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Abstract The operaton on the n-complex unit sphere under study have three forms: the singular integrals with holo- 
morphic kernels, the bounded and holomorphic Fourier multipliers, and the Cauchy-Dunford bounded and holomorphic 

functional calculus of the radial Dirac operator D = zk: ,zk $. The equivalence between the three f o m  and the 
I k  

strong-type ( p  , p )  , 1 < p < m , and weak-type (1 , 1)-boundedness of the operators is proved. The results generalise 
the work of L. K . Hua, A .  Kofinyli and S . Vagi , W. Rudin and S . Gong on the Cauchy-Szegi, kemel and the Cauchy 
singular integral operator. 

Keywords: singular integral, Fourier multiplier, the unit sphere in C" , lunetional calculus. 

The Cauchy-Szego kemel and integral formula, and the related singular integrals of several com- 

plex variables have been widely studied['-41 . On the unit sphere in Cn , however, there has been on- 

ly one singular integral, viz. the Cauchy singular integral, while in the other standard underlying 

spaces such as in Rn a far reaching singular integral theory has been developed[51. In this paper we 

study a class of singular integrals on the unit sphere. The class includes the Cauchy singular integral 

as a special case, and each of the operators in the class is similar to the Cauchy singular integral. 

The class of singular integrals forms an operator algebra, viz. the bounded and holomorphic 
a 

functional calculus of the radial Dirac operator D = xi=, q 6. It also has the form of bounded 
Zk 

and holomorphic Fourier multipliers. 

Analogous theories have been established in various contexts, including graphs og Lipschitz 

functions of one and several real variables, starlike Lipschitz curves in C, and starlike Lipschitz sur- 

faces in the quatesnionic space and in R ~ [ ~ - ~ ~ ~  . 

1 Generalisation of Cauchy-SzegB kernel 

x 
In the complex plane, set, for 0 < w < - , 

2 
S, = i t  E c I z + 0 ,  and I argz I < w } ,  

S,(x) = i z  E C I z +0, I Rez Ig x ,  and I arg(* z )  I < w } ,  

w,(K) = i z  E C I z + 0 ,  I Rez I s  x ,  and Im(z) > O }  U S,(x) ,  
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H, = ( z  E C I z = eiw, w E W,(x)}. 

The sets S, , S, ( x ) , W, ( x ) and H, are, respectively, cone-shaped , bow- tie-shaped , W-shaped 

and heart-shaped regions. 

The following function space is relevant: 

Hm(S,)  = { b: S, -+ G I b is holomorphic in S,, 

and I b ( z )  Is C, < i f z E S , , O <  p < w t .  

Let 

k. l 

The study of this paper is based on the following technical result[173 . 
The main lemma. Let b E H" ( S, ) . Then qb can be h~lomorphicall~ extended to H ,  , and 

1 
where 8 ( p ,  = rninIT, tan(pl - p ) } ;  C,. ore the constants in the definition for b E 

For the reader's convenience we outline the proof below. 

Proof (outline) . 
Step 1. Define 

1 
Y ( z )  = -J exp(izC)b( C)dC, r E V,, 

2= @ 
where 

V, = { z E  C I ~ m ( z )  > 0 1  U S ,  U ( - S , ) ,  

and p, is the ray r exp( i 8 ) , 0 < r < , where 8 is chosen so that pe c S, , and exp( izr ) is expo- 
nentially decaying as C+ = along pe . It is easy to verify that Y is well defined, independent of 

choice of p,, and holomorphic in V, , and 

Setp 2 .  Define 

where 

W, = V, n { z  E C I - x a  Re(z) n } .  

It is easy to show that + is holomorphically and 2x-periodcally defined in the described region, and, 

up to a constant bounded by e 1 6 I s #  11  , satisfies the estimate 

Letting p ( z ) = $ - , we obtain the desired inequality for 1 = 0 .  ( loLgZ) 
Step 3 .  We notice that at local z = 1 the set H, can be approximated by the cone of the open- 
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ing angle x + 2w pointing to the positive direction of the x-axis. This is justified by the relation e9 - 
1 = 7 ,  whereO- 1 E C. Thenforany point l = z E H ,  thedisc B ( z , r )  ofradius r = 6 ( a ,  /3) 
I 1 - z l centred at z is contained in Hg . Using Cauchy ' s  formula, we have 

Therefore, 

1 
wherewehaveused therelation 11- r ] I a I l - z l  - l z -  11 = 1 1 - z l  - rail-zl - -11 -21  2 

1 
= - I 1 - z I . The proof is complete. 

2 
Remark 1. Pointed out by D. Khavinson, this result belongs to the same seminal results of 

Leau , Le Roy and Lindelaf. He also gave a different approach of p ~ P 2 1 1  . 
From now on we will change notation and use z as a general element of en, i .  e .  z = (21, a * . ,  

- - - 
z,) , zi E C , i = 1 , 2 ,  , n , n 3 2 .  Denote z = [ zl , , zn 1. The theory for n = 1 on star- 

shaped Lipschitz curves is studied in ref. [16] . The notation z is considered to be a row vector. De- 
n 1 

note by B the open unit ball { z  E Cn I I z I < 11 , where I z I = ( =  I zi lZ)' ,  anda l l  its bound- 

ary, i . e .  a B  = { z  € Gn I I z I = 11. The open ball centred at z with radius r will be denoted by 

B ( z , r ) . A general element on the unit sphere is usually denoted by E or c. The constant 02, - 

2xn 
involved in the Cauchy-Szegi~ kernel below is the surface area of a B = s2"-' and is equal to - 

r ( n > .  

For z ,  w E Cn , we use the notation M I  = zkwk. The theory developed in this study is relevant 
k = l  

a 
to the radial Dirac operator D = 

4 G. k.1 

The following is a revision of basis functions in the space of holomorphic function in B and some 

relevant function spaces on a B . We adopt the settings of ref. [I]. Let k be a nonnegative integer. 

We consider the column vector zCk1 with components 

The dimension of z [ I is 

Set 

where dz is the Lebesgue volume element of IRZn = 6" , and d a ( E )  the Lebesgue area element of 

the unit sphere s2"-' = aB . It is easy to verify that both H! and @ are positive-definite Hermitian 
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matrices of order Nk . There, therefore, exists a matrix r such that 
- - r t * ~ i b r = ~ ,  r ' - ~ i * r = ~ ,  (2) 

where A = [ P  { , ... , pi] is a diagonal matrix and I the identity matrix. 

We will set 

Z [ k ]  = Z I k l  r ,  E I k ]  = E L k 1  r ,  
and denote by p ; ( z )  1 the components of the vectors Z [ ~ I  . From (2) ,  we have 

The following theorem is well knownL1] . 
Theorem A .  The system of functions 

(/?*)-ipf, k = 0 ,  1 , 2 ,  . . a ,  v = l , 2 ,  m e . ,  Nk 
is a complete orthonormal system in the space of holomorphic functions in B . The system p; ( 6 )  } is 
orthonormal , but not complete in the space of continuous functions on a B . 

The explicit formula of the Cauchy-Szego kernel 

on a B was first deduced in ref. [ 11 by using the system p: and the relation 

Our technical result is the following theorem. 

Theoreml. L e t b € H m ( S , )  and 
LO N. 

Then 
- 1 

H b ( z ,  E )  = (rn-I  F b ( r ) ) ( n - l )  1 r =  z ~ l  - 
( n  - l)!wZn-, 

( 7 )  

is holomorphically dejined for any z E B and E E a B such that z ? E H, , where qb is the&nction de- 
fined in the Main Lemma. Moreover, 

1 
where6( ,u ,  , u l )  = min{l-, tan(,ut - p ) ] ;  C,. are the constants in the &$nition of thefuMion 

space H" (S,) . 
Proof. Setting z = rC, 1 5 1 = 1 in formula (5), we obtain 

Treating H( r c ,  7) as a function of r , we assert that the entry of rk in its Taylor expansion is 
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Letting rC = z , we obtain that the projection of H( z , 7) onto the space of k- homogeneous functions 

in the variable z is equal to 

A direct computation together with the definition of F~ then gives the formula for Hb ( z , 7) . The esti- 

mates follow from The Main Lemma. 

Remark 2. In the previously studies in refs. [6-201 the size of w is crucial and is related to 

the Lipschitz constant of the curve or surface under study. In the present case the Lipschitz constant 

of the unit sphere is zero, and w can be taken to be any number in the interval ( 0 ,  q] . Throughout 

this paper we will assume that o is any number in (0, ;] but fired throught the discussion, and 

taking ,u = (1/2) w and p' = (3/4) w will be sufficient to developing our theory. 

2 Fourier multiplier and singular integral operators on a B 

For z , w B U a B denote by d ( z , w ) the nonisotropic distance between z and w , defined 
through 

- 
d ( z ,  W )  = I 1 - Z W '  I' '~. 

It can be easily shown that d is a metric on B u a B [ ~ ]  . The ball on a B centred at 5 with radius E 

using the metric d is denoted by S (r,  E) . The complement set of S ( 5, E ) in a B is denoted by 

S C ( 5 , e ) .  
Let f E LP ( a  B ) , 1 < p < 00 . Then the Cauchy integral off ,  

is well defined and holomorphic in B 

It is well known that operator 

p ( f ) ( C )  = lim C(f)(rC) 
r-1-0 

is the projection of LP ( a B ) onto the Hardy space HP ( 6' B ) and is bounded from LP ( a B ) to 

HP ( a  B )  , 1 < p < 00 '2931 . Moreover, P (  f )  has the singular integral 

Set 

-4 = 1 f I f is holomorphic in B(0 ,  1 + 6 )  for some 6 > 01 . 
It is easy to prove that .A is dense in LP(aB) ,  1 ~ p  < m . I f f€&,  then 

where ckv are the Fourier coefficients of f :  

and, for any positive integer I ,  the series 
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k . 0  " 1 0  

is uniformly and absolutely convergent in any compact ball contained in the ball B ( 0 ,  1 + 6)  in 
which f is defined. 

Denote by % the unitary group of C n  consisting of all unitary operators on the Hilbert space Cn 
- 

under the complex inner product ( z , w ) = z w' . These are the linear operators U that preserve inner 
products : 

( u z , u w )  = ( 2 , ~ ) .  

Clearly, 9% is a compact subset of 0 (2 n ) . It is easy to verify that A is invariant under U € %. If 
f € A, then f is determined by its values on a B . In below we treat f l a B  as identical to f € A. For 
a given function b € S, we define an operator Mb : JB  -+A by 

where ck, are the Fourier coefficients of the test function f E A. 
The result on principle value of the Cauchy integral defined using the surface metric d ( 7,  5 )  = 

I 1 - 7 1 can be extended to Theorem 2.  
Theorem 2. Operator Mb has a singular integral expression : for f A, 

~ ~ ( f ) ( C ) = ~ i m [ l  8-0 s ' ( ~ , E )  H b ( c , T ) f ( ~ ) d o ( ~ ) + f ( ~ ) j '  s(t;,r) ~ b ( f , ~ ) d r ( E ) ] ,  (11) 

where 

is a bounded function of 5E a B and E . 
Proof. Letf€.A,  p E ( 0 ,  1 ) .  Ononehand, 

where ck, are the Fourier coefficients of f .  From the boundedness of sequence ( b ( k ) 1 rS 1 and the 
observation made above on the convergence of the Fourier expansion off E we have 

lim Mb(f>(pT> = Mb(f)( 5 ) .  
p-1-0 

(12) 

On the other hand, using the formula for the Fourier coefficients and the definition of Hb ( z , 3 )  given 
by ( S ) ,  we have 

~ , ( f ) ( p c )  = I H ~ ( P S ,  T ) f ( ~ ) d o ( ~ ) .  
a B  

For any E > 0 ,  we have 

+ f (  5 )J  Hb(p5, T )da (E)  
S ( ~ , E )  

= I , ( p ,  E) + I z ( p ,  & )  + f ( 5 ) 1 3 ( p ,  E) .  

For p+ l  - 0 ,  we have 
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Now we consider 12(p , E ) . Since the metric d and the Euclidean metric I I and the function class 
A are all %-invariant, we can assume without loss of generality, that c = [ I ,  0, ..-, 01. We will 
adopt the pararneteric system El = reie, E2 = v2, a - -  , En = v, for the variable EE a B. We write v = 

[ v2, , v, 1 . The integral region S ( 5, E ) is defined by the conditions 
- 1 + r2 - e4 

uul = 1 - r2,  cose 2 
2 r  

1 + r2 - e4 
Now, since 4 

2 r  Q cose 1 ,  we have (1  - r ) 2 < ~  . SO 1 - r g e 2 ,  or 1 - e2<  r .  This 

- 
implies vv' = 1 - r2 Q 1 - ( 1  - E ' ) ~  = 2e2 - E ~ .  Denote a = a ( r ,  e )  = arccos 

Since (1  - r ) 2  Q E 4  and 1 - y = O ( a r c c ~ s ~ ( ~ ) ) ,  we obtain a = 0 ( e 2 ) .  
It is easy to verify that 

I 5 -  E l 2  = 1 1  - reis 1 2 +  (1 v2 1 2 +  + I  un 1') 

= (1 + r2 - 2rcos(B)) + (1  - r2)  
= 2 - 2rcos(O), 

d 4 ( 5 , E )  = I 1 - cr l 2  = 1 + rZ - 2rcos(e)  

= (2 - 2rcos(B)) - ( 1  - r2) 

= I 5 - E l 2  - (1  + r ) ( l  - r ) .  
Now, ( 14) implies 1 - r Q d2 ( 5,  E) . This, together with ( 15) , concludes that 

d 4 ( 5 ,  E) + (1  + r ) d 2 ( t ,  E) 3 I 1; - E 1 2 .  
Since d2( 5, E) is less than 2 ,  the last inequality implies 

I 5 -  E I <  2 d ( 5 , E ) .  
Note that for f E A we have 

I f ( c ) -  f ( ~ )  I S  c I 5 - € 1 ,  
therefore, 

I f ( c >  - f (E)  I < C d ( 5 ,  E). 
For any ,of (0 ,  l ) ,  owing to (13),  we have 

Now we estimate the inside integral. Proceeding as in ref. [ 4 ]  , for n = 2, the Htilder inequality 
gives 

In this case, 
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<C& - 0 ,  
as &+O. 

For n > 2 ,  we have, since r is close to 1 , 

and hence, 

as €-to. 
Now we prove that if p-1 - 0 ,  and then I3 ( p , e ) has a limit uniformly bounded for e near ze- 

ro. Integrating as before, we have 

1 ,ei* ( t"- lab(t))(n-l)  
= T J ~ , ~ ~ ~ - ~ ~ J ~ ~ . - ~ ~  t d tdv .  

Using integration by parts, the inside integral with respect to the variable t becomes 

n-1 

= x[~~(t)l::::a + L ( r ,  a ) .  
k = l  

We first estimate the integrals with integrand Jk. We have 

It can be directly verified that 

I 1 - p e l i a  12 I 1 - reiia 2 I =  & .  

So the above integral is dominated by 

which is bounded for k = 1 and tends to zero for k 3 2. The existence of the limit as p+l  - 0 is 

guaranteed by the Lebesgue dominated convergence theorem. 

Now, 
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Using Cauchy ' s theorem and the estimate of q b ,  we can show that for any ,o-1 - 0 this is a bounded 

function[16] . This implies that 

J - , ,L (p r ,  a ) d u - + 0 ,  
w'g2P - P  

as E-0. 
To sum up, we conclude that lim 1 3 ( p ,  e ) exists and is bounded for small E > 0.  This proves 

p-1-0 

Theorem 2.  

Remark 3. A consequence of (14) is 

d ( 5 ,  F )  6 1  T -  E 1'". 
This side of control of the metric d was not used in the proof. 

It is easy to see that Mb = MbP. The boundedness result of Kor6nyi and Vagi is extended to 

Theorem 3. 
Theorem 3. Operator Mb can be extended to a bounded operator from LP ( a  B ) to LP ( a  B ) , 1 

c p  c 0 0 ,  andfrom L ' ( ~ B )  to weak-L'(~B).  

Proof. The boundedness of Mb = M,P from L2(a B)  to ~ ' ( a  B)  is a consequence of the or- 

thonormality of system { J I ; ( ( )  } (Theorem A )  . We will show that the operator is bounded from L' 

( a B )  toweak- l l (aB) ,  i . e .  ofweak-type ( 1 , l ) .  The LP(aB)-boundedness, 1 < p < 2 ,  then will 
follow from the Marcinkiewicz interpolation theoremrS1 . The LP-boundedness for 2 < p < 00 is ob- 

tained from a standard duality argument using the property of the kernel : Hb ( 5,  2) = Hb ( E , J )  and 

the bilinear paring 

The weak-type ( 1 , l )  of Mb is based on a H6rmander type inequality. The proof presented below is 

different from that of the corresponding one for the Cauchy kernel given in ref. [3] . We will be using 

the non-tangential approaching region 

D = { c n l - I  1 I z I } '  C E  a B ,  a > 1. 

Lemmal. SupposethatE,c, v E J B ,  d ( ~ , 5 ) < 6 ,  d ( ( ,  ? ) > 2 6 ,  a n d z € ~ , ( ~ ) .  

Then 
- 1 

I Hb(.2, ?) - H b ( z ,  c )  I < 8Ca I 1 - (7 1-"-2. 

Proof. Owing to the estimate (see Theorem 1) 

and the mean value theorem, we have for some t (0, 1)  , the real part 

I R ~ ( S - ~ ~ ~ ( T ) ) ( " - ~ )  Ir=,a - ~ e ( r " - ' ~ ~ ( r ) ) ( ~ - ' )  I,.Q I 
- 

,I ( r n - l V ) b ( r ) ) ( n )  l r = j  I I (t€' - z f )  I 
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where w, = t ?  + (1  - t )?  € B .  
The imaginary part satisfies an analogous inequality. 

Denote by f t  the projection point of w, onto a B. We can easily show that 

( i )  I E , -  w, I =  1 - I  z, I = A ( t ) + O a s 6 + 0 ;  

(ii) E, E S ( E ,  6 )  n s ( c ,  6 ) .  
1 

It follows from the notation in ( i )  that E, = - A ( t )  w,  . Since D, ( 7 )  is an open set, for small 6 

> 0 ,  say O< 6<6,,, we have z ,= ( 1  - A ( t ) ) z E  ~ ~ ( 7 ) .  We write 
- - 

I 1  - zwr t  I =  I 1  - ztErt I .  (18) 

On the other hand, from (4) on page 92 of ref. [3] ,  we have 

and, from (93 ) on page 92 of ref. [ 3 ] , we have 

I 1  - ztFt I - '  < 16a I 1 - ~3 I-'. (20) 

The relations (18)-(20) then imply for 6 60,  that the last part of the inequality chain (17) is 

dominated by 

as desired. 

For 6 2 60,  on the right-hand side of the desired inequality, the part 
1 

8 11 - ~7 
has a positive lower bound depending on aO. It is then easy to choose C = C,, bo for which the iequal- 

ity holds. The Lemma is thus proved. 

The weak-type ( 1 , l )  is a special case of the more general Theorem 4. 
Theorem 4. To every a > 1 there exists a constant C, c 00 such that for any f € A and t > 0 ,  

there is 

a i MUM, (f) > t I 6 Cot-' II f ll ~ l ( a e ,  , 
where 

MaMb(f)(c) = sup{ I Mb(f)(z)  I : Z E D , ( C ) ~  

is defined to be the non-tangential muximum finetion of Mb (f) in region D, ( c ) . 
The proof of Theorem 4 is based on Lemma 1 and a covering lemmar3' . The proof in ref. [3] 

for the corresponding result for the Cauchy operator[31 can be adapted step by step to the present case. 

3 Bounded holomorphic functional calculus of the radial dirac operator 

We wish to point out that the class of the bounded operator Mb studied in section 2 constitutes an 

operator algebra that is, in fact, identical to the Cauchy-Dunford bounded holomorphic functional cal- 
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culus of DP,  where D is the radial Dirac operator and P is the projection operator from LP to HP . 
The operators Mb enjoy the following properties, and thus the class Mb, b E Hm (S,) , is 

called a bounded holomorphic functional calculus. 

Let b ,  b l ,  b2 E H m ( S w ) ,  a n d a l ,  a 2  E a, 1 < p < 00, 0 < p < w .  Then 

I M ,  I L ~ ~ E L ~ B  6 , I 6 I1 ~ ~ ( $ 1 ,  

MbIb2 = Mb, O Mb,, 

Malb1+a2b2 = ~ l ~ b ,  + ~ 2 ~ b ;  

The first assertion is obtained from Theorems 3. The second and the third are derived by using Taylor 

series expansions of the test functions. 

Denote by 

R(A,  DP)  = ( A I -  DP)-I,  

the resolvent operator of DP at 1 E C . For A @ [o,  00 ) we show that R (  A , DP) = M h .  In 

fact, owing to the relation 

where ck, are the Fourier coefficients off ,  the Fourier multiplier { h - k } is associated with the oper- 

ator AZ - DP , and therefore the Fourier multiplier { ( h - k ) -' 1 is associated with R ( h , DP) . The 

property of the functional calculus in relation to the boundedness then asserts that for 1 < p < a , 

Owing to this estimate, for b E H m  (S, ) with good decays at both zero and the infinity, the Cauchy- 

Dunford integral 

is well defined to be a bounded operator, where 11 is a path consisting of two rays in S, : { sexp(i8) : 

sisfrom 00 t o O / U { s e x p ( - i 8 ) :  s isfromot0 a t ,  O < B < w .  Thefunctions b ofthissortform 

a dense subclass of Hm (S, ) in the sense specified in the Convergence Lemma of McIntosh in ref. 

[22]. Using the lemma, we can extend the definition given by the Cauchy-Dunford integral and de- 

fine a functional calculus b ( DP ) on general functions b E H m  ( Sw ) . 
Now we show that b ( DP) = Mb . Assume again that b has good decays at both zero and the in- 

finity, and f € &. Then the change of order of integration and summation in the following chain of e- 

qualities can be justified, and we have 
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= Maf(C.1. 

It follows from the norm estimate of the resolvent R ( l  , DP) that DP is a type-w operator["' . The 

operator DP is identical to its dual operator on L~ (a B )  in the dual pair ( L2(a B) , LZ (a B) ) under 

the bilinear pairing used in the proof of Theorem 3. That is 

(DP(f), g) = (f ,  DP(g)), f ,  g € A .  
This can be easily derived from Parseval's identity .. N. 

deduced from the orthonormality of p,k 1 , where ck, and ci,, are Fourier coefficients off and g , re- 
spectively. 

1 
Similar conclusions hold for the Banach space dual pairs ( LP (a B ) , Lp' (a B ) ) , 1 < p < 00 , - 

P 
1 + 7 = 1 , under the same form of bilinear pairings. 
P 

Hilbert and Banach space properties of general type-w operators are well studied, respectively, 

in refs. [22, 231 . The results of refs. [22, 231 can be verified to be valid for the operator DP with- 

out difficulty. 
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