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In this note we prove that the Poisson kernel given in [5] satis"es the basic properties of the usual Poisson
kernel. We further obtain solutions of the associated Dirichlet problem with C (Sn~1)-boundary value
functions for the degenerate elliptic equation extending the work in [4}6]. Copyright ( 2000 John Wiley
& Sons, Ltd.

1. Introduction

In this paper we study the properties of the Poisson kernel for the degenerate
elliptic equation
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where q('2)3R is an arbitrary real number, and x"(x
1
,2 , x

n
)3Rn. Equation (1)

is elliptic inside and outside the unit sphere. The degenerate surface of equation (1) is
the unit sphere Sn~1"Mx3Rn: Dx D"1N.

First, we explain the background of equation (1). The equation

(1!Dx D2)n
n
+
i/1

R
Rx

i
C(1!Dx D2)2~n

R;
Rx

i
D"0 (2)

is known as Laplace}Beltrami equation [2, 3]. The Poisson kernel P(x, v) of equation
(2) is
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where x3Rn, v3Sn~1, and the argument x ) v is the inner product of x and v.



The solution of the Dirichlet problem inside the unit sphere for equation (2) is given
by the Poisson formula (see [3])
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where u
n
"DSn~1 D is the area of the unit sphere in Rn and dv the area element on the

unit sphere. Equation (2) can be rewritten as
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Replacing the constant 2(n!2) by an arbitrary real number q in the last equation, we
obtain (1). Thus equation (1) is a generalization of equation (2).

We provide a brief introduction to the geometric background of equation (2). It is
known [2, 3] that equation (2) is in the real form of the simplest classical domain, viz.
the n-dimensional unit ball, admitting a transitive group generated by rotations and
non-Euclidean translations given by the real form n-dimensional MoK bius transforma-
tions (5). Equation (2) is invariant not only under transformations of the transitive
group, but also under re#ections about the unit sphere.

The real form n-dimensional MoK bius transformations are (see [3])
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I is the unit matrix and a"(a
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It can be veri"ed that transformation (5) transforms the open unit ball MDx D(1N
onto the open unit ball MDy D(1N, the unit sphere MDx D"1N onto the unit sphere
MDy D"1N, and the point x"a3MDx D(1N to the zero point y"0. For n"2, we may
write w"y
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). Transformation (5) then reduces to
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which is just the usual MoK bius transformation in the setting of one complex variable.
Owing to the re#ection invariant property the solutions of (2) enjoy the symmetric

principle and so we can extend solutions inside the unit ball to solutions outside the
unit ball with the same boundary values (see [4]).

In the case n"2 Equation (2) reduces to the two-dimensional Laplace equation
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which is invariant under the transformations of the transitive group, as well as
re#ections about the unit circle. On the other hand, we note that the usual
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n-dimensional Laplace equation
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in the case of n'2 does not possess the transformation invariant properties as
the two-dimensional Laplacian does. For instance, the form of the n-dimensional
Laplacian changes under the re#ections. In this sense equation (2) is a more natural
generalization of the two-dimensional Laplacian.

It is well known that in the unit ball di!erent Poisson kernels give rise to solutions
of Dirichlet problems associated with di!erent Laplace and Laplace}Boltrami
equations.

In the standard cases such as the kernel (3) and that of the usual Laplacian (see
[3, 9]) one can easily show that the Poisson kernels P (x, v)"P (ou, v) satisfy the
d-function properties, i.e. the following three properties: For Du D"Dv D"1, 0)o(1,

(i) P(ou, v)'0;
(ii) :Sn~1 P (ou, v) dv"1; and
(iii) For any d3 (0, 1), limo?1~0

:
:u,v;:1~d

P (ou, v) dv"0, uniformly for u3Sn~1.

The standard approach (e.g. see [1, 9]) to solve a Dirichlet problem is thus of the
pattern: "rst we prove properties (i)}(iii) using the explicit expression of the Poisson
kernel and then obtain solutions.

The Poisson kernel that we used to obtain the solution to the Dirichlet problem
associated with the degenerate elliptic equation (1) is of the form: P (x, v)"P(ou, v),
Du D"Dv D"1, 0)o(1, and
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with a#b"1!k!(n#q)/2 and ab"(q/4)(k#n!2) (so a, b3R, aOb),
F (a, b, c; z) is the hypergeometric function and
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is the Gegenbauer polynomial of degree k associated with k (where k is an integer,
[k/2] is the greatest integer less than or equal to k/2). Our kernel function P (ou, v)
does not seem to have an explicit expression in simple functions. What we want to
show in this note is: in spite of the in"nite series form of the kernel, we can still manage
to prove properties (i)}(iii), and, as applications, obtain solutions for continuous
boundary value functions which is not included in the results of [4}6]. The pattern of
our approach is in the opposite order: "rst we obtain solutions for very smooth
boundary value functions, then, by virtue of this but not of the kernel expression, we
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prove properties (i)}(iii), and then further obtain solutions for continuous boundary
value functions.

The writing plan is as follows. In section 2 we prove Theorem 1 giving solutions to
equation (1) for C4n(Sn~1)-boundary value functions. The theorem is a particular case
of a more general result proved in [5]. The proof given in this paper does not rely on
the Sobolev spaces theory and the self-adjoint operator theory in Hilbert spaces.
Section 3 is devoted to proving properties (i)}(iii) of the kernel (6). As applications of
properties (i)}(iii), we give solutions to equation (1) for continuous boundary value
functions.

2. Solutions for C4n(Sn~1)-boundary value functions

Theorem 1. For f3C4n(Sn~1) the potential formula
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u
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P(x, v) f (v) dv

with the kernel function (6) gives the solution to the equation (1) with the boundary value
f, in the sense

lim
o?1~0

;(ou)"f (u).

Moreover, the convergence is uniform in Du D"1.

Proof. The function f is in ¸2(Sn~1) and so it has the spherical Laplace eigenspace
expansion:

f&
=
+
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f
k
, (9)

where f
k
is the projection of f onto the k-spherical harmonics. The Plancherel relation

holds:
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(see, e.g. [7] or [8]). We now show that the right-hand side of (9) absolutely converges
to f uniformly in MDu D"1N.

Denote by H
k

the projection operator: f
k
"H
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f, with the expression
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For a "xed k3Z and u3Sn~1, H
k
(u ) v), as a function of v3Sn~1, belongs to the space

of the spherical harmonics of degree k, which is also the eigenspace of the operator
R2
u

(see below) with the eigenvalue j
n,k

"!k (k#n!2).
Let R2

u
be the spherical Laplacian in the polar-co-ordinate form of the usual

Laplacian (see, e.g. [1])
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also appears in the polar-co-ordinate form of the operatorL (see (1)):
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The operator R2
u

is self-adjoint, and, for any function h in the space of k-spherical
harmonics, it satis"es the characteristic equation
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(see [3]).
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Owing to the relation (see Chapter 2 of [2])
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we have

=
+
k/1

D f
k
(u) D)

=
+
k/1

1

Djn
n,k

D
EH

k
(u ))E

¸2(Sn~1) ER2nv f
k
E
¸2 (Sn~1)

)

=
+
k/1

1

Djn@2`1
n,k

D
ER2n

v
f
k
E
¸2(Sn~1)

76 X. Ji and T. Qian

Math. Meth. Appl. Sci., 23, 71}80 (2000)Copyright ( 2000 John Wiley & Sons, Ltd.



)A
=
+
k/1

1

Djn@2`1
n,k

DB ER2n
v

f E
¸2(Sn~1)

)c ER2n
v

f E
¸2(Sn~1) .

This proves the absolute and uniform convergence.
The fact that the series pointwisely converges to the function f itself is referred to [3].
Now, for Dx D(1, x"ou, Du D"1, we have Poisson formula for equation (1)
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P (ou, v) f (v) dv
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k
f (u).

For o3[0, 1] we have Dq
k
(o) D)1. This, together with the absolute and uniform

convergence of the series + f
k
, concludes that the series expanding ; (x) is absolutely

and uniformly convergent in o3[0, 1) and Du D"1. In a similar way we may show that
the series of which the terms are the "rst- and second-order derivatives of those of the
series de"ning ; (x) are also absolutely and uniformly convergent in the unit ball
under the condition f3C4n(Sn~1). We therefore can apply the operator L to the series
term by term, using its polar-co-ordinate form, and obtain

L;(ou)"0, 0)o(1.

Owing to the uniform convergence for o3[0, 1] we can exchange the order of taking
limit oP1!0 and the in"nite summation, and, owing to limo?1

q
k
(o)"1, obtain

lim
o?1
;(ou)"f (u), u3Sn~1.

The uniform convergence of the series +=
k/0

f
k
guarantees the same uniform conver-

gence of the above limit. The proof is complete. K

Remark. The proof of the theorem given above shows that the weaker condition
f3C2(*n@2+`3) (Sn~1) is enough to guarantee the conclusions of the theorem, where [r]
denotes the maximal integer that does not exceed r. A more precise result is proved in
[4] using fractional powers of the operator I!R2

u
and Sobolev space theory. For our

purpose our theorem is su$cient, as in the sequel we shall use for f3C= (Sn~1).

3. Properties of the Poisson kernel

Theorem 1 implies the following boundary maximum principle.

Theorem 2. If f3C4n(Sn~1) and; is the solution of (1) with the boundary value f in the
sense of ¹heorem 1, then

minM f (x) : Dx D"1N)minM;(x) : Dx D)1N)maxM; (x) : Dx D)1N

)maxM f (x) : Dx D"1N.
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Proof. The boundary maximum principle of general elliptic equations implies that for
any "xed o(1 we have

minM;(x) : Dx D"oN)minM;(x) : Dx D)oN)maxM; (x) : Dx D)oN

)maxM;(x) : Dx D"oN.

Letting oP1!0, owing to the uniform convergence of Theorem 1, we conclude the
desired inequalities. Theorem 2 is a particular case of a general result in [4].

The kernel P does not have an explicit expression in simple functions and so we do
not have the convenience to see directly that the kernel has the d-function properties.
Nevertheless, using Theorems 1 and 2 we can still prove.

Theorem 3. ¹he kernel P(ou, v), 0)o(1, Du D"Dv D"1, given by (6) has the following
properties.
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(iii) ∀d3 (0, 1], for u3Sn~1 uniformly limo?1
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On the other hand, Theorem 2 implies that ;(ou)*0 for all o3[0, 1) and u3Sn~1.
This is a contradiction. Property (i) is thus proved.

Proof of (ii). For f,1 on Sn~1 using Theorems 1 and 2, we conclude (ii).
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We therefore, conclude

lim
o?1~0 Pu

0
) v(1!d

P(ou
0
, v) dv"0.

Since P is rotationally invariant, we conclude the uniform convergence.
Having obtained Theorem 3, the proof of the following result is routine. For

completeness, we still include its proof.

Theorem 4. ¸et f3C(Sn~1). ¹hen the potential formula
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gives the solution to equation (1). Moreover, if de,ne ;(x)"f (x), Dx D"1, then the
function ; is continuous on the solid ball MDx D)1N.
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Let e be given. We can choose d such that D f (u)!f (v) D(e whenever u ) v'1!d.
Then, owing to (i) and (ii) of Theorem 3, we have
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for any o3[0, 1). Now, owing to (iii) of Theorem 3, we can choose o(1 close to 1 so
that
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So, using (i),
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This proves (i). K

Since the convergence is uniform, the solution is continuous in the whole solid ball.
Theorem 4 has the following:

Corollary. ;nder the assumptions and notations in ¹heorem 4, de,ning ;
1
(x)"; (x),

Dx D(1; ;
1
(x)"f (x), Dx D"1; and ;

1
(x)";(x/ Dx D2), Dx D'1, we obtain that the
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function ;
1

is continuous in Rn and satis,es L;
1
(x)"0, Dx DO1. If in particular f is

second-order di+erentiable, then;
1

is the solution of L;
1
(x)"0 in the whole space Rn.
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