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Abstract The operators on the n-complex unit sphere under study have three forms: the singular integrals with holo-
morphic kernels, the bounded and holomorphic Fourier multipliers, and the Cauchy-Dunford bounded and holomorphic

functional calculus of the radial Dirac operator D = 2,’ gD 532— The equivalence between the three forms and the
= &

strong-type (p, p), 1< p < ©, and weak-type (1,1)-boundedness of the operators is proved. The results generalise
the work of L. K. Hua, A. Korényli and S. Vagi, W. Rudin and S. Gong on the Cauchy-Szegs kemel and the Cauchy
singular integral operator.
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The Cauchy-Szego kernel and integral formula, and the related singular integrals of several com-
plex variables have been widely studied!"™). On the unit sphere in C", however, there has been on-
ly one singular integral, viz. the Cauchy singular integral, while in the other standard underlying
spaces such as in R" a far reaching singular integral theory has been developed!> . In this paper we
study a class of singular integrals on the unit sphere. The class includes the Cauchy singular integral
as a special case, and each of the operators in the class is similar to the Cauchy singular integral .

The class of singular integrals forms an operator algebra, viz. the bounded and holomorphic

n

o1k ai It also has the form of bounded

functional caleulus of the radial Dirac operator D = 2
and holomorphic Fourier multipliers .
Analogous theories have been established in various contexts, including graphs og Lipschitz

functions of one and several real variables, starlike Lipschitz curves in €, and starlike Lipschiiz sur-
faces in the quatesnionic space and in R*(6~2],

1 Generalisation of Cauchy-Szegé kernel
x
2 1
S, =1z2z€Clz%0, and | argz | < w},
Sy(n) ={2z€Clzx0, | Rezlgn, and | arg( 2) | < w},
W,(n) =1{z€ Clzx%0, | Rezlg m, and Im(z) > 0} U S, (n),

In the complex plane, set, for O w <
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H,=1{z€Clz=¢", w€ W, (n)}.
The sets S,,, S,(n), W,(x) and H, are, respectively, cone-shaped, bow-tie-shaped, W-shaped
and heart-shaped regions.
The following function space is relevant:
H>(S,) =1b: S, = C | b is holomorphic in S,
and | b (2) I < C, < »ifz€8,,0< u < wl.

o (2) = SVb(k).

k=1l
The study of this paper is based on the following technical result!!?: 18],
The main lemma. Let b€ H”(S,). Then ¢, can be holomorphically extended to H,, and
d\! C,l!
‘(Zdz)q"b(") S S (u, ') 11—z 11D
1=0,1,2, -, (1)

z€H,, 0<pu<yp <o,

where 8 (p, ') = min{%, tan( g’ - ;z)}; C, are the constants in the definition for b €
H>(S,).

For the reader’s convenience we outline the proof below .
Proof (outline) .
Step 1. Define

v(z) = %Jpeexp(izg)b(t)dg, z€V,,

where
V, = {z€ ClIm(z) >0t US, U (-8,),
and py is the ray rexp(if), 0< r < ®, where 6 is chosen so that o, C S, , and exp(iz{) is expo-
nentially decaying as {— ® along p,. It is easy to verify that ¥ is well defined, independent of
choice of py, and holomorphic in V,, and
| ‘P'(z) i < M,
bz |

Setp 2.  Define

z€V,, 0<ac<f< o

o(z) = 21’(2 V(z +2n%), z EHQ“(Znn +W,),

n= -

where

W, =V,N{z€ Cl-=n< Re(z) < =nl}.
It is easy to show that ¢ is holomorphically and 2=-periodeally defined in the described region, and,
up to a consiant bounded by ¢ || & IS‘9 | , satisfies the estimate

Coll bis, I w

o(2) 1< [z | '

z€W,, 0<ac<f<o.
logz

Letting ¢ (z) = ¢ -—~—) , we obtain the desired inequality for [ = 0.
[

Step 3. We notice that at local z =1 the set H,, can be approximated by the cone of the open-
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ing angle m + 2w pointing to the positive direction of the x-axis. This is justified by the relation 7 —
1~ 7, where 0 ~ 5 € C. Then for any point 1 ~ z€ H, the disc B(z,r) of radius r = §(a, )
I1- z| centred at z is contained in Hy. Using Cauchy’s formula, we have

goS,”(z) — I_'J __S’i(_l)_d

= 27(i IB(z, ’)(1]—2)1+l ’7
Therefore,
x Coll b ls | Collbis Il 1!
n o S 1=1 0 S =
Lo (a) I= o 1-7l ridesa(a,ﬂ)lu_zl‘”’
wherewehaveusedtherelationIl-qlall—zl—|z—1]|=|1—z|-—r;|1—z|—l|1—z|

2
= -;—Il - z1. The proof is complete.

Remark 1. Pointed out by D. Khavinson, this result belongs to the same seminal results of
Leau, Le Roy and Lindeléf. He also gave a different approach of proofi?!] |

From now on we will change notation and use z as a general element of C*, i.e. z = (z;, ***,
z,), %€C, i=1,2, *, n, n=2. Denote z = [_z_l, »s+, z,]. The theory for n =1 on star-

shaped Lipschitz curves is studied in ref. [16]. The notation z is considered to be a row vector. De-
n 1

note by B the open unit ball {z € C" ||z | < 1}, where | z 1 = ( E | z I2)2, and J B its bound-
i=1

ary, i.e. 3B = {2 € C" || z | = 1}. The open ball centred at z with radius r will be denoted by

B(z, r). A general element on the unit sphere is usually denoted by & or {. The constant w,, _,
n
involved in the Cauchy-Szegd kernel below is the surface area of B = $%"~! and is equal to 2"

I'(n)’
For z, w € €", we use the notation zu' = Z 2wy, . The theory developed in this study is relevant
k=1

3
dz;’

The following is a revision of basis functions in the space of holomorphic function in B and some

to the radial Dirac operator D = 2 2z
k=1

relevant function spaces on 3 B. We adopt the settings of ref. [1]. Let k be a nonnegative integer.

We consider the column vector z'*! with components

!
/E—'!—_k“'—k'z’{!'“zf‘l», Ey+ -+ k, = k.

1
N, = Hn(n + 1) (n+k-1)=Ck,..

The dimension of z'*! is

Set
J PLL LRI PR HE,
B

J E[k]’ . E["]da(G) = Hli’
2B

where dz is the Lebesgue volume element of R?* = C" , and do(£) the Lebesgue area element of
the unit sphere S>"~! = 3B . It is easy to verify that both H% and H are positive-definite Hermitian
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matrices of order N, . There, therefore, exists a matrix I" such that
T -H-T"=A, T"-H-T =1, (2)
where A = [B%, -+, B%]is a diagonal matrix and I the identity matrix.
We will set
Z[k] = A, €ia1 = g . r,
and denote by | p,’f(z)} the components of the vectors z(;] . From (2), we have

JBpf(z) pi(z)dz = 3, « &, * B!, 3)

Lﬂpf(f) p.(§)do(&) = 3, « dy. (4)

The following theorem is well known'!’

Theorem A. The system of functions
1
(,Bf)_ip;’f’ k=0’ 1’ 2’ "'91'/:13 2, "ty Nk
is a complete orthonormal system in the space of holomorphic functions in B. The system {p*(£)} is

orthonormal , but not complete in the space of continuous functions on 3B,
The explicit formula of the Cauchy-Szegs kernel

- 1 1
H(z, = = 5
= s (s)
on 3B was first deduced in ref. [1] by using the system {p’| and the relation
@ N,
H(z, §) = 2 > pk(2) pl(€), 2 € B, £ € 3B,
k=0 v=1
Our technical result is the following theorem.
Theorem 1. Let b€ H*(S,) and
Hy(z, &) = 2;b(k) 2 pi(2) pi(§), z€ B, ¢ € 3B. (6)
k=1 v=1
Then
= S S (n-1) —
Hy(z, §) = (n - 1)!w2n_1(r 1§0b(r)) lre:? (7

is holomorphically defined for any z€ B and & € 9 B such that z & € H,, where @, is the function de-
Jfined in the Main Lemma. Moreover ,
C,l!
Sy ') 11— 28 ™Y
1=0,1,2, -, (8)
where 3(p, p') = min{%—, tan( p' - ,a)}; C, are the constants in the definition of the function
space H* (S,).
Proof. Setting z=r{, £l =1 in formula (5), we obtain
1 1

| D!H,(z, &) I < ZE—'GH,,, O< pu<y <o,

H(rt, &) = —, 9
(rt. &) @1 (1 - 15 €)D"
Treating H (r¢, &) as a function of r, we assert that the eniry of r* in its Taylor expansion is
Li"( 1 1 ) p 1 nn+D(n+b-1),
k!(a,) Wiy (1= rLE)" |, or* = - A (rgg)k (10)
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Letting r¢ = z, we obtain that the projection of H(z, £) onto the space of k-homogeneous functions
in the variable z is equal to
> 1 nn+D(n+k-1)
TSY nin+l)"(n+#s- raY
v Py = Z .
2 ppi(E) = — Y ()

A direct computation together with the definition of ¢, then gives the formula for H,(z, €) . The esti-
mates follow from The Main Lemma.

Remark 2. In the previously studies in refs. [6—20] the size of w is crucial and is related to

the Lipschitz constant of the curve or surface under study. In the present case the Lipschiiz constant

of the unit sphere is zero, and @ can be taken to be any number in the interval (0, %] . Throughout

this paper we will assume that w is any number in (0, g—] but fixed throught the discussion, and

taking ¢ = (1/2) w and g’ = (3/4) w will be sufficient to developing our theory.
2 Fourier multiplier and singular integral operators on 3 B

For z, w& BUJB denote by d(z, w) the nonisotropic distance between z and w, defined

through
d(z, w) =11-zw |2

It can be easily shown that d is a metric on BU3 B!, The ball on 3B centred at { with radius €
using the metric d is denoted by S(%, ¢). The complement set of S({, €) in d B is denoted by
S5°(¢,e).

Let f€ [?(@B), 1< p < . Then the Cauchy integral of £,

1 f(&)

C z2) = — d ’
O R M 0

is well defined and holomorphic in B.

It is well known that operator
P(NH(Y) = ,l-if{loC(f)(rC)
is the projection of L? (3 B) onto the Hardy space H? (9 B) and is bounded from I? (3 B) to
H(3B), 1< p < » 23 Moreover, P(f) has the singular integral expression'*"*’

L £(8)
P(A)(E) = lLu@GT??F

do (&) + %f(t) a.e. { € 3B.

W,y 0
Set

A = {f | fis holomorphic in B(0, 1 + &) for some 8 > O}.
It is easy to prove that . is dense in [?(dB), l<p < ». If f€ 4, then

f(z) = i chvpf(z),

k=0 v=0
where ¢, are the Fourier coefficients of f:

e = | B8,
aB

and, for any positive integer [, the series
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- ,
PILDITN AC)

is uniformly and absolutely convergent in any compact ball contained in the ball B (0, 1+8) in

which f is defined.

Denote by % the unitary group of C* consisting of all unitary operators on the Hilbert space C"
under the complex inner product {z,w) = zw' . These are the linear operators U that preserve inner
products :

(Uz, Uw) = {z,w).
Clearly, % is a compact subset of 0(2n). It is easy to verify that % is invariant under UE %. If
f€ A, then f is determined by its values on d B. In below we treat f|,5 as identical to f€ 4. For
a given function b€ S, we define an operator M, : & —>_4 by

M) = Db D euph(D), ¢ € 2B,

k=1 v=0
where c;, are the Fourier coefficients of the test function f€ 4.

The result on principle value of the Cauchy integral defined using the surface metric d( 75, {) =
I1- ¢ 1" can be extended to Theorem 2.
Theorem 2. Operator M, has a singular integral expression : for f€ 4,

M@ = timl [ B DAOWG@ 1O B DE®], )
where
J oo B Da(O)

is a bounded function of {€ 9B and .
Proof. Let f€ A4, p€(0, 1). On one hand,

M, (o8) = S50 S st (08,

where c,, are the Fourier coefficients of f. From the boundedness of sequence {5(k)} ., and the
observation made above on the convergence of the Fourier expansion of f€ .4 we have
PljgoMb(f)(pC) = M(NH(L). (12)
On the other hand, using the formula for the Fourier coefficients and the definition of H,(z, &) given
by (5), we have
MDD = [ HCpt, DA,

For any € > 0, we have

M Gp = | (L DA + js(c H (68, DCE) - £(£))da(e)

s,

FAOf et Ddo(e)

s(z.
=1,(p, €) + L(p, €) + f() I:(p, €).

For p—>1 -0, we have

o) = [ B DAOL(.
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Now we consider 12(p , €). Since the metric d and the Euclidean metric | * | and the function class
% are all Z-invariant, we can assume without loss of generality, that { =[1, 0, *--, 0]. We will
adopt the parameteric system &, = re?, &, = vy, ***, &, = v, for the variable £€ 3 B. We write v =
[vy, ***s v,]. The integral region S(¢, €) is defined by the conditions

_ 2 _ 4
v’ =1-17r%, cosf = L-L—e— (13)
2r
. 1+T2—€4 2 4 2 2 .
Now, since ———— < cosf < 1, we have (1 -r)?><e®. Sol-r<e®, or1 -e’<r. This
SINRYT ") 2 232 2 _4 1+r2-¢*
implies vv' = 1-r*<1-(1-¢2)?=2e>-¢*. Denotea = a(r, €) = arccos — )
Since (1 - r)? < etand1 - y = O(arccosz(y)), we obtain ¢ = 0(e?).
It is easy to verify that
LE-612=11=re 124 (1o 124 410,17
=(1+ 7>~ 2rcos(8)) + (1 - r?)
=2 ~2rcos(8), (14)

d*(¢,8) =11 -¢& 12 =1+ r*-2rcos(8)
=(2 = 2rcos(8)) - (1 = %)
=1 ¢-6PP-(1+rA=~-r). (15)
Now, (14) implies 1 ~ r < d2(§, ). This, together with (15), concludes that
(g, &)+ 1+ r)d* (L, &) =1 8- ¢1%
Since d2( ¢, &) is less than 2, the last inequality implies
1 ¢ - &1<2d(L,8). (16)
Note that for f€ # we have
LA -f(&)I<sClE-¢1,
therefore,,

| () - f(6) 1< Cd(§, §).
For any p€ (0, 1), owing to (13), we have

ey o) 1] U HGRE B 1A - £(5) 1 da(E)

§e

1
CJS(;») (g, E)da(e)

¢ 1
< CJ‘W—"<2EZ—E4‘[—G 1 - reit9 |n_(1/2)d0dv'

Now we estimate the inside integral. Proceeding as in ref. [4], for n =2, the Holder inequality

a a 3/4
1 1 5dé s(“l—j ! dﬂ)

2a —a | 1 - rei@ |2—(1/2 2a —a | 1~ rei0 IZ
lJ‘x 1 )3/4
| ————F—df
s(2a =1 1= re|?

1 3/4 1
$(2_a) (1 - 2y

gives

In this case,
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1
l I2(p5 e) ls CJ‘”"—'<221_EAGI/4 (1 _ r2)3/4dv
1
2 —_——
< Ce'/ IJ‘Zez—e‘ (v 1;T)s/-sd”

/ 2 4
1/2J. 2e -¢ t

< Ce ~-dt
= 0 t3/2
< C — 0,

as e>0.

For n > 2, we have, since r is close to 1,

a 1 1 = 1
J_a [ 1 - re® |n-(1/2)d‘9 <C (- rz)n-z_(vz)J_“ 11— re |2d6
1

<C (1 - r2)n—1—-(l/2) ’
and hence,
v 2:2-5‘ 1
| hee) 1 ef) T e o < Ge -0,
0
as e—>0.

Now we prove that if p—>1 -0, and then I3(p, €) has a limit uniformly bounded for ¢ near ze-
ro. Integrating as before, we have

o) = [ Bt Do (®)

=I_ , .r (et (e)) V1, _ 2 od6dy
w2 -V ~-a

1 [ o)
w—’skz—e‘

1

dtdy.

~ia t
pre
Using integration by parts, the inside integral with respect to the variable ¢ becomes

a-l n- (n=1-k) qpre" o
[;l(k—l)!(t 1%(:,,)) k] __.+(n_1)!r' "i(t'—)dt

i -ie

pre pre
n-1 .
= D Ln(les + L(r, a).
k=1
We first estimate the integrals with integrand J,. We have

i 1
J,Coret*)dv < CJ - dv.
»[w75252-54 s = w—'sZEZ-E‘ ' 1 - pre*‘“ I"-k
It can be directly verified that
|1 - pre*® I=11- re*®|= ¢
So the above integral is dominated by
1 1 Ve 2n-2
2 th . Jdv s 2n-2kJ "%t < C _e___2 25
e ) e € 0 g“"

which is bounded for £ = 1 and tends to zero for k =2. The existence of the limit as p—>1 -0 is
guaranteed by the Lebesgue dominated convergence theorem.
Now,
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(n _ 1)!JPrem¢L(tj.2dt = (n - 1)!1 iago,,(t) |¢=premda'

pre
Using Cauchy’ s theorem and the estimate of ¢, , we can show that for any p—>1 — 0 this is a bounded

[16]

function'*® . This implies that

J_ , L(or, a)dv—>0,
w <2 -¢

as €e—>0.

To sum up, we conclude that Plj{r_loh(p » €) exists and is bounded for small € >0. This proves
Theorem 2.

Remark 3. A consequence of (14) is

a(g, &) <l ¢t -8
This side of control of the metric d was not used in the proof.

It is easy to see that M, = M,P. The boundedness result of Koranyi and Vagi is extended to
Theorem 3.

Theorem 3.  Operator M, can be extended to a bounded operator from L?(dB) to I?(3B), 1
<p< », and from L'(3B) to weak-L'(3B).

Proof. The boundedness of M, = M,P from L?(3B) to H>*(9B) is a consequence of the or-
thonormality of system {p*(&)} (Theorem A). We will show that the operator is bounded from L'
(9B) to weak-L'(9B), i.e. of weak-type (1,1). The I” (9 B)-boundedness, 1 < p <2, then will
follow from the Marcinkiewicz interpolation theorem'>!. The L”-boundedness for 2 < p < ® is ob-
tained from a standard duality argument using the property of the kemnel: H,(¢, &) = Hy(£&, ¢) and
the bilinear paring

(f 8) = | f(0) E0do(E),

The weak-type (1,1) of M, is based on a Hérmander type inequality. The proof presented below is
different from that of the corresponding one for the Cauchy kernel given in ref. [3]. We will be using
the non-tangential approaching region

Da(§)={ZGC"Ill—z§_’I<%(1—IzI2)}, ¢ € 3B, a>1.

Lemma 1. Suppose that £,{, 7€3dB, d(£,5) <8, d(§, 9)>28, and 2€ D, (7).
Then

| By(z, &) - By(z, T) 1< 8C, 1 1 = €7 171,
Proof. Owing to the estimate (see Theorem 1)
C.,
11— r ™
and the mean value theorem, we have for some t € (0, 1), the real part
| Re(r" 1o, (r)) V1, .5 - Re(r" g (r))* V1, 7 |
<! (g (r)™ lroar 11 (z& - z¢) |

sc“’l(zg—jjfﬂ)l, an

11 - zw

| (rn-l%(r))(n) |l <
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where w, = t& + (1 -¢)¢ € B.
The imaginary part satisfies an analogous inequality .
Denote by &, the projection point of w, onto 3 B. We can easily show that
(D1&-wl=1-1z1=A(t)>0asd—>0;
(ii) & € S(¢&, &) N S(¢, 8).
1

It follows from the notation in (i) that &, = mwp Since D, ( 1]) is an open set, for small &
>0, say 0< 8 <&, we have z, = (1 - A(1))z€ D,,('r;). We write

11-zw,1=11-28,1. (18)
On the other hand, from (4) on page 92 of ref. [3], we have

7oL 1 = r
IzE—z§|=l—_“mlz,E—z,§|
1 — — — —
sm(lz,é’-z,E’,I+Iz,§’—z,$’,I)
6 —_
smaﬂl/z | 1 - z‘ slt Il/2
$ sca ‘ 1 -z ng Il/z ] (19)

and, from (93) on page 92 of ref. [3], we have

11-z8 1 < 16al1-¢67 |74 (20)
The relations (18)—(20) then imply for 8 < 8, that the last part of the inequality chain (17) is
dominated by

8C, 11 - &7 1773,
as desired.

For 8 = 8, on the right-hand side of the desired inequality, the part
1

oll1-¢&q 172
has a positive lower bound depending on 8. It is then easy to choose C = C,, 5, for which the iequal-
ity holds. The Lemma is thus proved.

The weak-type (1,1) is a special case of the more general Theorem 4.

Theorem 4. 7o every a > 1 there exists a constant C, < ® such that for any f€ 4 and 1 >0,
there is

O'{M,,Mb(f) > t} < Cat_l I f” L'(3B)
where
MM, () = suptl M,(f)(z) I: z € D,({}

is defined to be the non-tangential maximum function of M,(f) in region D,({).

The proof of Theorem 4 is based on Lemma 1 and a covering lemma'® 51 The proof in ref. [3]
for the corresponding result for the Cauchy operator[3] can be adapted step by step to the present case.

3 Bounded holomorphic functional calculus of the radial dirac operator

We wish to point out that the class of the bounded operator M, studied in section 2 constitutes an
operator algebra that is, in fact, identical to the Cauchy-Dunford bounded holomorphic functional cal-
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culus of DP, where D is the radial Dirac operator and P is the projection operator from IF to HP.
The operators M, enjoy the following properties, and thus the class M,, b € H"(S,) , is
called a bounded holomorphic functional calculus.
Letb, by, b € H*(S,),and ey, 2, € C, 1 < p < ©,0 < ¢ < w. Then
| My |l pamy—rromy < Cp, .l Bl L°(s) >
M, = Mbl ¢ sz’

M, b 4ap, = 1My + asM; .
The first assertion is obtained from Theorems 3. The second and the third are derived by using Taylor
series expansions of the test functions.
Denote by
R(A, DP) = (Al - DP)7!,

the resolvent operator of DP at A € C . For A ¢ [0, %) we show that R(A, DP) = Mﬁ'.j' In

fact, owing to the relation

w N,
DP()(E) = 21k 2jeupl(t) [fE 4,
k=1 =1
where c,, are the Fourier coefficients of f, the Fourier multiplier {A ~ k| is associated with the oper-
ator AI - DP, and therefore the Fourier multiplier { (A ~ k) '} is associated with R(A, DP). The

properiy of the functional calculus in relation to the boundedness then asseris that for 1 < p < @,

G
LA’
Owing to this estimate, for 5 & H” (S, ) with good decays at both zero and the infinity, the Cauchy-

| RCA, DP) || poapy~rram) < Ags,.

Dunford integral
1
b(DP)f = meﬂb(a)k(z, DP)daf

is well defined to be a bounded operator, where IT is a path consisting of two rays in S, : {sexp(if):
s is from ® 10 0} U {sexp( -i0): s isfromOto ® |, 0< 8 < w. The functions b of this sort form
a dense subclass of H” (S, ) in the sense specified in the Convergence Lemma of McIntosh in ref.
[22]. Using the lemma, we can extend the definition given by the Cauchy-Dunford integral and de-
fine a functional calculus 5( DP) on general functions b€ H* (S,).

Now we show that 5( DP) = M,. Assume again that b has good decays at both zero and the in-
finity, and f€ 4. Then the change of order of integration and summation in the following chain of e-

qualities can be justified, and we have

b(DP)f(¥) =2+djub(,1)R(A, DP)daf(t)
=ﬁfu”(“i(" - )Y cupt(§)da

- i}(zlnifﬂb(x)(/\ - b1z 3 euph(©)

k=1 v=1l
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= ib(k)i}ck,pf(w

k=1 vel
=M, f(L).
It follows from the norm estimate of the resolvent R(A, DP) that DP is a type-w operatorm] . The
operator DP is identical to its dual operator on L2(3B) in the dual pair (L2(3B), L*(9B)) under
the bilinear pairing used in the proof of Theorem 3. That is
(DP(f), g) = (f, DP(g)), f, g € 4.

This can be easily derived from Parseval’s identity

St = [ K0 Do),

k=0 v=1
deduced from the orthonormality of { p¥}, where ¢, and c',, are Fourier coefficients of f and g, re-
spectively .

Similar conclusions hold for the Banach space dual pairs (I7(3B), I#(3B)), 1<p< =, %

+ ;}1—, =1, under the same form of bilinear pairings.

Hilbert and Banach space properties of general type-w operators are well studied, respectively,
in refs. [22, 23]. The results of refs. [22, 23] can be verified to be valid for the operator DP with-
out difficulty.
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