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A Holomorphic Extension Result*

TAC QGiAN
Department of Mathematics, The University of New England,
Armidale, NSW 2351, Australia

(Received July 1995)

In [7] we obtained, as a consequence of the Fourier transform theory developed in the paper, a
sufficient and necessary condition on a sequence (b,) € {* for the function ¢(z) = Z:] b,z",
izi < I, to be holomorphicaiiy extensibie to a heart-shaped region containing the set {z € Cjz #
1, |z} = 1}, and dominated by C/|1 — z| when z is near 1 in the region. This note generalizes this
result to the cases when |b,| < Cn*. —oc < s < oo. It also includes corresponding results for
series of negative powers and for Laurent series as well. The theory has applications to singunlar
and fractional integrals on closed Lipschitz curves which are closely relaied io boundary value
problems in Lipschitz domains.

AMS No. 42R15, 30B40, 42B10
Communicated' R. P Gilbert

INTRODUCTION
We will use the following sets in the complex plane C. Set, for w € (0, /2],
S+ = {z € C|| arg (£2)| < w},
W,+={z€C||Re(z) <7 and Im (£z) > 0}US,,

Co.+ ={z=exp(in) € Cln € W1},
respectively, where

Sw =Su4+ US, .

We will also use
W,=W,,.NW, _, C,=C,+NC, .

These sets are illustrated in the diagram on the next page.

*Dedicated to Professor M. T. Cheng.
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A set O in the complex plane is said to be inner star-shaped with the pole
zero, if 7 € O implies rz € O for all 0 < r < 1; and is said to be outer
star-shaped with the pole zero, if z € O implies rz € Oforall 1 <r < .

For every w € (0, 7/2], C,, + is a heart-shaped and an inner star-shaped
region with the pole zero, while C,, _. is the complement set of a heart-shaped
region which is an outer star-shaped region with the pole zero.

The following function spaces on the sectors will be used. For —o0 <

o0,

<<

=)

H*(S,,+) =1{b : Sy,+ — C|b is holomorphic and satisfies
10(2)] < Culz = 1i° inevery S, +, 0 < u < wj,

respectively.
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Fors = —1, -2, ..., we will also use another class of spaces
Hi (8,+)=1{b : S, + — C[b is holomorphic and satisfies
1b(z)| < Culz £2°|Injz £2]] inevery Sy +, 0 < p < w},

There are also corresponding function spaces on the double sectors. For

ge

H*(Sy,) =1{b : Sy, = Clbx € H*(Sy,1), where by =by v ..0)s
and
HS, (S,) =1{b : S, — Clbs € H}, (Sus), where by = by o . .},

where xr denotes the characteristic function of set E.
Therefore, functions in various H* and H), spaces defined above consist

Qi pnmbasn smbinakh o awa hasse dad mann rasn nmd dacasnntad s
15 i1 SCCI015 Wiiidia ai® o0UNaca iiai 23070 aiih Goiililiaill Oy
- o

A function given by a Laurent series is said to be holomorphically defined
in a certain region, if the Laurent series converges to a holomorphic function
in the region. In the case, by a theorem of Abel, the power series part then is
holomorphically defined in the associated inner star-shaped region with the
pole zero, determined by the region in the obvious way, and the negative power
series part is holomorphically defined in the associated outer star-shaped
region with the pole zero.

Denote, for s > —1,

K (Cp ) = [d) : Cyp.+ — C|¢ is holomorphic and satisfies

()] < Cu

m in every Cu,:t, 0 < m < w},

respectively, and
K’(Cyp) = [qS : C, — C|¢ is holomorphic and satisfies

{ L l

A=) < - in C 1< (0

1PZ) C m Ly, el i
J
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We will only give the details of the definitions of K*(C,, +) for —oo <
s < —1. The definitions of K*(C,, _) and K*(S,,) for —o0 < s < —1can
be correspondingly formulated.

We need the following preparation. Assume that

2N Yy S Ye <) _ 0.

i) b= nipey €1

(ii) ¢p(z) = > negbnz" is holomorphically defined in C,, 1 ;
(iil) @p(1) = 3 .2 bn converges.

Form the difference

o@D —Pp(D) =b1z— )+ b~ )+ + b =D+

A . (=)
LIPi )

— =
-_— 1w

and

S1p)(2) = Z (Z bk) L
/

n=1 \k=n

Then, owing to (ii), ¢; () is holomorphically defined in C,, +.

The above formed new sequence ! {&) may or may not satisfy the condition
(iii). If it satisfies (iii), then it satisfies automatically (i). Therefore the pair
(I(b), ¢1(»)) satisfies the condition (i), (ii) and (iii). Then one can consider
whether the sequence I (I (b)) = I 2 (b) satisfies (iii) or not, and so on. Denote
[(I"(b)) = I'"t1(b), and I°(b) = b. If the above procedure can be applied
at most k times, then it happens that pairs (Ij@), Sripy), 0 < j <k, all
satisfy the conditions (i) to (iii), but 75*1(b) does not satisfy the condition
(iii). In this case, we have

6 (D) = dp(D) + 2= Dorpy(D + - + @ — D@, (1)

L TR | _ s

AT 1 N . 1 Y - PP r© 7 al \ -
NOW W€ 4r¢ rédaay o 1nuoauce ine aclumuons o1 A (Ly 4+ ), =0 <
< -1

=)
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K(C, 1) = {d”l : C, 4 —> Cib €1°°, the above procedure can

imes, where k;, = [—s — 1] or [—s],

-

i amaliad o ot b
(2] apphcu at imost g

depending on whether s is an integer or not, respectively,

1A

and |(z — l)k‘¢1ks@)(2)|

inevery C, 4, 0 < pu < w?,

where for ¢ > 0, [¢] = max{rn € Z|n < «}, the largest integer that does not

cxceed o,

Fors = —1, -2, ... . we will also consider anoither class
{
Ko 3 = {4+ Co» > Clb €™, the above procedurc can be

1o

LY
applied at most — s — 1 times, and [(z—) "', 15, (2)]

iz =1 ]

< Cm 1n every Cll--+’ O<u<wi.

The above defined various spaces H*® and K° are all increasing classes
aiong with s — o0. Now we are ready io staie our resuits. In each of the
following statements or argnment paragraphs + should be understood as

o r (=} i
either all + or ali —
TuEOREM 1 Let —00 <5 < 00, § £ —1; =2 be H (S, +), and
+00
Py =Y bmz".
n==+1

Then ¢ € K°(C,, +).

THEOREM 2 Let —00 < 5 < 00, ¢ € K*(C,, 1). Then for every u € (0, w),
there exists a function b* € H*(S,, 1) such that

i+
;

o) = b*(n)z".

n

g
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Moreover, fors <0,z € Sy, +,

1
@) = 5 / exp(—inz)¢(exp(in)) dn,
T Jas(w)

where

A+(p) = {n € W, 4|n =rexpi(m £ pn)),
r is from 7 sec (i) to 0; and then

n =rexp(Fiu), r isfromOto 7 sec (u)},

and, fors <0,z € S, +,
21 e—=0 \Jye, 171Uy (2]~ JOUA L U717 )
\
exp(—inz)o(exptin)) dn + ¢, L {z) )
where ifr < m,

le.rN={n=x+1iyiy=0, x isfrom —r to —g¢,

and then from € to r},

(2)

c+(r, n) = {n =rexp(ia)|e isfrom 7 £ pu to 7, thenfromOto F u},

and

As(r,p) ={n € Wy +|n=pexp(i(r £ p)), p isfrom m sec (u) to r;

and then 1 = pexp(Fin), p isfrom r to m sec (u)},

and ifr > m,
I(e,r) =l(e, m), ct(r, u) = cxm, ),

As(r, p) = Ax(m, ),

and, in any case,

. (—inz)[‘]>d ’

PrL@) = / ¢ (exp(in)) (1 +(—inD) 4t
Li(e) [s]!

where L (€) is any contour from —e to ¢ lying in C, +.
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THEOREM 3  Let s be a negative integer
1° Ifb € H*(Sy,+) and ¢(z2) = Z" 11 b))z, then ¢ € K (Cy ).
22 Ifg e K “in (Co.+), then for every u € (0, w) there exlsts a function
b* such that b* € H3 (S, 1), and

+oo

¢@) = ) bmz".

n==+1
Moreover, b* is given by (2).
The cases “+” and “—” in the above theorems are asscciated with power
series and negative power series, respectively. Combining these results, we
obtain the results of the same type on Laurent series (for the case s = 0 also

cas l'7|)
S€C (/]
Mo o 4 7 - < — H 3 I o~ IIS/Q
f HEOKEM <+ T I <y < XN &= i, L 17 & 1 0.0 b (i
. N L,
izl = > oirniz
A N
TL o St — ESL4 N
TREN G € iy

There are also the Laurent series counterparts of Theorems 2 and 3 which
are left to the interested reader.

Remark 1 For (b,);2, € I the series ¢(z) =

7

n z
defined and nolomorpmc in the unit disc. Theor em 1 and 1° Theorem
{ n 'k ™

|98}

assert thatif 36 € H® \uw +} such that & Oy
extensibleto C,, 1, and in any smaller C,,  the funclxon satisfies the estimate
given in the definitions of K3 (S,, 4+) or K*(S,, ), depending on whether s

is or not a negative integer, respectively. Theorem 2 and 2° Theorem 3 give

1
h
[24

the converse results.

Remark 2 Under the assumptions of Theorem 2, the mapping ¢ — b
satisfying ¢(z) = )_b(n)z" is not a single-valued mapping. In fact,
according to Theorem 2, every b*, 0 < u < w, gives a solution of b,
and, if u; # uy, then b*' # b*? in general (see also Remark 3 below for an
example).

Remark 3 In the proof of Theorem 2 we will need the following function
space P consisting of all finite linear combinations of holomorphic
functions of the form
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. if z=mn;
gn(2) = . (exp(in(z —n))
[ —exp(—in(z —n)))exp(—7(z — n)tan w)
2in(z —n)

. if z#£n,
where # is a non-negative integer. It is easy to see that

exp(—7(Re () tanw — [In(2)]))
Iz + 1

- 8 O i e
, 2E€Edu+, U< u<w.

Y ral
Ié’nké)! = un

Therefore, g, € U_gocs<coH*(Se.+). It 1s noted that the functions in Pt
are just the inverse Fourier transforms of finite po]ynomia]s of z given by (2)

in Theorem 2. Similarly. we define the space P~ with respect (o the negative

Remark 4 The holomorphic extension result Theorem T is the hest possible

to the converse result Theorem 2. Questions along this line can be 0therw1sc
formulated. Alan Beardon raised the following questions which still remain
open: Whether the heart-shaped region C,,  is the largest region in which
the series ¢ (z) = Zfﬁ, b(n)z" is holomorphically defined with respect to
all functions b € H;(q )72 And, whether 4§, + being the natural b@]:mdg“ry

o tbe assomated holomorph;c function (p

Remark 5 The result 1° Theorem 3 is consistent with the example b(z) =
z/(1 + z*). Albert Baernstein showed me, concerning the case s = —1 in 2°
Theorem 3, how to construct a holomorphic function q) in the unit disc so that
¢(z) = O(n|z~1])and ¢'(z) # O(1/|z —1]), z — 1, using the method of
Bloch functionsine. 2. [6]1 and Ahlfors’ distortion theorem (see, for Pvample’
[1]). He also showed me that it is equivalent to consider the matter in the unit
disc instead of in the heart-shaped region, as in the case s = —1 the estimates
remain unchanged after applying a suitable conformal mapping. It follows,
owing to the case s = 0 in Theorem 1, that the associated &{z) # O(1/[z})
at oo, which complements 2° Theorem 3. However, it remains open question
the estimates given in 2° Theorem 3 are the best possible in those cases.

i~
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Remark 6 We have restricted ourselves to considering only the first power
of the log function in the definitions of H} and K  and in Theorem 3. In
fact we could generalize the result in 2° of the theorem, with a very same
proot, to any kth power of the log function, where k is a positive integer.

Remark 7 A trivial variation of Theorem 1 to Theorem 4 can be obtained in
the following way. Denote by exp(—i6-) the function z — exp(i6z). Define

the co-spaces

H%(S, +) = exp(i0)H*Su.+),  H*Y(S,) = exp(i0-)H’ (S.,),

and

s.0 >

K> (Cy 1) = (@l cexp(—if-) € K*(C, 1))}

and

K(S,) = [$id o exp(—if) € K*(S,,)]
iTwe L,hdngc the slaiemenis of ithe theotems b\, lei[!g these spaces with the
parameter 6. then the singular point 7 = 1 of the tions ¢4, ¢ will now
be shifted to the point z = exp(/#) on the unit c;rc}c. The proof is an casy
exercise, and is left to the reader.

Remark 8 The results corresponding to the case s = 0 are obtained as
a by-product in [7] in the study of the Fourier transform theory between
holomorphic functions defined on sectors. It is proved in [3] that the
funciions in K ”(Cw +) and K'O(S(,,), acting as kernel functions, ail give

ncetnl -bounde d..np

Lipschitz constants are less than tan(w) The class of the singular convolution
operators is in fact the H *°-functional calculus of the Dirac operator z(d /dz)
living on the closed curves ([7]). Using conformal mappings, we can deduce
a corresponding singular integral theory on arbitrary simply-connected
Lipschitz curves. The cases associated with s # 0 correspond to fractional
integrals and differentials on those curves. All those mentioned are closely
related to boundary value problems associated with those domains. For
related studies, see e.g. [2, 4, 5, 8].

We will only need to prove Theorem 1 to Theorem 3 for the case “+”, as
the case “—" is similar. §1 will be devoted to proving Theorem 1 and 1° of
Theorem 3. §2 will be devoted to proving Theorem 2 and 2° of Theorem 3.

The author is grateful to Alan McIntosh for many helpful discussions on
this work. Many thanks are due to Joachim Hempel, for his support which has
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encouraged me to pursue my previous work [7] further and so to obtain the
generalizations in this note, and also for the valuable consultations with him
throughout the course of the study and the preparation of the paper. Many
thanks are due to Albert Baemnstein for the time he devoted to answering my
questions regarding Remark 5 during his stay in UNE after the annual meeting
of the Australian Mathematicai Society in July 1994 in Armidalie. Especially,
his remarks gave impetus to writing up this paper when I was wondering
about the result in 2° Theorem 3. I am very grateful to Alan Beardon for his
inspirating questions indicated in Remark 4, and, with Joachim Hempel and
Imer Bokor together as well, helpful discussions on the iterating process on
sequences in formulating the class C*(S,, +), —00 <5 < —1.

1 PROOFS OF THEOREM 1 AND 1° OF THEOREM 3

w?

s

Sy

In the sequel we will abbreviate H(S,, +) and X*(C, > and

1[5

as I a

3

eed e

+)
respectively. We first consider the cases O — 5 < o<, "eﬁne, asi

@

1
()= — exp(izg)b(L) de. €V, 4,

2 J

< o

Vo4 ={z€ClIm(z) > 0}US,,

and py is the ray r exp(i6), 0 < r < 0o, where 6 is chosen so that pg € S, 4,
and exp(iz¢) is exponentially decaying as { — o0 along py. It is easy to
see that ¥ is well defined and holomorphic in V,, 4. In fact, the definition
is independent of specially chosen 8 satisfying the required conditions. It is

easy to see that for any u € (0, w),

C
V@IS s € Vi

We further define the function

‘I/‘(z)=/ V(©E)de,  z€Su+.
8(2)

where 8(z) is any path from —z to z lying in V,,. From Cauchy’s formula it
is easy to deduce, for any u € (0, »),
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Define ¥ by the Poisson summation formula

o0 o0
V(@ =2r Y We+2nm), ze | @r+Wosq),
n=—o0o n=—00

where the summation takes the following sense: For s > 0, the series
absolutely and locally uniformly converges to a 2x-periodic holomorphic
function, namely v, and the function ¢ = ¥ oIn /i € K. For s = O there
exists a sequence (n){° such that the partial sum s, (z) = 27 Zlnlsnk Y(z+
2n7) converges locally uniformly to a 27 -periodic function, namely ¥, and
the function ¢ = ¢ oIn/i € K. It can be shown that different functions
® defined via different appropriate subsequences (ni) differ by bounded
constants. Using the estimate of \/, the proof of the assertion for s > Qis easy.
The assertion for s = 0 is proved in [7]. To make the paper self-contained,
we provide a brief proof of the case and refer the unsatisfied reader to [7].
Consider the decomposition

xn

Y W(z+2km) =)+ ) (W2 +2km) — W (2kn))
k=-n 120

+ iqﬂ'(zkn) =WE@+Y +) ., €Wy
k=1 1 2

We will prove that )_; is absolutely convergent and bounded, and ),
converges in the sense specified as above, and is also bounded. Therefore, the
principle entry of the sum is W (z) which is dominated by C izi'l asz — G,
and so is the function . Therefore, the function ¢ = ¥ o In /i satisfies the
desired estimate. To deal with ), we need to use the inequality

, C
'\I/ (Z)' S qu':s zZ€ W‘u,,+1

deduced by using Cauchy’s formula. To deal with ) ,, using the mean value
theorem of integration, we have

2(n+m , n ,
Z vl 2kn) = / vy dr + Z(\p* (k)

k=1
— Re (¥1) (&) ~ i Im (&) (7))
=vlQn+ Hn) — &1 27)

+ D n(¥" @km) ~ Re (W1) (&) — i Im (¥1)(m),
k=1
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where &, nr € (2km, 2(k + 1)7r). Owing to the estimate of ¥’ again, the
series part in the above expression converges absolutely. Since the first entry
is bounded, by choosing a suitable subsequence (ny), it tends to a constant
with the same bounds. This finishes the proof for the case s = 0.

For the cases s < 0, we will apply induction to the intervals —k — 1 <
§ < —k, where k = O is an inieger. First consider the case —1 < 5 < U. Let

be H} and

oC o0
ey N Ynoonon Lo NN g
PY\) = Z own)c , PoLz) = z 1o )2
n=1 n=1
29 (2) = ¢o(2)
o 1~ TFS 1 1 rrs+1 1 n
Mnce N e I'_IU we nave )Dl\ } € !‘_I_a)' ,WNHNEre U < s + 1 < 1 A\ PI‘()Ve

locally uniformly convergent.
z term h\ ierm. Takmg into

1
<c. / dz|
o T 2772

rl 1
i

rad P
“Jo (U —tx|+1lyhs+?

IA

To work out the estimate we consider two cases: x < 1 and x > 1. For
x < |1, the above reduces to

! 1 1 1 1
sdt| = T -1
o (I—t(x—[yHyrts s+ Lx =]yl \(I1 —x|+1yD)*
1
” _ zls+1 *

Cu.s

IA

where we used the condition z & 1,andsox =~ 1, y =~ 0.

For the case x > 1, since 7 is in the star-shaped region C, , there follows
x—1=|1—-x] < (tanu)]y|,and so |y| > C, (|1 — x|+ |y]). This, together
with x &~ ] and y = 0, gives
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1
1
dt
fo (|1 = tx| + tjyps+?
fl‘/x 1 rl 1
dt + dt
/o (1 —1(x — [yD)s+? ./1/1 (tx+ 1y — 1)”2‘“

AN A
< M
- Il — Z|5-H
For the case s = —1, using the previously obtained result for the case

s = U, a similar argument gives

i i
i i -
g = Cy ! i if’”' = Cullnll =z,
wherez € C,, |
This completes the proof for —~1 < s < 0. Our induction hypothesis is:
let—-k—-1 <5< —k, where k > 0 is an integer, and € H. Defining
b = (b{n));2,, wehave ¢ € K.
Now consider the case —k — 2 < s < —k — 1, k > 0 an integer, and
b e H;. Set
o0 o0
A = 8§  Bim)ot b = & Boln)s"
FNL) — O\FE) Po = 7 UL,
n=1 n=1

where bo(z) = Y oo nb(z + n). It is easy to see that by € H*™!. Since
—k—1 < s+ 1 < —k, it follows, from the induction hypothesis, that
P € Kjf“ Therefore, ¢i-c-24 ) OF $yi--1p, ), depending on whether s is or
is not an integer, respectively, is holomorphically extensible to C,, +, where

by = (bo(n))°° . And, in these cases we have, forz € C,, .,

L P [In|z — 1|
iz = Dy A, (2] _C;r‘—“‘l —qp
or
C
1{~ A[~=s—1] 4 2V o« “
z—1 b - ()] < - ”é_rZ‘

respectively.



Downloaded by [University of Macau Library] at 00:58 24 August 2017

72 T. QIAN

Since I*by = I**!p forany integer k — 0, we have that ey ) = Previ(py,
and so

[Injz —1||
|Z — ”s+1 *

W NETEI .
iz — 1) Pr--np) ()] = Cy
or

C
— D5, e
lz = D™y @] = 1T
depending on whether s is or is not an integer, respectively. This proves that
¢ € K} whenb € H), —k —2 < s < —k — 1. The induction is complete.

2 PROOFS OF THEOREM 2 AND 2° OF THEOREM 3

We will first prove Theorem 2.
Let ¢ € K, —o0 < s < oc. The task is to show that the function b*
defined using (1) or (2) belongs to H
We first consider the cases —o

<
nemo the pypreqcmnc (2), as well as (1) w

‘oand ¢{z) = 3 noq BH ()"

s < 0. It is easy to verify,
ens = —1 -2 ..., the
corresponding estimates on the given function ¢, and Cauchy’s theorem,
that lim,,0 b*(z) = 1/2n 7 ¢(exp(1x))dx, and so b is bounded near
Zero.

For z near 0o, according to (2), we have
L/
B () = — exp(inz)
2 i
where
Au)={ne W, 4In=rexp(i(x + u)), r isfrom m sec (u) to 0,

and then n = rexp(—iu), r isfromOto m sec ()},

where | arg (z)| < # < w. Let | arg (z)| < 6 < p. Owing to the estimate of
¢ and the property of the contour A(u), by taking into account the expression
(1) and Remark 3 as well fors = —1, —2, ..., the bounds of the function
bH are given by

rlts

o8] dr
16" ()| < C (z I* +jf exp(—sin(p — 9)z|r) ) < Culzl’.
0
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~J
[#N]

Now we consider the cases 0 < s < 00. According to the expression (2),
considering first the case |z|~! < 7 corresponding to z & oo, we have,

T e—~0

Y

1
bH(z) = T lim{ (/ exp(—irz)¢(exp(it)) dt +¢£”(Z))
ezt

+ exp(—inz)¢(exp(in}) dn
Jeozt L
+ [ exp(—inz)¢(exo(in))dnl
JaLzw
1
= —— lim{li(e, 2) + I (z, n) + I3(z, 1)}
27 e—0

Ay =1{ne Wy iln=pexpli(m + u)), p isfrom m sec(u) to r,
and then n = pexp(—iu), p isfrom r to m sec (u)}.

We now show that Iy, I», I5 are uniformly dominated by the bounds indicated
in the theorem, and lim._,; J; exists.

Applying Cauchy’s theorem, we have

N\

f ( {(—itz) (—itp)ls!
Lie, ) = / (exp(—itz) S T _____)
e<lr|<|z|! 1! s]!

—i —itz)ls)
><¢(exp(it))dt+/ (1+( it) |, (i) )
etz 1! [s]!

x ¢(exp(in)) dt + oL (2)

— . (—itz) (—itp)l]
- /esltrsm-' <exp(_UZ) - TR [s1! )

p(expn) dr + 1!, | (2).
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Invoking the estimate of ¢, we have

oo , . sl ;
’ ( (—irz) (=) o]
! I/ (exp{_”:) -1 BT ro1t )(p(exp(!l))d!!
i I 1 i N B
ieiri<izi* \ i IR L !

< [ et L

= /1/ 1< 1

e<ltl<lel ! Jefits

. Is] . . oo
In order to estimate ¢/, RN .w.uimg the notation introduced in
Theorem 2, we only need to examine a general entry in
7 N r
[ VA S A Y | (-t

ied o e
{

consisting of ¢ ). Choose the comour L, (izi™!) of the integraiion to

be the upper hal l with radius 1z] ! and center 0, we have

ek
/ ( ”Z) IR b (exptiny) dn
Li([zI~)

<c f e in = ldn]
L, (zI7")

To estimate I> we have

bz )] < C, j exp{n ¢l sin( arg (2) + )i

Il-L\'
< Cyulzl”.
Now consider /3. Let | arg (z)| < 8 < u, we have
ldn)
3z, w)| < Cu/ exp(|n| |z| sin(p — 0)) 17
Atz nlt+
o0
<C, / rexp(oriz]singe - 8))dr

1A
¢
¥
T
=
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Now consider the case |z[~! > 7 cormresponding to z ~ 0. We first show
that the integral over the contour (e, ) is uniformly bounded and has limit
as &¢ — 0. The argument dealing with I;{¢, z) for the case [z|™' < m is still
valid for the integral over [ (¢, 7 ), except that the integration coniours of the
entries in (4) now should be replaced by L (;t). Choose the contour L ()

,,,,,,,, PROUIpE [

B o . ¢ IV xrn
QI tne megrauon o e ulc uppci uau \,U\,lc wuu 1au1u.> Jt ana CChst v, w

have

i/L e ¢(CXP(H7))dn’§C / Izl i)~ )

L, (m)

sl e dthnd thhn s alo s
i O 3n0W what i nuv;.A ais CYCI¢

i “arvinh’ h HE
Cauchy’s theorem o ¢ haug‘* <o

p

g

Tom —n tan {u) {o U, and then

O S che ain 1
‘lllw\./vbl l.\l SIIUW thu.t th\/ iy t i—

over the last imentioned set is bou ded using only the fact that Re {z} = 0.
Now we are left to prove

o0
() =Y bmz", —0<s <00, O<pu<o,
n=1
which is equivalent to prove b(n) = b*(n),n = 1,2, ... in these cases.
Let 7 € (0, 1). Using the expression ¢(rz) = Z;le b{n)r"z" and the
absolute convergence of the series in |z < I, we have
1 T
5 exp(—itn)¢(r exp(it))y dt = r"b,,. (5)
21 J_,
Now we first deal with the cases s > 0.Denote § = — In(r), thenr — 1-0

if and only if 8§ — 0+4. Taking limits § — 0+ and r — 1 — O on the left
hand side and the right hand side of (5), respectively, the right hand side is
equal to b,,, while the left hand side is equal to

/T

him I exp(—itn)¢(exp(—35 + it)) dt.
=0+ J_
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For every fixed € € (0, 7), the above can be written as

31_15114. / +/ exp(—itn)¢(exp(—6+it))dt

0t <e Jeziiisn

=0+ \Josiijze \ 1 2! [s]!

— Lm /[ (gxnr_:m)_1_—_”?_(_i'iz ..... S__”"_)[S_])

A sooor o N7 s \lcl

. s —‘lln o A=liny- . \—llﬂ)“
x ¢ (exp(—8 +it)) dt + / ( 1+ - e

+.
JL.ey \ ii 2! [sit

\

x¢(exp(—8 + it)) dt + exp(—itn)¢(exp(—45 + it)) dt)

exitl<m

/

f ¢, the first integrai
of § > 0, by

absolutely integrable as § — 0-+. Invoking the estimate
in the last expression of (6) is dominated, independently

1
C / T2 1L —
# O<|ti<e fe]s+1

]
=

€0

. . I/ l{‘ " Icl
b, = lim k/ exp{—itn)p(exp(it))dr + ¢;‘J+(n)) ,
e<|t|<m '

whichis equal to (3), therefore to b (n), by invoking the 27 -periodicity of the
integrand function and Cauchy’s theorem. The proof for s > 0 is complete.

For s < Oone can directly take limit7 — 1 —0 on both sides of (5), owing
to the estimate of the function ¢ and the Lebesgue dominated convergence
theorem. We therefore have

b(n) = i/ exp(—itn)¢(exp(it)) dt,
2 J_

T

which 1s equal to b*(n), by consequently invoking the 27 -periodicity of the
integrand, Cauchy’s theorem, and its expression (2).



Downloaded by [University of Macau Library] at 00:58 24 August 2017

A HOLOMORPHIC EXTENSION RESULT 77

The proof of Theorem 2 now is complete.

Now we prove 2° of Theorem 3. Using the expression (2) of the function
b*,itis easy to show that #(z) 1s bounded near the origin. For large z, invoking
the expression (1) and Remark 3, we have, for | arg (z)| < 0 < pu,

7

1b(2)] = Cu (lzly +j 7 exp(—rlz] sin(u — 9))llnr|r“%)
0

o0 d
- Ly < L p 1. —S r
<Cy (Izl + |zl / exp(—rsin(u — 8))|Inr —1In|z{|r ——r >
0

< Cpuplzl"Injz].

P TR e N S S S (P AR oo 3 fe
This proves b* € H; (S, ;). The verification of ¢(z) = > =, b"{n)z" is

similar to the cases s < © in Theorem 2. The proof is complete.
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