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Abstract. The L2-norm equivalence between a Clifford martingale f and its square
function S(f) plays an important role in the proof of the L2-boundedness of Cauchy
integral operators on Lipschitz graphs and the Clifford T (b) Theorem [2, 4]. This
note generalises the result to the Φ-equivalence between the maximal function f∗

and S(f), where Φ is a nondecreasing and continuous function from IR+ to IR+, of
the moderate growth Φ(2u) ≤ C1Φ(u) and satisfies Φ(0) = 0.
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1. Introduction

It is well known that martingale theory plays a remarkable role in analysis,
especially in harmonic analysis. Many ideas and methods in harmonic analysis
come from, or closely relate to martingale theory. In [2] R. Coifman, P. Jones
and S. Semmes gave an elementary proof of the L2-boundedness of Cauchy
integral operators on Lipschitz curves using a martingale approach. However,
their proof does not exhaust the effectiveness of using martingale in the prob-
lem: it depends on a separate Carleson measure argument. [1] shows that the
Carleson measure argument can be replaced by a pure martingale argument.
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The idea of [1] then motivated G. Gaudry, R-L. Long and T. Qian to generalise
the result of [2] to the higher dimensional cases, and to show that the Clifford
T (b) Theorem can be proved in the same spirit [4].
What plays the central role in [4] is the L2-norm-equivalence between a Clif-
ford martingale and its square function. Since the maximal function f∗ is L2-
bounded, this implies the L2- equivalence between f∗ and the square function.
This later mentioned result is associated with the function Φ(t) = t2 (in the
sense given in Th.3.3 below). In this note we shall generalise the result to some
more general functions Φ.
The remaining part of this section will be devoted to introducing notation and
terminology and preliminary knowledge of Clifford algebra. In Section 2 we
discuss basic properties of Clifford martingales. In this note our context is a
bit more general than that of [4] and our treatment is slightly different. Section
3 proves the main result, viz. the Φ-equivalence.
Let (Ω,F , ν) be a nonnegative σ-finite space, φ a bounded Clifford-valued
measurable function. Consider the Clifford-valued measure dµ = φdν. The
martingales under study are with respect to dµ and a family {Fn}∞−∞ of sub-
σ-field satisfying

{Fn}∞−∞ nondecreasing, F = ∪Fn, ∩Fn = ∅, (1.1)

(Ω,Fn, ν) complete, σ − finite,∀n. (1.2)

Let e1, ..., en be the basic vectors of Rd satisfying

e2 = −1, eiej = −ejei, i 6= j, i, j = 1, 2, ..., d, (1.3)

and R(d) the Clifford algebra over the real number field of dimension 2d gen-
eralized by the increasingly ordered subsets eA’s of {1, · · · , d} with the identi-
fication eA = ej1 · · · ejl

, A = {j1, · · · , jl}, 1 ≤ l ≤ d, e∅ = e0 = 1.
We shall use the following norm in R(d) :

|λ| = (
∑
A

λ2
A)1/2, λ =

∑
A

λAeA. (1.4)

For the norm we have the relation

|λµ| ≤ k|λ||µ|, ∀λ, µ ∈ R(d), (1.5)

where k is a constant depending only on the dimension d.
When at least one of λ and µ, say λ, is of the form λ =

∑d
i=0 λiei, i.e. a vector

in Rd+1 ⊂ R(d) we have
k−1|λ||µ| ≤ |λµ|. (1.5′)
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To see this, noticing that if 0 6= λ ∈ Rd+1, then the left and right inverse of λ
is

λ−1 =
λ

|λ|2
,

we have, for any µ ∈ R(d),

|µ| = |λ−1λµ| ≤ k|λ−1||λµ| = k|λ|−1|λµ|

which gives (1.5′).
In what follows we often use the fact that for a = a1a2a3a4, ai ∈ Rd+1 we
have |a| ≈ |a1||a2||a3||a4|. Constants with subscripts such as C0, C1 will be
considered to be the same throughout the paper. Constants C may vary from
one line to another, but remain to be the same on the same line.

2. Clifford Conditional Expectation, Clifford Martingale

We begin with the definition of conditional expectation. Let (Ω,F , ν) be a
σ-finite measure space, dµ = φdν a Rd+1-valued measure. If |Ω|ν = ∞, we
assume that the domain of dµ is not F but a subring of F . This does not
bring us any trouble when defining conditional expectation. Let J be a sub-σ-
field of F such that (Ω,J , ν) is σ-finite and complete. Denote the conditional
expectations with respect to ν and µ by Ẽ and E, respectively. The definition
of Ẽ is standard:

Ẽ(φ|J ) =
d∑

i=0

Ẽ(φi|J )ei, with φ =
d∑

i=0

φiei.

Thus Ẽ enjoys all the good properties of classical conditional expectations.
Assume that φ is bounded and Ẽ(φ|J ) 6= 0, a.e. In the sequel, unless otherwise
stated, all functions under study will be assumed to be Clifford-valued. We
define

E(l)(f |J ) = Ẽ(φ|J )−1Ẽ(φf |J ), f ∈ L1
loc(ν), (2.1)

E(r)(f |J ) = Ẽ(fφ|J )Ẽ(φ|J )−1. f ∈ L1
loc(ν), (2.1′)

E(l) and E(r) satisfy the following properties.
(a) E(l) is right-Clifford-scalar linear and both left- and right-real-scalar linear,
and

E(l)(fg|J ) = E(l)(f |J )g, g is J −measurable.
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For E(r) similar properties hold.
(b) E(l)(1|J ) = 1 = E(r)(1|J ).
(c) Both E(l) and E(r) are J -measurable, and∫

A

E(l)(f |J )dlµ =
∫

A

fdlµ, ∀A ∈ J ,∀f ∈ L1(A, ν), (2.2)

∫
A

E(r)(f |J )drµ =
∫

A

fdrµ, ∀A ∈ J ,∀f ∈ L1(A, ν), (2.2′)

where ∫
A

fdlµ =
∫

A

φfdν,

∫
A

fdrµ =
∫

A

fφdν. (2.3)

To see (2.2), notice that we have

dµ|J = Ẽ(φ|J )dν|J , (2.4)

which follows from∫
A

Ẽ(φ|J )dν =
∫

A

dµ, ∀A ∈ J , ν(A) < ∞.

Thus, we have∫
A

E(l)(f |J )dlµ =
∫

A

Ẽ(φ|F)Ẽ(φ|F)−1Ẽ(φf |F)dν =
∫

A

φfdν =
∫

A

fdlµ.

(2.2′) can be verified similarly.
(d) When J1 ⊂ J2, we have, denoting E(l) or E(r) by E,

E(E(f |J2)|J1) = E(f |J1). (2.5)

For E = E(l), (2.5) is verified as follows.

E(l)(E(l)(f |J2)|J1) = E(l)(Ẽ(φ|J2)−1Ẽ(φf |J2)|J1)
= Ẽ(φ|J1)−1Ẽ(φẼ(φ|J2)−1Ẽ(φf |J2)|J1)
= Ẽ(φ|J1)−1Ẽ(φf |J1)
= E(l)(f |J1).

As a consequence of (2.5), we have

E(E(f |J2)− E(f |J1)|J1) = 0. (2.6)
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Now assume that we have a nondecreasing family {Fn}∞−∞. In the classical
case, the martingale differential operators ∆̃n = Ẽn − Ẽn−1, Ẽn = Ẽ(·|Fn) are
orthogonal:

Ẽ(∆̃nf∆̃mg|Fk) = 0, n 6= m,n.m ≥ k,∀f, g ∈ L2.

In the Clifford martingale case, because of the noncommutativity, only the
following substitution holds. Let < ·, · > denote following pairing:

< f, g >=
∫

Ω

fφgdν. (2.7)

(e) Let {Fn}∞−∞ be nondecreasing and (Ω,Fn, ν) be complete and σ-finite, and
Ẽ(φ|Fn) 6= 0, a.e. ∀n, and ∆(r)

n and ∆(l)
m be naturally defined. We have

Ẽ(∆(r)
n fφ∆(l)

m g|Fk) = 0, n 6= m,n,m ≥ k. (2.8)

In particular,
< ∆(r)

n f,∆(l)
m g >= 0, n 6= m. (2.8′)

This follows from, if say n > m ≥ k,

Ẽ(∆(r)
n fφ∆(l)

m g|Fk) = Ẽ(Ẽ(∆(r)
n fφ∆(l)

m g|Fn−1)|Fk)
= Ẽ(Ẽ(∆(r)

n fφ|Fn−1)∆(l)
m g|Fk)

= 0,

where we used the counterpart of (2.6) for classical conditional expectations.
The typical case of φ is the case where φ is Rd+1-valued and dµ is absolutely
continuous with respect to dν. In this paper we assume the condition C−1

0 ≤
|φ| ≤ C0, a.e. Thus we have:
(f) Let 1 ≤ p < ∞ and J any sub-σ-field under consideration. Then E is
Lp-bounded, if and only if

C−1C−1
0 ≤ |Ẽ(φ|J )| ≤ CC0, a.e.

The sufficiency of the condition follows from the definition of E, the bound-
edness of classical martingales and the boundedness of φ. The necessity can
be proved as in [1]. In fact, if E is bounded in Lp, 1 ≤ p < ∞, we can let
f = φ−1g, where g is any integrable step function. Then the boundedness of
E gives ∫

Ω

|Ẽ(φ|J )|−p|g|pdν ≤ Cp

∫
Ω

|g|p

|φ|p
dν ≤ CpCp

0

∫
Ω

|g|pdν,
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where, again, we used the boundedness of φ. Since g is arbitrary, we conclude
the bounds of Ẽ(φ|J ).
The case p = ∞ is similar.
Now we turn to the investigation of Clifford martingales. Let (Ω,F , ν) be a σ-
finite measure space endowed with a nondecreasing family {Fn}∞−∞ satisfying
(1.1) and (1.2). From the property (f), it is natural to assume

C−1
0 ≤ |Ẽ(φ|Fn)| ≤ C0, a.e.,∀n. (2.9)

Let f = (fn)∞−∞ be a R(d)-valued process. (fn)∞−∞ is said to be a l- or r-
martingale, if for E = E(l) or E = E(r), respectively,

fn = E(fn+1|Fn), a.e. (2.10)

For a martingale f = (fn) ( l- or r-), the maximal and the square functions
are defined by

f∗n = sup
k≤n

|fk|, f∗ = f∗∞, (2.11)

Sn(f) = (|f−∞|2 +
n∑
−∞

|∆kf |2)1/2, S(f) = S∞(f), (2.12)

where f−∞ = limn→−∞ fn pointwise.
f = (fn)∞−∞is said to be Lp-bounded, 1 ≤ p ≤ ∞, if

‖f‖p = sup
n
‖fn‖p < ∞. (2.13)

All the arguments in the sequel are the same for l- and r-martingales and we
use E to represent either E(l) or E(r). We want to show that the maximal
operator ∗ is of type p-p for 1 < p ≤ ∞, and weak type 1-1. Moreover, for the
case 1 < p ≤ ∞, every Lp-bounded martingale f = (fn)∞−∞ is generated by
some function f ∈ Lp(ν), i.e.

fn = E(f |Fn), ∀n. (2.14)

For 1 ≤ p ≤ ∞, all Lp-bounded martingales have pointwise limits limn→∞ fn

and limn→−∞ fn. We state these as propositions.

Proposition 2.1. Let 1 < p ≤ ∞. Then the maximal operator ∗ is of type p-p
and weak type 1-1. For 1 < p ≤ ∞, every Lp-bounded martingale f = (fn)∞−∞
is generated by some function f ∈ Lp(ν), with ‖f‖p ≈ supn ‖fn‖p.

Proof. Let f = (fn)∞−∞ be a martingale, say, for example, a left one. Then

fn = E(fn+1|Fn) = Ẽ(φ|Fn)−1Ẽ(φfn+1|Fn),
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fn = E(fn+2|Fn) = Ẽ(φ|Fn)−1Ẽ(φfn+2|Fn)
= Ẽ(φ|Fn)−1Ẽ(Ẽ(φfn+2|Fn+1)|Fn),

which means that

Ẽ(φfn+1|Fn) = Ẽ(Ẽ(φfn+2|Fn+1)|Fn),

i.e., (Ẽ(φfn+1|Fn))∞−∞ is a martingale with respect to (Ω,F , ν, {Fn}∞−∞). It is
also Lp-bounded, owing to the relation

Ẽ(φfn+1|Fn) = Ẽ(φ|Fn)fn,

which follows from the expression of fn in the beginning of the proof.
Furthermore, we have

sup
n
‖fn‖p ≈ sup

n
‖Ẽ(φfn+1|Fn)‖p,

f∗ ≈ sup
n
|Ẽ(φfn+1|Fn)|.

So ∗ is of type p-p and weak type 1-1 owing to the corresponding results in
the classical case. Now for 1 < p ≤ ∞, for any integer M > 0, decomposing
Ω = ∪Ωk,Ωk ∈ F−M , |Ωk| < ∞. Since for every k, (Ẽ(φfn+1|Fn)χΩk

)n≥−M is
a classical martingale, we can obtain some φf ∈ Lp(Ωk, ν) such that on Ωk

Ẽ(φfn+1|Fn) = Ẽ(φf |Fn), n ≥ −M.

Thus

fn = Ẽ(φ|Fn)−1Ẽ(φfn+1|Fn) = Ẽ(φ|Fn)−1Ẽ(φf |Fn) = E(f |Fn), n ≥ −M.

Letting M →∞, (2.14) follows. Furthermore, we have

‖fχΩk
‖p ≤ C sup

n
‖fnχΩk

‖p,

and
‖f‖p ≤ C sup

n
‖fn‖p.

In addition, supn ‖fn‖p ≤ C‖f‖p and so ‖f‖p ≈ supn ‖fn‖p. The proof of the
proposition is complete.
By virtue of the proposition we can identify a Lp-bounded martingale with the
function that generalizes the martingale in the sense of (2.14).
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Proposition 2.2. Let 1 ≤ p ≤ ∞, f = (fn)∞−∞ be a Lp-bounded martingale.
Then

lim
n→∞

fn = f, for 1 < p ≤ ∞, (2.15)

where f is the function specified in Prop 2.1 that generalizes (fn)∞−∞, and

lim
n→∞

fn exists, for p = 1, (2.15′)

lim
n→−∞

fn = 0, for 1 ≤ p < ∞. (2.15′′)

Proof. Let Ω = ∪Ωk,Ωk ∈ F0, |Ωk| < ∞,∀k. Then both (Ẽ(φ|Fn)χΩk
)n>0 and

(Ẽ(φfn+1|Fn)χΩk
)n>0 are Lp-bounded martingales with respect to (Ωk,F ∩

Ωk, {Fn ∩ Ωk}n≥0), and have their respective limits:

lim
n→∞

Ẽ(φ|Fn) = φ, a.e. on every Ωk,

lim
n→∞

Ẽ(φfn+1|Fn) = φg, a.e. for some g on every Ωk, and g = f if 1 < p ≤ ∞.

The last two limits conclude (2.15) and (2.15′). Now we prove (2.15′′). Denote
θ(ω) = limn→−∞|fn|. Then θ(ω) ≤ f∗(ω), and θ(ω) is ∩Fn measurable. This
concludes θ(ω) = a ≥ 0, a.e. By the weak type p-p of ∗, for 1 ≤ p < ∞, we
have

|{θ(ω) > λ}|ν ≤ |{f∗ > λ}|ν ≤ (
C

λ
‖f‖p)p, ∀λ > 0.

So, a = 0. This proves the assertion (2.15′′). The proof of the proposition is
complete.

Remark. In the classical case, for 1 < p < ∞, the assertion limn→−∞ fn = 0,
a.e., was proved in [3].

3. Φ-Equivalence Between S(f) and f∗

The proof of the Φ-equivalence will refer to the following result.

Theorem 3.1. There exists a constant C depending only on C0 in (2.9) such
that

C−1Ẽ(S(f)2|F0) ≤ Ẽ(|f |2|F0) ≤ CẼ(S(f)2|F0). (3.1)

For a proof we refer the reader to [4]. It is noted that in the inequalities of
the theorem and all the related ones in the sequel the associated constants
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depend only on C0 in (2.9), but not on {Fn}∞−∞, nor on the martingales under
consideration. Owing to this, for any integer M > 0, the estimates associated
with the family {Fn}n≥−M involve the same constants. Taking limit M →∞,
we conclude the case {Fn}∞−∞.
Let Φ be a nondecreasing and continuous function from IR+ to IR+ satisfying
Φ(0) = 0 and the moderate growth condition

Φ(2u) ≤ C1Φ(u), u > 0. (3.2)

We shall begin with establishing a Φ-equivalence between S(f) and f∗ for those
martingales f which are predictably dominated, in the sense

|∆nf | ≤ Dn−1, ∀n, (3.3)

where D = (Dn) is a nonnegative nondecreasing and adapted process to {Fn}.
Still, we need only to consider the case {Fn}n≥0 (In this case for any process
λ = (λn)n≥0, we add λ−1 = 0, so any f which satisfies (3.3) must satisfy
f0 = 0. This is not an essential restriction, of course).

Theorem 3.2. Let f = (fn)n≥0 be a l- or r-martingale satisfying (3.3). Then∫
Ω

Φ(S(f))dν ≤ C

∫
Ω

Φ(f∗ + D∞)dν, (3.4)

∫
Ω

Φ(f∗)dν ≤ C

∫
Ω

Φ(S(f) + D∞)dν, (3.4′)

where the involved constants depend only on C0, C1.

Proof. We shall use the stopping time argument and the good λ-inequality. Let
α be an arbitrary real number that is bigger than 1 and β > 0 to be determined
later and λ be any level. Notice that

|fn| ≤ |fn−1|+ |∆nf | ≤ f∗n−1 + Dn−1 = ρn−1.

Define the stopping time

τ = inf{n : ρn > βλ}

and the associated stopping martingale

f (τ) = (f (τ)
n )n≥0 = (fmin(n,τ))n≥0.
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Then we have

{τ < ∞} = {ρ∞ > βλ}, f (τ)∗ = sup
n
|fmin(n,τ)| ≤ f∗τ ≤ ρτ−1 ≤ βλ.

Now consider the adapted process (Sn(f (τ)))n≥0, and define the stopping time

T = inf{n : Sn(f (τ)) > λ}.

Then we have

{T < ∞} = {S(f (τ)) > λ}, ST−1(f (τ)) ≤ λ.

Thus, we have

{S(f) > αλ} ⊂ {τ < ∞} ∪ {τ = ∞, Sτ (f)2 > α2λ2}
⊂ {τ < ∞} ∪ {S(f (τ))2 − ST−1(f (τ))2 > (α2 − 1)λ2},

and

Ẽ (χ{S(f(τ))2−ST−1(f(τ))2>(α2−1)λ2}|FT )

≤ 1
(α2 − 1)λ2

Ẽ(S(f (τ))2 − ST−1(f (τ))2|FT ).

Now consider a new underlying space (Ω,F , ν, {Jn}n≥0) with Jn = FT+n, and
the martingale

g = (gn)n≥0 with gn = f
(τ)
T+n − f

(τ)
T−1.

Then we have

∆ng = f
(τ)
T+n − f

(τ)
T−1 − (f (τ)

T+n−1 − f
(τ)
T−1) = ∆T+nf (τ)

and

S(g)2 =
∞∑

n=0

|∆ng|2 =
∞∑

n=0

|∆T+nf (τ)|2 =
∞∑

k=T

|∆kf (τ)|2 = S(f (τ))2−ST−1(f (τ))2.

By invoking Th. 3.1, we obtain

Ẽ(S(f (τ))2 − ST−1(f (τ))2|FT ) = Ẽ(S(g)2|J0)
≤ CẼ(|g|2|J0)

= CẼ(|f (τ) − f
(τ)
T−1|

2|FT )

≤ Cβ2λ2.
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Now, since {S(f (τ) > αλ} ⊂ {T ≤ ∞}, we have

|{S(f (τ)) > αλ}|ν ≤
∫
{T<∞}

χ{S(f(τ))>αλ}dν

=
∫
{T<∞}

Ẽ(χ{S(f(τ))>αλ}|FT )dν

≤
∫
{T<∞}

Ẽ(χ{S(f(τ))2−ST−1(f(τ))2>(α2−1)λ2}|FT )dν

≤ Cβ2

α2 − 1
|{S(f (τ)) > λ}|ν ≤

Cβ2

α2 − 1
|{S(f) > λ}|ν ,

and hence

|{S(f) > αλ}|ν ≤ |{ρ∞ > βλ}|ν +
Cβ2

α2 − 1
|{S(f) > λ}|ν ,

which is the desired good λ-inequality for the couple (S(f), f∗ + D∞). The
one for the couple (f∗, S(f) + D∞) is similar. From them we obtain (3.4) and
(3.4′).
We can get rid of D∞ in the following two cases:
(i) Φ is convex;
(ii) (Ω,F , ν, {Fn}∞−∞) is regular in some sense. For simplicity, we only consider
the simplest regularity, i.e. the dyadic type one: each Fn is atomic whose atom
I(n) = I

(n+1)
1 + I

(n+1)
2 satisfies ||I(n+1)

1 |µ| = ||I(n+1)
2 |µ|. A little more general

regularity as in [5] is applicable to our case. We have

Theorem 3.3. Under the additional condition (i) on Φ or (ii) on
(Ω,F , ν, {Fn}∞−∞) we have∫

Ω

Φ(S(f))dν ≈
∫

Ω

Φ(f∗)dν,

where all the constants involved in the equivalence depend only on C0 and C1.

Proof. First consider {Fn}n≥0. Davis’ decomposition holds in such case: ev-
ery Clifford martingale f = (fn)n≥0 can be decomposed into a sum of two
martingales g = (gn)n≥0 and h = (hn)n≥0 satisfying

|∆ng| ≤ 4d∗n−1, d∗n = sup
k≤n

|dk|, dk = ∆kf, (3.5)

∫
Ω

Φ(
∞∑
0

|∆nh|)dν ≤ C

∫
Ω

Φ(d∗)dν, ∀ convex Φ. (3.6)
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(See [6] for the proof of the classical case.) Now for f = (fn)n≥0, we have∫
Ω

Φ(S(f))dν ≤ C

∫
Ω

Φ(S(g))dν + C

∫
Ω

Φ(S(h))dν

≤ C

∫
Ω

Φ(g∗) + C

∫
Ω

Φ(d∗) + C

∫
Ω

Φ(
∞∑
0

|∆nh|)dν

≤ C

∫
Ω

Φ(f∗)dν.

For its reciprocal the proof is similar.
Now consider the dyadic type case. We claim that in the case (3.3) holds for
every martingale f = (fn)∞−∞ for some suitably defined D = (Dn). In fact,

Dn−1|In−1 = sup
k≤n

max(|∆kf ||
I
(k)
1

, |∆kf ||
I
(k)
2

)

is a nonnegative, nondecreasing and adapted process such that

|∆nf | ≤ Dn−1,

and
D∞ ≤ C min(f∗, S(f)).

Only the last assertion needs to be verified. In fact,∫
I(k−1)

∆kfdµ = 0

implies ∫
I
(k)
1

∆kfdµ = −
∫

I
(k)
2

∆kfdµ.

This implies
∆kf |

I
(k)
1
|I(k)

1 |µ = −∆kf |
I
(k)
2
|I(k)

1 |µ,

or
|∆kf |

I
(k)
1
|

|∆kf |
I
(k)
2
|

=
||I(k)

2 |µ|
||I(k)

1 |µ|
.

Therefore, on I(k−1)

max(|∆kf ||
I
(k)
1

, |∆kf ||
I
(k)
2

) ≤ C|∆kf |,

and thus
D∞ ≤ C sup

k
|∆kf | ≤ C min(S(f), f∗).

The proof is complete.
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