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Abstract 

I f  ~(x) = x + iA(x), tan -! IIA'II~ < co < ~ / 2 , 

S~ ~ { z r 1 6 2  I largzl < co, or, larg( - z ) l  < oJ}. 

C 
We have proved that i f  cp is a holomorphic function in S ~  and I~0(z)l ~ ~ ,  denoting 

r1[z) = f~o(z - ~)l~)d~, u fe C o(~), u z~suppf, 

where Cc (~) denotes the class o f  continuous functions with compact supports, then the follow- 
ing two conditions are equivalent: 

1 ~ T can be extended to be a bounded operator on L 2 (~); 

2 ~ thereexistsafunction cpleH*~(S ~ suchthat ~p ' l (z ) - -cp(z)+cp(-z) ,  ~ z ~ S  ~ 

w 1 Introduction 

The following formula between the Hibert transform and its multiplier representation 

is well known: 

f i e p.v~ xl--~-)'{y)dy= "r V f e S ( K ) .  (1) 
R --Y "/-| 

In [1], [3], [4] the authors developed a generalized Fourier transform theory related to 

Lipschitz curves. In the theory it was proved that with respect to any Lipschitz curve the 

multiplier associated to the Cauchy integral along this curve is still the signum function. 

Exactly there exists 
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if z-~f(Od~=lI= e'ZCs.gn,~Od, (2) p.v~ __ ~ _ | 

for all functions fbe longing  to a nice subclass of  L2(~), where y = { x  + iA  ( x ) [  - -  oo < x 

< oo},A(x) is a bounded Lipschitz function, i.e., IIXfll| = g  < oo, IIX II| -- N < oo and 

f(~) = f ,  e -'r F(z)dz.  (3) 

If  ~=  R ,  then formula (2) reduces to formula (1). In the following we denote 

f, , L2(y) -- { / q ~  C If  is measurable w. r. t. d~and II/ll~ -- ( I/(0121d~l) i < oo}, 

S ~ = { z e C l l a r g ( + z ) l < / z } ,  0 < / ~ < n / 2 ,  

s ~ = s  o U s : _  
I~ I~, + , 

and 

and 

C ~177 = {zeC}+_ Imz >OIUS :. 

For any open sets P and Q in the complex plane C, denote 

H~~ (P) = {b:P ~ C [ b is holomorphic  and bounded} 

C , zeQ} .  K(Q)  = {r -~ C [ ~p is holomorphic and m C s.t.[~p(z)[ ~< ~-~ 

Later  weql use P = S ~  S~ C~ S ~ u.+ or  and Q = respectively. 

For  b ~ H " ~ ( S : + )  and z s C  ~ , define 

'L ~'(b)(z)  = ~p(z) = "~n e'Zeb(Od~' 

io 
where - ~  < - 0  < arg(z) < g -0  < n+~ and p0 =- {se :0 < S < oo }. The defintion is indepen- 

S ~ dent of  0. When z e we define 
P,, 

~,(b)(z) -- ~,(z) = f6 ~(Od(, 
(z) 

where the integral is along a contour  &(z), from - z  to z in C ~ 

Similarly, for b e H ~ ( S : , _  ) and z e C  ~ , define 
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~(b)(z) = q~(z) = - ~  e"C b(Od~, 

where - n --/~ < - 0 < arg(z) < ~ - 0 < t~ and pO = {se'~ < s < oo}. The 

independent of  O. When z eS  ~ ~, define 

~'l(b)(z) -- @,(z) = fs(,) ~(Od{, 

definition is 

where this t ime the contour  is in C ~ , from - z  to z. 
g , -  

Now assume that  t a n - t M  < re < i t / 2 .  For  any function beH| one can asso- 

ciate it with a L2(y) bounded operator  defined formally by 

I f  | 
b(D )/~z) = ~ e"~b(O~Od~, 

- - 0 0  

where f is defined by (3) and we use notat ion b(DT) in a similar way as we use b(D) for 

1 d 
�9 is the differential the Classical Fourier  multiplier operator  while D - i dx But here D 

operator  along curve ~:D = (1 + iA'(x)) -1D. 
7 

In this paper, however, we'll use the definition by A. McIntosh [2] which is equivalent 

to the above mentioned one. By this approach one first def'me b ( D )  for the following 

subclass of  H | S~ ( . • 

~(S : , •  | o ~ - - ,  } ( S ~ ) l  C, s > 0 s.t. Ib(Ol-< C1r CeS~,~ 
1 + I~1'" 

and for be~F(S~,• define 

b(D,)f= ~ b(O(~ir - D , ) - 'N~ ,  feL~(~), (4) 

where the integral contour  F is as shown in the picture(A). 

The integral in the right hand side in the formula (4) is absolutely convergent in the 

operator  norm and independent of  F. Having done this then we can extend to define b(D,) 

for b in a bigger class of  functions including H|176 + ). And, since D satisfies the 
, 7 

quadratic estimates, we can conclude that  b(Dy) are bounded operators  for all b 

eH~(S~ ) (See [2]). The same is ture for bcH|176 ). By noticing that  H | ~ (S ~ ) are 
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subclasses of H| and every function in H|176162 has a decomposit ion into a sum of 

HO0-  @ 6~ a function in ( S ,  + ) and of a function in H ~ ( S ~ )  in an obvious manner,  we obtain 

a definition of  b(D) ,beH|  which is a bounded operator in L2(~). We note that  in 

this approach we don/t  assume ~ bounded.  

/ aS~. 

o 

picture (A) 

Theorem 1. Mapping ~:U,<;.<|174 +)---. U _ .  ,<,<~K(C| ).0 < # < o <  ~ z . , +  ~-. /s 

one to one, onto, and for every b ~ H | (So. + ), by denoting (p = ~(b),~p i --- ~ l (b ) we have 

b(D ,)f(z) --- lira f ~p(z - ~ + it)/(~)d~ 
J, 

= l i m ( I  ~(z -Ol (Od(O+~, (~ t ( z ) ) l ( z ) ) ,  a.e., f~L2(,),  (5) 
,~o+ : - C l > *  

where t(z)/s the unit tangent vector to y which is defined at almost all zr 7. 

The same conclusion holds for ~ : U  0<~<~ H ~  (S~,-)~[J-~ 0 <~<~ K(C~,- )' 0 < # < o) 

I z  

< 7 '  except unsing limit t ~ 0 - .  

For  beH|176 wedefine ~ ' b = ~ ' b +  + ~ b  and 

Ha0 O ~ l b - ' - ~ l b +  + ~ t b ,  where b i---b~(~a~>o}e (S • 
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If we look the mapping ~':Uo<.< H| O < / t < ~ <  n 2 '  it is still 

one to one, but no longer " o n t o ' .  It does map LJ0<,<, H|  onto a nice subclass of 

however. 

Theorem 2. Mapping ~ : U o < # < ~ H |  ~ ~o<~<~q)(S:)  is one to one and onto, 

where O < # < co < ~ and 

: I o  o o t �9 (S ) =  q~:S * e l  ~P=~Po+q~'l '  ~Po' q~l are odd and r ) ,q~leH|  ) 

(1 ) 
For every beH*~ (S : )  we have r -- ~ b  = r + q~'l --- CPo + - ~ ' l b  ,01 -- ~ ' l  b, and 

*~o+ z - ( : l>a  

C o 
Theorem 3. Let tp be a function holomorphic andsatisfy [r <~ 7-7 on S . 7 --- x 

IZl 

+ id (x )  is a Lipschitz curve, IIA/II~ < tanto. Then there exists a L2(y) bounded operator 

T such that T](z) = Scp(z - ~)/(()d(, ~t f~ C (y),~t z~suppf, where C c (~) denotes the class 

o f  continuous functions with compact support on ~, i f  and only i f  there exists a function 

r eH~176176 ) suchthat r = ~(r ~p(-z)),  z ~ S  ~ 

This work was supported by the Commonwealth of Australia through the Australian 

Research Council. It is a plearsure to thank the School of Mathematical Sciences in the 

Flinders University of South Australia for its hospitality where the final wri te-up was pre- 

pared. The authors also with to thank Miss Jolie Hutchinson for the time she spent in typ- 

ing an early draft of this work. 

w 2 Proffs of the Theorems 

Proof  o f  Theorem 1. The ray pO has been chosen so that the integrand in the 

defintion of ~ is expoenentially decreasing at oo. This permits to verify directly that 

}-' 
I o(z)l ~< {2re dist(z,C \C~.+ ) llbll~. 

which shows that r ) with any/z such that 0</z<r 

To prove that ~ is one to one, let us show that ~ b  ----- 0 for z e C ~  implies b ~ 0  in 

R,  and so that  b ~ 0  in S ~ . Infact ,  for e0>0 
OJ, -t" 
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0 = ~'(b)(x + teo) -- ~ e e -"r162 = (b , , )v  (x), 

where b = e -"r (~)eL2(R).  From the inverse formula of fourier transform we 
8 0 

have b --0 a.e. i n R ,  and, so,  b --0 and b has to be zero on R.  R| 41 o 

To prove that ~ is onto we use the following mapping 

~ ' I K ( C : + ) - - - I . H ~ 1 7 6  ) .  0 <~,1  < , :  

f - IzC , x .  
~r iq)(~) = r q~tz)az, ~eS*+. 

d @O 

where 

A [ te , t is from A to 03, 

~176 -- I te~('-e)' t is from 03 to A, 

t A e , ,  t is from n to 0 

with A > 0, 0 < 0, 101 > larg~l. The defintion is independent of A. 0. Since the integrand in the 

defintion is expoerrentially decreasing, it is drect to verify that 

We'll prove ~ r  q~ffi ~o,V r  ) and so ~ is " o n t o ' . I n  fact, for a f ixed  r  

A 
chose integral contours p~ and o o such that 0 < qJ < 101, 0 < 0 and A > 0 is small enough so 

that Im(~z) < 0,Im(~0 > 0 and Im(~(~ - z)) > 0 for all ~ep§ then from a partial 

inverse of Fubini's theorem we have 

'f (f 
p@ 0~ 

i f   (z)(fe ) - -  '~(r dz= 1 ~o(z) dz=tp(r  
z - r  

o" t p@ r 

This concludes that ~r ~ r = tp on the positive part of the real line. Since ~" ~ ~0 

and ~0 are both holomorphic we proved ~ ' ~ q ) =  ~ on S~ which shows that ~ is 

onto. 

To prove the equalities (5) we need the following lemma: 

Lemmal .  1 ~ I f  b~H|  S~ ) satisfies lb(Ol< C,l~l" forsome s t ( -  1,oo), then 
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C$ C o  I (b)(z)l < 
2It S Z , a  ,+ 

2 ~ .IfbE~I(S ~ ), then q~=~beL'(~) and b(D)f=rp* f for feL" (7),I <~ p 

<00. 

Proof. 1 ~ Let z -- Izle Jo, ~ C~.+.  By choosing an appropr ia te  con tou r  Po we have 

C s - IxlOin(e + O o )t t $ ds I~(b)(z)l  ~< ~-n e 

C 1 C 1 $ 

= 2--~- (izlsin( 0 + 00)) T M  <~ 27r (dist(z,aC~ + )~+' " 

2 ~ b e V ( S  ~ ) implies that  ~se(O,1)  and C such that  Ib(~)l~< C min{l(l" 

ICJ-'},V C e S ~  By using the result in l ~ we have [r ~< Cmin{ 1+ 1 } 
Izl " ' lz l  l -"  e L ' ( 7 ) .  

Deno te  p~o reit+e) r is f r o m 0 t o + o %  0 < t a n - l M  = , < 0 < co. Then  f rom formula  (4) 

we have 

1 f b(O((I- D,)-'flz)d~ b(D)flz)  = 2r~----i (:§ 

- 2- 'f b(c,r e'r162 
-- PO Yx 

+If2n b(()d(f �9 eiCtz-~ = - e l - I - / 2 ,  
P - #  7r 

where we used the convolu t ion  expression of  resolvent ( ( I -  D ) - !  (See [3] and  7 ~ -- { 
7 z 

e'yf + Re(z - ~) > 0}. By the p roof  of  the fact q~eL'('~), we actually have 

f 
P .t o 

Since f~LP(7) , I  ~< p < oo,~oeLa(y), by the H a n s d o f f - Y o u n g  inequali ty and  a partial  con- 

verse o f  Fubini /s  theorem,  we have 

Yz P# Yr 
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12= I / ( , ) d ( , , 1 1  e 'r  [ (Oq~(z-Od, .  

By adding the last two formulas we conclude b ( D ) f =  q~ * f. 

Now we prove the equalities (5). First for a fixed t > 0. b ( ( )  -- b( ( ) e  -,r 
t,., 1 +~'"  

~ ( S ~ . + )  are uniformly bounded in H | ~ -- = (S,+) and lim,...o_bt~ b,(0 b(~)e -'r uni- 

formly in any compact set contained in S ~ . Therefore by [2], w 4 a~, + 

lim b ,,, (D)f-- b (D)f, 

in L2(t) norm forevery feL2(y). Denote tp,~ = ~ b  , by2 ~ ofLemma 1 

b ,,, (D)] (z)  = f~o ,,, (Z -- ~)/(~)dr 

Since ~ ~,/~ > 0 such that 

f C IqJ,,,(z - r ~< [e'r176 - fit + alz 7- (I eL2(y) 
P:t0 

and 

l i m  ( z  - r  = ( z  - r 

by the Lebesgue dominated convergence theorem, we have 

b (D)] [z )  = f ( o  (z -- r162 

= J~o(z - ~ + it)](~)d~, /~L2(?). 

Using the convergence theorem in [2] w 4 once again to the left hand side of the above 

equality, we have 

b(D,)[(z) = lira fqJ(z -- ~ + it)](~)d~, ~ feL2(y), 

where the convergence is in L2(,/) norm. 

To prove the second part of the equalities (5) we first assume 

fELlip, c(Y) = {)q7 --.1~ I f  is a Lipschitz function with compact support}. 

Then we can prove 

(7) 
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I b(D')](z)-  f l , -c l , ,  tp(z- ( )] ( ( )d(-  l~z)ff, cL r  

~< Ce. I l l  II L | (7 ) '  (8) 

where 

C + - - { (e  C II ( - z l - - -8 ,  I m ( > A ( R e 0 } .  
z,t 

In fact, 
g 

b(D )f{z) = lim ] tp(z - ~ + it)/(Od( 
t~*+dl  z_~l>s 

+ l im [ q~(z - ( + it)(][~) - ][z))d~ 
t~~247 d Iz_CI~I 

+ lira J(z) ~o(z - ~ + it)d( = ~. Ji' 
t~o+ dlz_~l< ' i~l 

where 

], = ~ z(z - O/(Oa(, 
r-CI>R 

I J21 ~< fl ko(z - 011/[0 -/(z)lld~l ~< Callfll L| 
z-Cl<s 

J, = l im/ (z ) f  q~(z - -  ( + it)d( = ]~z) f q~(z - ()d(. 
" ~  c~c L c~c*, 

These prove (8). 
By noticing that 

lim,.o I + tO(z - Od( - lim,.o ~o i (~t(z)) 

and taking limit ~ 0  in (8), we conclude 

b(D ) / (z)= lim(f, ~o(z-()l~()d(+ f(z)q~,(,t(z))), 
7 t-0 z-Cl>s 

a.e.z �9 ? V/re L,p.c (y)" (9) 

To e x t e n d  fELlip,c(~) tO 

standard proof of it. 
L e m m a  2. Denote 

feLZ(v) in (9) we need the following lemma. We omit the 
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Then 

T,/(z) -- f ep(z - -  ~))'(~)d~, 
z-el>. 

T"/(z) = sup.,o[ T flz) [ 

lIT"/lip < C~II/II~, l<p<r  

Now let feL2(~). For any (5>0, ~f6eLup.,(?) such that IIf- f611,?(,) <~ .  Then for 

any ot>O 

I{Zr ?l Ib(D)f(z)-lim(I ~o(z- ~')f(Od~" + fl(z)~p~(tt(z)))l>a}, 
,~o z -C l>s  

.40 \ d l r - ~ l >a  

~(z - O f f -  :,)(0d~ + Or- f,)(z)~0, (z - z - ) ) l  

~< [{ze T[ Ib(D)(f- f6(z)l > ~ }[ + [{ze ~[ T (f- f6)(z) > 6 }l 

+ l{z~ ~1 s u p , > o j f f -  r , ) cz )~ ,  (~ - z [ )I > 6 }j 

~< , 

where z is the intersection point of  the circle with centre z and radius z and the left part 

( S ~  S i n c e ~ c a n b e  of ?:ReT(x)< Rez, where we have used Lemma2 and q~leH~ ~+ �9 

chosen as small as we want, we conclude (9) for FeL2(T). This completes the proof of the 

theorem. 

Proof of theorem 2. It is easy to see that 

H| SO )--- {b:S:-, C] B(~)=bo(~)+ 2ni~bn(~), where bo,b , are odd and 

And, for every beH| 
hand side of (10). Denote 

there is a unique such decomposition as shown in the right 



�9 50 �9 A. Mclntosh et al: Singular Integrals 

H o ( S ~ ) = { b ~ H | 1 7 6  is o d d } ,  

a n d d e f i n e a n e w m a p p i n g ~ o : ~ o ( S O ) ~ H o ( S :  ), by 

~o~Po=b + + b - ,  V~Oo~q) o ~ , 

where 

b +(~)--  
f - i~z p.v. e ~P o (z)dz, Re~ > 0, 

0, Re~ < 0, 

and 

0, f Re~ > 0, 
cz 

b- (O- -  p.v. e -  qJo(z)dz, R e ~ < 0 ,  

At At 
where z and are shown in the pictures below. 

A 

Define,  for ~ p ~ q ) ( S ~ ) ,  b~H"~(S~) ,  that  

~ r = (~" o ~Po )(() + 2 n / ( ( ~ p  ] )(~), 

~ b  (z) -- (~b  o)(Z) + ( 7  o b, )'(z), 

we will show tha t  

~, 0 </Z < O~, 

z~S ~ 0 < / z < o ~ .  
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f f r ~  = id . |  (11) 

~ = id ots: ) (12) 

= ( 1 3 )  

Andtheseresultthat~:Uo<,< H| @(S:) isonetooneandontofor 
every /t~ (O,to). 

It is easy to check that ~" and ~ are "into" and 

(11) and (12) reduces to 

~ b  = ~ ' o ~ b o  + 2 7 t i ( ( ~ ' o b l )  = b o + 2rti(b~ 

therefore, it is sufficient to show that 

_ -  1 ~ ~ r o ~ O  o q)o' k~ ~Ooe@ o ~ , 2 ~ ~ r o ~ b  o-- be,  ~ b o e H  o 

To prove 1 ~ , for a fixed x > O, chose A > x, 0 < ~b < o~, we have 

IS - iO 
b :  ( 0  = :~. e ~o o (z)d(,  + Re~ > 0, 

[0, + Re( < 0, 

and, by the definition o f ~  

t~ 
1 / ixC + 

~ b §  e bo (Od(, 
P# 

1 f ix~ o- ~b_(x)=~ e b (0d~. 
./ 

- - P # + z  

Since there exists 

f,,, le -~r o(z)lldzl <~ CA ICI, 0 < ~ < A ,  

where 4,6 A • -- ~ • \ (  - ~,$), we can change the order of taking integrals and take limit 6-*0 

in the below: 

~'3r176176 ~ o, e aqp.v ," e ~Oo(zldz + ~ e a ; p . v . j / e  ~Oo(zldz 
-m - -P#§ 
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-~c, . ,. I "Cd~lim e ~o(z)dz 1 e t< d~  e + e 
- 2~ A~. ~~  ~ , - o #  Aj 

P# - P # §  'Era 

(I f I I * ) - ~, ~C d~ e = lira I e t<d~ e r + e ~po(z)dz . 
,-o 2n "J,O. " '  

P+ - --Or § ~m' 

= lim 1_[_: f r z 1 dz  
l~o 2nt J ~a ,,. a,,, -- x 

T _ a k ) t - - ~ :  ~ J 

('I 
= % ( x ) ,  

+ ,I~ are as shown in the picture. where contours la 

§ IA 

I A 

Since q~o is holomorphic  in S ~ and x > O i s a r b i t r a r y ,  weconc lude  ~ : o = i d .  
OJ, + 

o ~ ( )  - ~ :  whoro N o w w e p r o v e 2  .Le t  b o ~ H  o S ~ and b o - - b  o + 

+ 
bo = ~ft~R~ " bo" By the definition o f ~  

~o o ~ b  o + - + . = = ~ ( b o  ) + ~ ( b o  ) = +o + + o  

On the other  hand, by the difinition of  ~ ' 0 '  

~ ' o ~ b o  = ~o~Oo = b + + b -  

For  (:ReC > 0, we will prove: 

(14) 
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f - iCz + (~) -- p.v. e ~po(z)dz 
,4 

' ~ - m  

e qJo (z)dz + 
,4 r r 

- i O  

e cPo (z)dz ,  

w h e r e  

A 
Oct,• ---- 

- im 
te , t is from A to + a ~ ,  

I(, + m) 
te , t is from + ~  to ,4, 

A e • t is from n to O. 

In fact 

A 
f - i~z 

p.v. e ~Oo(Z)dz 
- A  

- -C .4 

= lim + tcPo (z) + ~Po- (z))dz 
' ~  - A  

[(f-i (f- -ic, + (z)dz  + = l ira + e r 
~ 0  -- - A  

+ 

e ~ O  S + 
i 

+ 

-I~, § (z)dz + + q~~ (z)dz  , e qJo 
-s~ -s: s; 

where  S :t, = { z e C I  z = r e  , 0 is from : l :~ to_+~}  and - S 

= r e  , 0 is from T-~to___~}. 

+ 

Since ep 0 ( z ) =  - r  for z e C : , + ,  w e h a v e  

• 
= { z e C  

o (z)dz + ~o ~ (z)dz  = O. 
s:  - s :  

Therefore, 

<<. 

jr,,,+ f e q~o (z)dz  + e 
s; -s: 

-iCz - I' q~o (z)dz  

(e -'r -- 1)r o-- (z)dz I 

~< Ce-~O, as e-~O. 

05) 

I z 
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,4 
This concludes (15). Since we can transform This concludes (15). Since we can transform m 

of the integral 

into below without changing the value 

I - '%0 (z)dz e 

by the Cauchy theorem, it has to be zero and (15) gives 

r + 

b (r ffi J ,  
@m. § 

-- |{z + + + 

e ~o ( z ) d z - - 3 ; , ~ b o  (~)--b0 (~) 

where we used ~r i ~  ffi id that is, a consequence of ~ r  i -- id and ~ is one to one which 

are from the proof of Theorem 1. 

Similarly we can prove b - = b o and these conclude ~ o ~  = id from (14). 

Now we prove (13). Let b e H | 1 7 6  If b is odd, then ~ b  = ~ b  from the definition 

0 
of ~ .  Suppose b(~)= 2ni~bl(~) where b l e~po(S )  , then we have, for zeS~ 

~ b ( z )  = ( ~ o b , ) ' ( z )  = p.v. e b , (Od~ 

( P  f 'r (~)d~') t = . V .  e ! 

T m 

r 
= |  i~e b l ({)d~. 

d 

On the other hand, by definition, for suitable O, O' 

1 sr 1 

P# --PW 

= e i~b l(~)d~ 
p,U(-p,) 

"c a 

= ~b(z), 

JCz  ~ . t , I  

e znl;o,(Ods 

by the Cauchy theorem. 

It is similar in case of zeS  ~ and therefroe ~ b  = ~ .  Since ~ a n d  # are both 

linear, we conclude (13). 
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any /~(0,o~). So, 

(~, b ) ' ( z )  = 
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So far to complete the proof  we need to show ~ b  = q~l" Now for every beH|176 

have ~p-----~bffi~o+~pl / where ~o'  q~l are odd, ~ o e K ( S : ) ,  r174 for 

(~1 b § )(z) § (~  i b -)'(z) 

_ + (  - ~ § ( z )  + (o - z )  + ~o - ( z ) ' +  ~0 - ( - z )  

= ~ ( z )  + ~ ( -  z ) ,  

= 2 ~ ' i ( z ) ,  

where l+( - z , z )  are two integral contours lying in C o respectively. Since both ~ , b  
~, 4- 

and q~ ard odd, we conclude ~ b  = ~p ~ and finish the proof. 

Proof of Theorem 3. "if" part: In this case q~e~(S:) ,  then by Theorem 2 there 

exists beH| so that  (6) holds. We simply let T =  b ( D )  which meets all the require- 

ments of the theorem. 

"only par t ' :  Since T is L 2 (y) bounded,  the formula for T can be extended to 

T](z) = f ,  ~o(z - ~)](~)a~ 

where f=  ;f a' Q is any finite interval on ? and z e Q. Denote (o, = ~p ~f {,~r ILl >,}' T ,  f (z  ) 

= j'q~,(z -- ~)](~)d~. A standard argument gives that II T II L'C,)-.L'r is uniformly bounded,  

and HOlder's inequality implies that  for any open interval Q of ? 

f a lT,X alldr < CIQI (16) 

uniformly in 

Denote y, = y - z ,  zEy, which is a Lipschitz curve passing the origin, Q,., 
r 

= { Cey, IICI < ~}. Let zoe Y be fixed. For  z t eQ,o.],  we'll prove that 

I T,x% ~,(z ~) - re,,,. 

where C is a constant independem of t ,  r /and z eQ ~. 
1 r e ,  2 

~< C <  ov (17) 

In fact, denote ? ~ (Zo,~/) the right and the left end points of Q,~ we have 
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T ;(Q,,., (z l )  - f ep(~)d~ 

11 J2 

Jl={(e~,, from z I +~+(zo , t / )  to z I + y - ( z o , t / ) ,  Ir 

{ , } J 2 - -  ~e~ , . ,  from ;~ (zo,~) to ~ (zo,~), ]~l>e . 

By using the Cauchy Theorem we can reduce the above integral to an integral along 

circles of radius ~/ and e and along the directions of radius within { z e C  12 ~< [z[ 
2 

C 
Then from condit ion Icp(z)l <~ ~-~ we can conclude 07) .  

From (17) we have 

II q~(()d( <~C+I+Tze,. (z,). 
" C~'% r < I~I <)t 

Taking average to both sides of this inequality w. r . t .  z~eQ,,.~ 
clude 

and using (16) we con- 

I ~(()d( < c (18) 

c 
for any 0 < e < r /< co. From the Cauchy theorem, condition I~P(z)l ~< ~-~ and inequality 

(18) we have 

f +f tp(~)d~ <~C, 

• • S O where z 1 ,z 2 e o,,• 

is a contour  lying in 

+ + + l(z I ,Z 2 ) is a contour  lying in S~ from z[ to z~, l (z 1 ,z 2 ) 

- + 
+ + and I z ( l = l z  I , Iz / l - - lz2 ,1 .  W e l e t  S~ from z2 to zl I (D, 4" 

(-1,:1%1 I § ( +  l , •  

for zeS:,• 
zeS:. 

Now it is easy to check that ~Pl H~(S:) and = ~- (~o(z) + ~o( - z)) for 
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