
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gcov20

Download by: [University of Macau Library] Date: 24 August 2017, At: 00:58

Complex Variables, Theory and Application: An
International Journal

ISSN: 0278-1077 (Print) 1563-5066 (Online) Journal homepage: http://www.tandfonline.com/loi/gcov19

A holomorphic extension result

Tao Qian

To cite this article: Tao Qian (1997) A holomorphic extension result , Complex Variables, Theory
and Application: An International Journal, 32:1, 59-77

To link to this article:  http://dx.doi.org/10.1080/17476939708814979

Published online: 29 May 2007.

Submit your article to this journal 

Article views: 35

View related articles 

Citing articles: 7 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=gcov20
http://www.tandfonline.com/loi/gcov19
http://dx.doi.org/10.1080/17476939708814979
http://www.tandfonline.com/action/authorSubmission?journalCode=gcov20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gcov20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/17476939708814979
http://www.tandfonline.com/doi/mlt/10.1080/17476939708814979
http://www.tandfonline.com/doi/citedby/10.1080/17476939708814979#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/17476939708814979#tabModule


Complex kriablcs. 1997. Vol. 32. pp. 59-77 
Reprints available directly from the publisher 
Photocopying permitted by license only 

O 1997 OPA (0vnsea.s Publishers Association) 
Amsterdam B.V. Published in The Netherlands under 

license by Gordon and Breach Science Publishers 
Rintcd in Malaysia 

A Holomorphic Extension Result* 

Department of Mathematics; The University of New England, 
Armidale, NS W 235 1, Australia 

(Received July 1995) 

In [7] we obtained, as a consequence of the Fourier transform theory developed in the paper, a 
sufficient and necessary condition on a sequence (b,,) E Iw for the function &(z)  = ,=, bnzn, 
I T /  c I, to be holomorphically extensible to a heart-shaped region containing the set 7" z E Cjz f 
1, I t /  = 1). and dominated by C// 1 - z /  when z is near 1 in the region. This note generalizes this 
result to the cases when lb. I 5 Cns. -w < s < w. It also includes corresponding results for 
series of negative powers for Lauren! series as well. The theory has applications to siagular 
and fiactiond iniegids on i h e d  i ip~chir i  iiiives which aie cioseiy reiaied iu h u ~ i d q  vaiue 
problems in Lipschitz domains. 

AMS No. 4?F!5,30B40,42B10 
Comm~~nicabd. R P Gilkr! 

INTRODUCTION 

We will use the following sets in the complex plane C. Set, for o E (0, n/2], 

S,=S,,+US ,,-. 
We will also use 

These sets are illustrated in the diagram on the next page. 

*~edicated to Professor M. T. Cheng. 
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A set 0 in the complex plane is said to be inner star-shaped with the pole 
zero, if z E 0 implies r z  E 0 for all 0 < r 5 1; and is said to be outer 
star-shaped with the pole zero, if z E 0 implies r i  E 0 for all 1 5 r < oo. 

For every w E (0, n /2] ,  C,,+ is a heart-shaped and an inner star-shaped 
region with the pole zero, while C,, - is the complement set of a heart-shaped 
region which is an outer star-shaped region with the pole zero. 

Tl.. c 11-.-.:-- . - - * e n -  -----" --*I. ",.-*,.-" .-.:I1 L llle lollvwlllg fulldull ayawza "11 rue x u w a  will we used. For -s < s < 
rn Cli 

H S ( S , , + )  = {b : S,,* + Clb is holomorphic and satisfies 

respectiveiy. 
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A HOLOMORPHIC EXTENSION RESULT 6 1 

For s = - 1, -2, . . . , we will also use another class of spaces 

Hin (S,,+! = {b : S,,+ Clb is holomorphic and satisfies . 

rqwctively 

There are also corresponding hnctlon spaces on the double sectors. For 
- N I / c < -  - .., a. 

and 

where rr denotes the characteristic function of set E. 
Therefore, functions in various H h d  Hi,  spaces defined above consist 

. - . - 
-i *L- +..--*:-+.- .- ---&..-- .-.L.-.. --- -L -..- & - A  ---- --a- --2 2..-:..-+-2 -L.. 
iji LIIL 1UliLLlVlID 111 DLLLUiD ~ I l l ~ I l  LUL VUUIIULU 11GU LCIU CUlU UVLIUIIaLLU IJJ 

. . C!, izi' C ,  izi" iii iz i  m, respeciiveiy, iii smaiier thaii those 

in  which the fi~nctionc are hnlomorphieally defined -. . . . .- . . . . . . - - . . . . . . . - . . - . - . . . - . . . . . - - 

A fi~nciion given by a iaitreni series is said to be hniniitnliniitrlz~i?iirpiia djiiri~d 

in a certain region, if the Laurent series converges to a holomorphic function 
in the region. In the case, by a theorem of Abel, the power series part then is 
holomorphically defined in the associated inner star-shaped region with the 
pole zero, determined by the region in the obvious way, and the negative power 
series part is holomorphically defined in the associated outer star-shaped 
region with the poie zero. 

Denote, for s > - 1, 

K"(C,,+) = 4 : C,,+ + CI4 is holomorphic and satisfies 1 
respectively, and 

4 : C, -+ CIq5 is holomorphic and satisfies 

1 
14(z)l 5 r , , I + S  ifi c ~ .  p.- ,, c - m \v, -) ..,\ I I -, 11 - L ,  J 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ac
au

 L
ib

ra
ry

] 
at

 0
0:

58
 2

4 
A

ug
us

t 2
01

7 



62 T. QIAN 

We will only give the details of the definitions of KS(C,,+) for -cm < 
s 5 -1 .  The definitions of KS(C,,-) and KS(S,) for -cc < s 5 - 1 can 
be correspondingly formulated. 

We need the following preparation. Assume that 

Form the difference 

and 

Then, owing to (ii), q511b, - is holomorphically defined in C,,+. 
T?le abcve fmned new sequence 1(6) may e: may net satisfy the conditim 

(iii). If it satisfies (iii), then it satisfies automatically (i). Therefore the pair 
(I@), satisfies the condition (i), (ii) and (iii). Then one can consider 
whether the sequence I ( I  @)) = 12@ satisfies (iii) or not, and so on. Denote 
I (In @)) = I"+' @, and I"@) = b. If the above procedure can be applied 
at most k times, then it happens that pairs (IJ@), @I,(b)), 0 5 j 5 k, all 
satisfy the conditions (i) to (iii), but I"'@) does not satisfy the condition 
(iii). In this case, we have 

Xow we are ready iu iniroduce the definiiiunb of n"' (C,,+), -w < s 
< -1:  - 
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A HOLOMORPHIC EXTENSION RESULT 

KV(C,.+) = dk : CC,,. + -+ Clb E lm, the above procedure can 1 
L.. "6 applied at most ks times, where li, = [-s - l j  or i-sj, 

depending on whether s is an integer or not. respectively. 

inevery C,,+, 0 < p < w , I 
where for a > 0, [a] = max(n E ZJn 5 a ) ,  the largest integer that does not 
exceed a. 

5 = - i . -2. . . - ; we w i l l  a h  c~~,iisicder arrotiier ciass 

i i n i 7 - j j j  , 

< c'  ~n every C,. +, 0 < p < w - ( Z - l l l + . ~  

Then 4J E Ks(C,.+). 

THEOREM 2 Let -oo < s < oo, 4 E KS(C,.*). Then for every y E (0, w), 
there exists afunction bN E HS(S,,*) such that 
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64 T. QIAN 

Moreover, for s < 0, z E s , ,~ ,  

where 

A&) = Ig E Wo.+lg = rexp(i(n f ~4.1).  

r is from n sec ( p )  to 0; and then 

q = r e x p ( ~ i p ) ,  r is from0 to n sec ( p ) } ,  

where i fr  5 ;i, 

E(ctrj = { q  = x  +iyiy =O. x isfrom - r  to - E ,  

andthen from E to r ) ,  

c*(r, p )  = { q  = r exp(ia) la is from n f p to n ,  then from 0 to p}, 

and 

A*(r, p )  = (g E W,,* lg = p exp(i(n f p)) ,  p is from n sec (p )  to r;  

and then g = p e x p ( ~ i p ) ,  p is from r to n sec ( p ) } ,  

and i f r  > n ,  

1 ,  r )  = c&, p)  = c&, p) ,  

A&, p )  = A&, p),  

and, in any case, 

where Lk ( E )  is any contourfrom -E to E lying in C,.&. 
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A HOLOMORPHIC EXTENSION RESULT 65 

THEOREM 3 Let s be a negative integer. 
lo I fb  E HS(S,,+) and$(z) = ~ , f z ,  b(n)zn, then 4 E K;,  (C,,*). 
zc I f $  E Kin (C,.*), then for every p E (0,  w )  there exists afunction 

b" such that b@ E Hf, (Sp,*),  and 

Moreover. bp is given by (2). 

The cases "+" and "-" in the above theorems are associated with power 
series and negative power series, respectively. Combining these results, we 
obtain the results of the same type on Laurent series (for the case s = 0 also 
see 171)- 

Thert: are also the Laurent series counterparts of Theorems 2 and 3 which 
are left to the interested reader. 

Remark 1 For (b,):, E Zm the series $ ( z )  = Czl bnzn is naturally 
defined and hoiomorphic in the unit disc. 'Theorem i and i' Theorem 3 
assert that if 36 E HS(S,,+) such that Fn = b(r;), :hen 4 is holomo~hically 
extensible to C,.+, and in any smaller C,,+ the function satisfies the estimate 
given in the definitions of Kjn (S,,+) or KS(S,;+), depending on whether s 
is or not a negative integer, respectively. Theorem 2 and 2" Theorem 3 give 
the converse results. 

Remark 2 Under the assumptions of Theorem 2, the mapping $ + b 
satisfying $(z)  = C b(n)zn is not a single-valued mapping. In fact, 
according to Theorem 2, every bp, 0 < p < W ,  gives a solution of b, 
and, if pl # p2, then bp' # bp2 in general (see also Remark 3 below for an 
example). 

Remark 3 In the proof of Theorem 2 we will need the following function 
. . . . . . 

space pL cnnnstlng of a!! fin~te !near comhmaQons of holornorph~c 
functions of the form 
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66 T. QIAN 

where n 1s 2 non-negative integer. It is easy to see that 

Therefore, g, E U-,,,,,H"S,,+). It is noted that the functions in Pt 
are just the inverse Fourier transforms of finite polynomials of r given by (2) - 
iri  Tiieoieiii 2.  Siiiiiidy. we define iiie space P- wiih rzspeci iv ihe negative 
3 n  ;.t,,,,,. om-,-" 

Remark 5 The result 1- Theorem 3 is consistent with the example b(z) = 

z / ( l  + 2'). Albert Baernstein showed me, concerning the case s = - 1 in 2" 
Theorem 3, how to construct a holomorphic function @ in the unit disc so that 
@(z) = O(1n 1: - 11) and$'(z) # O(l/lz - I / ) ,  z -t 1. using the method of 
R!och fmctions in e.g. [h] and Ah!fors' distortion theorem (see, fnr exzrllple, 
[I]). He also showed me that it is equivalent to consider the matter in the unit 
disc instead of in the heart-shaped region, as in the case s = - 1 the estimates 
remain unchanged after applying a suitable conformal mapping. It follows, 
~ i i n g  to the case s - O iii Theorem 1: that ihe associated biz) f O(i  /I:;) 
at co, which complements 2- Theorem 3. However, it remains open question 
the estimates given in 2' Theorem 3 are the best possibie in those cases. 
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A HOLOMORPHIC EXTENSION RESULT 67 

Remark 6 We have restricted ourselves to considering only the first power 
of the log function in the definitions of Hi, and K;, and in Theorem 3. In 
fact we could generalize the result in 2' of the theorem, with a very same 
proof, to any kth power of the log function, where k is a positive integer. 

Remark 7 A trivial variation of Theorem I to Theorem 4 can he obtained in 
the following way. Denote by exp(-i0.) the function z + exp(i0z). Define 
the cti-spfice 

and 

Remark 8 The results corresponding to the case s = 0 are obtained as 
a by-product in [7] in the study of the Fourier transform theory between 
holomorphic functions defined on sectors. It is proved in [3] that the 
functions in K'~c,,+) and K"(s,,~, aciing as kernei functions, all give 
rise to ~.~-bolmrled operators OI? those star-shaped Lipschitz curves whase 
Lipschitz constants are less than tan(@). The class of the singular convolution 
operators is in fact the H3ci-functional calculus of the Dirac operator z(d/dz) 
living on the closed curves ([7] j. Using conformal mappings, we can deduce 
a corresponding singular integral theory on arbitrary simply-connected 
Lipschitz curves. The cases associated with s # 0 correspond to fractional 
integrals and differentials on those curves. All those mentioned are closely 
related to boundary value problems associated with those domains. For 
related studies, see e.g. [2, 4, 5, 81. 

We will only need to prove Theorem 1 to Theorem 3 for the case "+", as 
the case "-" is similar. 51 will he devoted to proving Theorem 1 and 1" of 
Theorem 3. 52 will be devoted to proving Theorem 2 and 2" of Theorem 3. 

The author is grateful to Alan McIntosh for many helpful discussions on 
this work. Many thanks are due to Joachim Hempel, for his support which has 
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68 T. QIAN 

encouraged me to pursue my previous work [7] further and so to obtain the 
generalizations in this note, and also for the valuable consultations with him 
throughout the course of the study and the preparation of the paper. Many 
thanks are due to Albert Baernstein for the time he devoted to answering my 
questions regarding Remark 5 during his stay in UNE after the annual meeting 
of the Australian Mathematicai Society in juiy i994 in Armidale. Especially, 
his remarks gave impetus to writing up this paper when I was wondering 
about the result in 2" Theorem 3. I am very grateful to Alan Beardon for his 
inspirating questions indicated in Remark 4, and, with Joachim Hempel and 
Imer Bokor together as well. helpful discussions on the iterating process on 
sequences in formulating the class C" (S,,+), -oo < s 5 - 1. 

1 PROOFS OF THEOREM 1 AND la OF THEOREM 3 

in ihe sequel we will abbieviate klciS,,.+j K 5 ( C , , + )  as 11; and Xi, 
rcspcctivciy. iVc first consider :he cascs O i s c x. Define, as in [5j, 

where 

V,,+ = {z E CI Im (z) > 0) U S,, 

and pe is the ray r exp(i8), 0 < r < oo, where 8 is chosen so that pe E S,,+, 
and exp( iz { )  is exponentially decaying as { + cx, along p". It is easy to 
see that Q is well defined and holomorphic in V,,.+. In fact, the definition 
is independent of specially chosen 8 satisfying the required conditions. It is 
easy to see that foi- any p E (0, m), 

We further define the function 

where 6(z) is any path from -z to z lying in V,. From Cauchy's formula it 
is easy to deduce, for any p E (0, o), 
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A HOLOMORPHIC EXTENSION RESULT 69 

Define @ by the Poisson summation formula 

where the summation takes the following sense: For s > 0, the series 
absolutely and locally uniformly converges to a 2n-periodic hoiomorpiuc 
function, namely +, and the function 4 = + o In / i  E Kf,. For s = 0 there 
exists a sequence (nk)y such that the partial sums,, ( z )  = 217 &5nk  Y(z + 
2nn) converges locally uniformly to a 2n-periodic function, namely @, and 
the function 6j = $ o In / i  E KL. It can be shown that different functions 
@ defined via different appropriate subsequences (nk) differ by bounded 
constants. Using the estimate of Y, the proof of the assertion for s > 0 is easy. 
The assertion for s = O is proved in [7]. To make the paper self-cmtdned, 
we provide a brief proof of the case and refer the unsatisfied reader to [7]. 
Consider the decompositior, 

We will prove that El is absolutely convergent and bounded, and C2 
converges in the sense specified as above, and is also bounded. Therefore, the 
principie entry of the sum is 9 (zj which is dominated by c jz j-I as z  + 0, 
and so is the function $. Therefore, the fiinctio:: $ = $ o In / i satisfies the 
desired estimate. To deal with El we need to use the inequality 

deduced by using Cauchy's formula. To deal with E2, using the mean value 
theorem of integration, we have 
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70 T. QIAN 

where tk, rlk E ( 2 k n ,  2 (k  + 1)n). Owing to the estimate of W' again, the 
series part in the above expression converges absolutely. Since the first entry 
is bounded, by choosing a suitable subsequence (nk), it tends to a constant 
with the same bounds. 'This finishes the proof for the case s = U. 

For the cases s < 0, we will apply induction to the intervals -k - 1 i 
< - k ,  wflere k  6 is integel~. FiI~st cons,&l L&,~ cabc -1 < < 6. Let 

b E HLand 

Shce b E iiij we have ( .)b(.)  E c,,'!, where i3 < s + i < i. As proved 
above, we have &, E K;+',  and the series @(, is locally u n i f o d y  convergent. 
This allow ux ici iritegratt: the series $oi:z)/e term by ienii. Taking into 
srrrn~nt t h ~ t  the reninn C '  Ic rt~r-rhonerl rlenntina hxr  ! I ! !  r \  the r ~ ~ m m t  
U"""...L. .A-... ..A" %"*l"%. u,,> + a" u.ru ..".lu.AL.h ., , . \-, .., ..ar urh.*.rl*. - ~ 

f r ~ : ~ l ~ t ~  1 2  . -f = .,, - t i - ,  . ;, r , C,,+ =... pmd owinr I:> the estimzte on_ ftmttim. ?E 
.* 

?he class K;' ' , we have 

To work out the estimate we consider two cases: x 5 1 and x > 1. For 
x I 1, the above reduces to 

where we used the condition z x 1, and so x x 1, y x 0. 
For the case x > 1 since z is in the star-shaped region C,,+; there follows 

x - i = l i  - x l  i (tanujlyl, andso lyl 2 - x l  + lylj. This, together 
with x x 1 and y 0, gives 
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A HOLOMGRPHiC EXTENSION K E S U T  

For the case s = -1, using the previously obtained result for the case 
s = O, a similar argument gives 

w h e n  ,: f r/l ,-. 
n i s  completes the proof for - 1 5 r < 0. Our induction hypothesis is: 
Lei -k - 1 : -k ,  ... LA+- b - w,,b,L , 2 O is M integer, imt?d b E H:,. Defi~?i~?m a 

& /b/-\\X \rr, , , , l ,  we have &, E K;,. - 
Now consider the case -k - 2 5 s < -k - 1, k 2 0 an integer, and 

b E Hi. Set 

where b d z )  = rzo b(z + n). It is easy to see that bo E H;+', Since 
-k - 1 I s + 1 < -k, it follows, from the induction hypothesis, that 
& E K;+'. Therefore. f$,$-s-21(~ A , or f$Ii-J-~lh), depending on whether s is or 
is not an integer, respectively, is holomorphically extensible to C,,+, where 
bo = ( b o ( n ) ) z l .  And, in these cases we have, for z E Cu +, 

respectiveiy. 
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72 T. QIAN 

Since zkh = zk+lb for any integer k + 0, we have that q5p1&, = ~ , L + I  ( b ) ,  - 

and so 

depending on whether s is or is iioi aii iiiiegei, respeciivdy. This proves that 
4 E Ki, when b E HLf" -k - 2 I s < -k - 1. The induction is complete. 

2 PROOFS OF THEOREM 2 AND 2" OF THEOREM 3 

We will first prove 'Theorem 2. 
L.et @ i) Ki,; -CY) r E c The !ask is io show ihai ihe function h!! 

defined using ( i )  or (2) heiongs to H ;  and qii;) = Crli b,L(iz:is". 
t A  

We first consider the cases -a i s < 0. It is easy to verify, 
ming the exprmion~ (31, as we!! as (1) when _r = -1, -2, . . . , the 
ccnesponding estimates en the giwn fmctien $, md Cauchy's theorem, 
that lim,,o bp(z) = 1/2n ifn #(exp(ix)) dx ,  and so b is bounded near 
zero. 

For z near m, according to (2), we have 

where 

h(p) = { r ]  E W,,+1q = rexp(i(n + p)),  r is from n sec (p)  to 0, 

and then r]  = r exp(-ip), r is from 0 to rr sec (O)), 

where ( arg (z)l < p < O. Let ( arg (z)J < 6 < p .  Owing to the estimate of 
4 and the property of the contour h(p), by taking into account the expression 
(1) and Remark 3 as well for s = -1, -2, . . . , the bounds of the function 
b" are given by 
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Now we consider the cases 0 5 s i GO. According to the expression ( 2 ) ,  
considering first the case lzl-' 5 ~c corresponding to z oo, we have, 

A+(r ,  p )  = { r ]  E W,,+/r] = pexp(i(n + p)) ,  p is from n sec (F )  to r,  

and then r]  = pexp(-ip), p is from r to n sec (p)). 

We now show that I !  , I?, I? are uniformly dominated by the bounds indicated 
in the thecrem, m.d li exists. 

.4pplying Cauchy's theorem, we have 
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Invoking the estimate of 4, we have 

The argument dso  shows that l l  exists. 
T, ,,A,, i,. Y'.,.m.-.'Y ,,.:>I 
UA L~LUCL G J L L ~ ~ ~ ~ ~  v,?, TTC~~!:E~ the not2t:on intraduced in 

# > ,  

Theorem 2. we only need to examine a general er~try iri 

< c&y. - 

To estimate Iz  we have 
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A HOLOMORPHIC EXTENSION RESULT 
-. 
15 

Now cons~der the case lzl-' > n corresponding to z 0. We first show 
that the mtegral over the contour I ( € ,  n) IS uniformly bounded and has llmit 
as e -t 0. The argument dealing with 1, (s,  :) for the case ;:/-' 5 x ic ctil! 
v i ~ d  tur the mtegrai wer i !r ,  rr), except that the mtegratlon contours of the 
entries in (4) now should be replaced by L+ (75). Choose the contour L+ (n) 
" ,  

UI L ~ C  K I L C ~ I ~ L I U ~ ~  iu LG &G uppu Ldf  CU& kith i ~ E i i ~  x =d CCi i tC i  C, ~ V C  

have 

Now we first deal with the cases s > 0. Denote 6 = - In(r), then r + 1 -0 
if and only if 6 + O+. Taking limits 6 -+ 0+ and r + 1 - 0 on the left 
hand side and the right hand side of (5) ,  respectively, the right hand side is 
equal to bn, while the left hand side is equal to 
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For every fixed c E (0, n ) ,  the above can be written as 

x@(exp(-S + i t))  d t  + / exp(-itn)@(exp(-8 + it)) dr 
€5lt!57r i 

owng re Cauchy's th,eorem the fact that the last tws mtegrals are 
absolutely integrable as 6 + u+ invoiung the estimate of @, the iirst integrai 
m the last expression of (6) 1s domnated, Independently of 6 > 0, by 

which is equal to (3), therefore to b&(nj, by invoking the 2n-periodicity of the 
integrand function and Cauchy's theorem. The proof for s 2 0 is complete. 

For s < 0 one can directly take limit r -t 1 - 0 on both sides of (5 ) ,  owing 
to the estimate of the function 4 and the Lebesgue dominated convergence 
theorem. We therefore have 

which is equal to bp(n ). by consequentiy invoiung the 2n-penodicity of the 
integrand, Cauchy's theorem, and its expression (2). 
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A HOLOMORPHIC EXTENSION RESULT 

The proof of Theorem 2 now is complete. 
Now we prove 2' of Theorem 3. Using the expression (2) of the function 

b p ,  it is easy to show that b(z )  1s bounded near the origin. For large z, invokmg 
the expression (1) and Remark 3, we have, for I arg (z) I < 0 < p, 

This proves b p  E Hin ( S , , +  j. The verification of 4(z j = xzl bi ' (n)z" is 
similar to the cases s : 9 in Theorem 2. IIfie prod is complete. 
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