze | 16D Yf— f)(z) + lim<J oz = DU = DA+ (f— f )2 (2~ 2z, ))I
N s
a
>3h
+{ze yl 1b(D )f(2) — lim(j oz = Of (DAl + f,(2)o,(z — 2, ))I > g}l
CONY >

<Hze 7l 6D XS~ £,@I>ZH+ Hze ol T™ (= f)2)> 2}

+{ze 7 sup,_ W(f—f )2)o (z -z )| > g}!

<c(2).

where z: is the intersection point of the circle with centre z and radius ¢ and the left part

of 7y:Rey(x) < Rez, where we have used Lemma2 and 9, eHm( S:+ ) Since 8 can be

chosen as small as we want, we conclude (9) for F eLz(y). This completes the proof of the
theorem.

Proofoftheorem 2. 1t is easy to see that
HQ(S: ) = {b:S: - C| B(®)=5,(5)+ 2mith (&), where b,.b, are odd and
boeH“’(s;), bleK( s:)}. (10)

And, for every beH " ( S: ) there is a unique such decomposition as shown in the right

hand side of (10). Denote



* 50 » A. McIntosh et al:  Singular Integrals
¢0(S:) = {(pe(D(S:)I(p is odd},
H:(S;)= {beHm<S:)lb is odd},

and define a new mapping 3’01‘1’0(32)‘*H:(si ) by

+ - [
F,0,=b"+b7, V(poe<bo<Sm),

where
. [p.v.J\ e -mtpo(z)dz, Rel >0,
b (D= l “
0, Rel <0,
and
0, Re{ >0,
b = p.v.J e _c'(po(z)dz, Rel <0,
Ta

A 4 . .
where t__ and t_ are shown in the pictures below.

A
T

Define, for (ped)( S ) beH‘”(s: ) that

F o) =(F ;0 )0 + 21il(Fo N0, (eS., 0<p<o,
@b(2) = (Fb,)2) + (F b )(2), zeS), O<p<o.

we will show that
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j—9=id”w(s:), (11)

@PF =id o) (12)

g=-9. (13)

And these result that &:( ) oqum ( S:) - Uo<“<md>( S: ) is one to one and onto for

every ue(0,w).
It is easy to check that & and @ are “into” and

g@o(s;)-»ﬂj(s:),
(11) and (12) reduces to
FGb=F b, +2mil(FF b )=b, + 2milb,
GFo=9F 0, +(F FoY=0,+0,,

therefore, it is sufficient to show that
1° 9F 0,=0, ¥0,e0,(5.), 2° F,Gb,=b, ¥hen?(s:).
To prove 1 °, for a fixed x>0, chose 4 >x, 0 <y < w, we have

[ . e ™o, (2L, + Re{ >0,
bfm:{ 4.0 P
0, + Re{ <0,

and, by the definition of &
1 ix{, +
&b “(x):ZJ e b, (Ddl,
Py

Fb_(x)= ﬁf e"by (L.

Since there exists

j e "o, (@lldzl < CAll, 0<{<Ad,
44

1 ‘o
where 11: = r'lw\( — 8,0), we can change the order of taking integrals and take limit —0
in the below:

gyo‘po(x) = %{‘J eixchD-V J'

p* T

—i{z 1 ix - Kz
e (mo(z)dz+£J‘ e Cde.v.j e % @, (2)dz

4 A
- “Pys To
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=LJ. e"‘d( limJ e_“'yo(z)dz+LJ. Md(lmj e—“'(po(z)dz
2n w0} us 44

30

— lim- (j e‘xchJ e _‘('qao(z)dz + J eMdCJ- i <po(z)dz>.
d0 2n 43
Py

1 dz
—x

?,(2) ?,(2)
= lim L S “dz+ -—1—— 0 " dz
swo\27i ] . z—x 2rni | _z—x

’A IA

+ - . .
where contours / ,/ =~ are as shown in the picture.

+
| A

NN~
//\\

Since ¢, is holomorphic in S: , and x>0isarbitrary, we conclude ¥F =

Now we prove 2 ° . Let boeH:’(S:,) and b0=b0+ +b, where

bi

o = L{irernqy * bo- BY the definition of &

0, =Fb, =F0b, )+ G0, )=0, +o,
On the other hand, by the difinition of F ,
+ -
FGb,=F o,=b" +b . (14)

For [:Re{> 0, we will prove:



Approx. Theory & its Appl., 6:3, Sep. 1990 « 53 .

bT()= p.v.J e —ic'tpo(z)a'z

4

Tia

J "M (2)dz +f e Yo (2)dz, (15)
%as -
where
te ", tis from 4 to + o,
A
Oy = te“”m), t is from + o0 to 4,
Aei", t is from = to 0.
In fact

A
p.v.j e-iczgo (z)dz

(I f )’”“'Wﬁz)w; (2))dz
=lff?[(J J)WW‘Z)"“G_B f)f o, (Z)dz]
[

= lim
=Y.

A

o] prmseuee(] o] Jeeion)

where S'i ={zeC| z=rei(a+5), 6 is from ¢§toig—} and — S'i ={zeC | z

= lim

-0

L C P 04"
=re , 8 is from +2 2}

Since (po+(z)= — ¢, (—2) for zeC:H, we have

f ¢, (2)dz +f ¢, (2)dz =0.
s} s

Therefore,

j e 'icltp; (z)dz + J e _i"qoo_ (z2)dz

s -~8,

<

f (™ — l)(po+ (2)dz| +

j ™ — Do, (2)dz
.

<Ce—0, as e 0.
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This concludes (15). Since we can transform a: _ into below without changing the value

of the integral

J e _'('qao- (2)dz

a.- -

by the Cauchy theorem, it has to be zero and (15) gives
MR f e Mo, @dz=F Fb (=5, ©)

where we used F | = id thatisa consequence of ¥F  =id and & is one to one which
are from the proof of Theorem 1.

Similarly we can prove b = bo_ and these conclude F & =id from (14).
Now we prove (13). Let beH m(S:). If b is odd, then &b = @b from the definition
of &. Suppose b({)=2rilb ({) where bled)o(S:), then we have, for zeSL)M

@b(z)=(F b ,)V(z)= (mj e ““‘b,(c)dc)

T

- (p.V.J e“‘b,(c)dc)

T

- J ite™ b (O)aL.

Te

On the other hand, by definition, for suitable §, 6’

9b(z)=;—nj e"'ZniCbl(C)dC+-2];J e 2milb ({)dl

- J e™ith (Ol

peUl=0y)

- J ite™b (Ddl

Te

=@b(2),
by the Cauchy theorem,
It is similar in case of zeS:_ and therefroe @b =%. Since Pand & are both

linear, we conclude (13).
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So far to complete the proof we need to show glb =¢@,. Now forevery beH °°(S:)
we have o¢=%b=¢ +¢ ' where ¢, ¢, are odd, (ooeK(S:), ?, eHw(S:_) for
any ue(0,0). So,

(& ,bY(2)=(Z b))+ (F,b 7))

=(f 9b*(c>dc+f
1t (~12)

=0 @+0 (- +0 @+ o (—2)
=¢(z) + o(—2),
=2¢’,(2),

Gb- (Odl)'

17 (~12)

where Ii(—z,z) are two integral contours lying in C: N respectively. Since both & b
and ¢, ard odd, we conclude & b =¢, and finish the proof.
Proof of Theorem 3. “if” part: In this case qJG(b(S:), then by Theorem 2 there

exists beH '”(S:) so that (6) holds. We simply let 7 = b(D’) which meets all the require-

ments of the theorem.
“only part”: Since T'is L z(y) bounded, the formula for T can be extended to

TAz)= J oz — DADAL

where f= 2, Q is any finite interval on y and ze Q. Denote ¢ e = P eching , T ,f(z)
= Icp‘(z — DAL, A standard argument gives that T | L)L)
and Holder’s inequality implies that for any open interval Q of y

is uniformly bounded,

f IT,X ,lld,| < ClQ (16)
0

uniformly in ¢
Denote 7, =7-—2, ze€y, which is 2 Lipschitz curve passing the origin, Q”

={{ey, Il <n}. Let z ey befixed. For z. €Q_,, we'll prove that
07

T, ,@)- J o(dl| < C < a7

{er, s<ki<n

where C is a constant independent of ¢, 7 and z,€Q ».
0%

In fact, denote y * (z,n) the right and the left end points of Q . e have
'0'
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ijﬂhﬂ~j o(0)dl
{ey

5 s<ll<n

Al +] Yoo

1 2

J, = {Cey,l, from z, +y+(zo,11) toz, +y (z,.1) |C|>s}
J, = {Cev,o, from y (z,1) to ¥ (z,.m)s ICI>8}-

By using the Cauchy Theorem we can reduce the above integral to an integral along

circles of radius n and ¢ and along the directions of radius within { zeC I% < |z| <—;—n}.

Then from condition |e(z)| < < we can conclude (17).

|z|

From (17) we have

J o(D)dl

ley, e<ili<n

<C+‘+Tth (z]).

Taking average to both sides of this inequality w. r. t. z,€Q, , and using (16) we con-
072

clude

J o(Ddl| < C (18)

{ey, s<l{l<n
L]

for any 0 <e <y < . From the Cauchy theorem, condition |p(z)| € £ and inequality

|z|
U +J o(0)d{
17 (2] 2,)

el

(18) we have

<C,

£ & 0
where z, .z, €S

o I(zl—,zz_) is a contour lying in Sg,__ from zj to z5, 1 (z},z))

1772

is a contour lying in SSH from z." to z', and Izl—|=|zl_|,|zz_1=|z2+ ). Welet

2 17’
¢Jﬂ=%<J

for zeSZi. Now it is easy to check that (pleHm(SZ) and ¢’ =

o(0)dl + J @(C)dC)

17 (-1,%1) 1 (+1,12)

(o(z) + o(—2)) for

DY | et

0
zeS .
o
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