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A theory of a class of singular integrals on starlike Lipschitz surfaces in Rn is
established. The class of singular integrals forms an operator algebra identical to
the class of bounded holomorphic Fourier multipliers, as well as to the
Cauchy�Dunford bounded holomorphic functional calculus of the spherical Dirac
operator. The study proposes a new method inducing Clifford holomorphic func-
tions from holomorphic functions of one complex variable, by means of which
problems on the sphere are reduced to those on the unit circle. � 2001 Academic Press
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0. INTRODUCTION

The aim of this work is to establish the bounded holomorphic functional
calculus of the spherical Dirac operator on starlike Lipschitz surfaces with
the equivalent forms as Fourier multipliers and singular integral operators
in the context. The study provides explicit formulas expressing the integral
kernels in terms of the associated Fourier multipliers, and vice versa. In
the operator algebra, the existence of an inverse operator may be easily
determined, and, if exists, it can be explicitly computed. This implies
applications of the theory to certain boundary value problems and singular
integral equations related to non-smooth domains ([V], [Ke2], [LMcQ],
[Mc3]).

It is a continuation of the study on closed curves and surfaces being
proceeded in [Q1�6] and [GQW]. That is a further development of the
study of Cauchy's integrals (See, for instance, [C], [CM], [Ke1], [CMcM],
[DJS], [Mc1], [CJS]) and of operator algebras of singular integral
operators (See [McQ1�2], [LMcS], [GLQ], [LMcQ], [Ta], [Mc3])
on one- and multi-dimensional Lipschitz graphs.

The operator boundedness results of this paper is of the same kind as in
[LMcS] on Lipschitz graphs. The method of [LMcS] follows one of the
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two methods of [CJS]. The basic method we use to deal with starlike curves
and n-torus is Poisson summation ([Q1], [GQW], [Q3-4]). By using
that method we are reduced to the previously established theory on one-
and multi-dimensional Lipschitz graphs ([McQ1�2], [LMcQ], [LMcS],
[GLQ], [Ta]). On the higher dimensional sphere and its Lipschitz perturba-
tions, as studied in this paper, however, no Poisson summation method are
available. New methods has to be explored (Also see [Q5]). Restricted on
the sphere what is proved is the bounded holomorphic Fourier multiplier
theorem. Although there have been stronger results on the sphere ([Str]),
on its Lipschitz perturbations, however, our result is the strongest as we know.

As the first step to approach Rn is the Hamilton quaternionic space
studied in [Q5]. In that case there is Fueter's result ([Su]) that can be
directly adopted and the estimates at the singularity point are not too
difficult to handle (see [Q5]).

In order to develop the theory in Rn we need to extend the machinery
used in [Q5] based on Fueter's result. Besides the generalization of
Fueter's and Sce's results, and subsequently the estimate of the induced
singular integral kernels (Theorem 1), a fair amount of details are involved
due to the fact that, not like the quaternionic space, now Rn is not an
algebra. There are also details involved in separately dealing with the odd and
even dimensions, as well as in getting rid of the difference between Rn and Rn

1 .
It would be appropriate to mention an alternative direction generalizing

the initial study of Cauchy's operators on Lipschitz graphs in comparison
with the present study. That is to study more general curves and surfaces
rather than the Lipschitz ones, but restricted to consider only Cauchy's
kernel or closely related ones. For this, see, for instance, [JK], [Da1�2],
[Ke2], [Se1�4]. The fact is that if we study more general surfaces, then we
need to place more restrictions on the convolution kernels, in order to
make the induced convolution operators well behaved. In some extreme
cases the Cauchy kernel is the only well behaved nontrivial kernel ([Q1],
[GQ]). The nature of the present study, however, is to the opposite: we
consider only Lipschitz curves and surfaces that allow a larger variety of
bounded singular integral operators to exist. The operators under our
study form an operator algebra on the curves and surfaces.

The writing plan is as follows. Section 1 is devoted to preliminary
knowledge, notation and terminology that will be used throughout the
paper. Section 2 generalizes Fueter's result and introduces our monomial
functions in Rn

1 . The functions play the same role in Rn
1 as the functions

f 0(z)=zk 's do in the complex plane. We then prove the main technical
result Theorem 1. In Section 3 we develop the operator theory on starlike
Lipschitz surfaces in Rn

1 . We define the Fourier multipliers and the corre-
sponding singular integral operators and prove the L2-boundedness.
Section 4 devotes to the third version of the operators, viz. the bounded
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holomorphic Cauchy�Dunford functional calculus of the spherical Dirac
operator. In Section 5 we indicate how the theory in Rn

1 can be adapted in
order to get an analogous theory in the symmetric space Rn.
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1. PRELIMINARIES

We briefly recall what will be used in the paper. We shall be working in
the real Clifford algebra R(n) generated by e1 , ..., en , called basic vectors,
over the real number field. Denote by Rn

1 and Rn the linear subspaces of
R(n) spanned by e0 , e1 , ..., en and by e1 , ..., en , respectively, where e0 is the
algebraic unit element, i.e. e0=1, and e i ej+ej ei=&2$ ij , 1�i, j�n.
Elements of R(n) are denoted by x, y, ... and called Clifford numbers. An
element in Rn

1 is called a vector and of the form x=x0 e0+x
�
, where x0 # R,

x
�
=x1e1+ } } } +xn en # Rn. x0 e0 and x

�
are called the real and the

imaginary parts of x, respectively. In the notation of [DSS], Rn
1=R0, n

�R, Rn=R0, n. Define two operations on the basic elements: (ei1
} } } eil

)*=
eil

} } } ei1
and (ei1

} } } eil
)$=(ei1

)$ } } } (eil
)$, where (e0)$=e0 , (ej)$=&ej ,

j=1, ..., n, and extend them by linearity to R(n), and hence to Rn
1 and Rn.

By combining them we define a third operation � by x� =(x*)$. If x and y
are two Clifford numbers in R(n), then we have xy=y� x� . If x=x0+x

�
, then

x� =x0&x
�
. If x is a vector and x{0, then its inverse x&1 exists:

x&1=x� �|x|2 and x&1x=xx&1=1. We also use the complex Clifford
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algebra C(n) generated by e1 , ..., en over the complex number field, whose
elements are also denoted by x, y, ... . The complex imaginary element i
commutes with all the ej , j=0, 1, ..., n and i$=&i. So we extend the defini-
tions of * and $ and therefore & to C(n). The natural inner product between
x and y in C(n), denoted by (x, y) , is the complex number �S xS yS ,
where x=�S xS eS , y=�S yS eS , S runs over all the ordered subsets
(i1 , i2 , ..., il), i1<i2< } } } <i l , of the set [1, 2, ..., n] and eS=e i1

ei2
} } } eil

.
The norm associated with this inner product is |x|=(x, x) 1�2=
(�S |xS |2)1�2. The norm and inner product satisfy the relation (x, y) = 1

4

( |x+ y|2&|x& y|2). So, if a transform in C(n) preserves the norm, then it
also preserves the inner product. If x, y, ..., u are vectors, then |xy } } } y|=
|x| | y| } } } |u|. The angle between two vectors x and y, denoted by
arg (x, y), is defined to be arc cos (x, y)�( |x| | y| ), where the inverse function
arccos takes values in [0, ?). The concept of angle can be extended to any two
elements in R(n) with the same definition, as both the inner product and the
norm are applicable to elements in R(n). By the unit sphere of Rn

1 we mean the
set [x # Rn

1 : |x|=1], denoted by SRn
1
. The unit sphere [x

�
# Rn : |x

�
|=1] in Rn

is denoted by SRn . We use BX (x, $) for the ball in the metric space X centered
at x with radius $. The substitutions of X are Rn

1 , Rn and C in the sequel. If
X=C, then x is replaced by z and balls are called discs.

From Sections 2 to 4 we shall be working with Rn
1 -variable and

C(n)-valued functions. The concepts of left- and right- monogenity are
introduced in the usual way via the Dirac operator D=D0+D

�
, where D0

=(���x0), D
�

=(���x1) e1+ } } } +(���xn) en . D
�

is called the homogeneous
Dirac operator in Rn. In this paper a function is said to be monogenic, if
it is both left- and right-monogenic. The Cauchy kernel stands for E(x)=
x� �|x|n+1 and the Kelvin inversion I( f )(x)=E(x) f (x&1). We assume the
reader to be familiar with Cauchy's Theorem and Cauchy's Formula in the
form as exhibited in, e.g. [BDS], or [LMcQ], or [DSS].

The integers and positive integers are denoted by Z and Z+, respectively.
Notations C, C& , will be used for constants which may vary from one
occurrence to the next. Subscripts, such as & in C& and 7 in C7 , are used
to stress the dependence of the constants. If in a definition or statement the
notation \ is used more than once, then the definition or statement is
meant to be valid for two symmetric cases: one is for all the \ being
replaced by +; and the other for all being replaced by &. According to
this convention, we shall sometimes need to write � as &(\).

2. MONOMIAL FUNCTIONS IN Rn
1

The concept of intrinsic function naturally fits into our theory. A set in
the complex plane C is said to be intrinsic if it is symmetric with respect to
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the real-axis; and a function f 0 is said to be intrinsic if the domain of f 0 is
an intrinsic set and f 0(z)= f 0(z� ) in its domain. A set in Rn

1 is said to be
intrinsic if it does not change under the rotations of Rn

1 , considered as n+1
dimensional Euclidean space, that keep the e0 -axis unchanged. If O is a set
in the complex plane, then O9 =[x # Rn

1 : (x0 , |x
�
| ) # O] is called the induced

set from O. It is clear that an induced set is always an intrinsic set in Rn
1 .

Functions of the form � ck(z&ak)k, k # Z, ak , ck # R are intrinsic func-
tions. If f 0=u+iv, where u and v are real-valued, then f 0 is intrinsic if and
only if u(x, &y)=u(x, y), v(x, &y)=&v(x, y) in its domain. In particular,
v(x, 0)=0, i.e., f 0 is real-valued if it is restricted to the real line in its
domain. For more information on intrinsic functions in the complex plane
and in the quaternionic space, we refer the reader to [Ri] and [Tu].

Let f 0(z)=u(x, y)+iv(x, y) be an intrinsic function defined on an
intrinsic set U/C. We may induce a function f 0

�
from f 0, defined on the

induced set U9 , as follows:

f 0
�

(x)=u(x0 , |x
�
| )+

x
�

|x
�
|

v(x0 , |x
�
| ), x # U9 . (1)

The function f 0
�

will be called the induced function from f 0.
Let us first assume f 0 to be of the form zk, k # Z, and denote by { the

mapping

{( f 0)=}&1
n 2(n&1)�2 f 0

�
, (2)

where 2=DD� , D� =D0&D
�

and }n=(2i)n&1 1 2( n+1
2 ) the normalizing

constant that makes {(( } )&1)=E (see the proof of Proposition 1).
The operator 2(n&1)�2 is defined via the Fourier multiplier transform

on tempered distributions M: S$ � S$ induced by the multiplier m(!)=
(2? i |!| )n&1:

Mf =R(mFf ),

where

Ff (!)=|
Rn

1

e2? i(x, !)f (x) dx

and

Rh(x)=|
Rn

1

e&2? i(!, x)h(!) d!.
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It is noted that both the Fourier transform F and its inverse R are defined
on tempered distributions via pairing with rapidly decreasing functions
([Yo]).

If n is an odd integer, then 2(n&1)�2 reduces to an ordinary differential
operator that was first studied by M. Sce ([Sc], [Q5]).

The monomial functions in Rn
1 are defined to be

P(&k)={(( } )&k), P(k&1)=I(P(&k)), k # Z+.

We shall write P (k)
n for the sequence P(k) defined in Rn

1 if it is necessary to
emphasize the dimension n.

We have

Proposition 1. Let k # Z+. Then (i) P&1=E; (ii) P(&k)(x)=(&1)k&1�
(k&1)! (���x0)k&1 E(x); (iii) P(&k) and P(k&1) both are monogenic; (iv)
P(&k) is homogeneous of degree &n+1&k and P(k&1) homogeneous of
degree k&1; (v) cnP (&k)

n&1 (x0+x1e1+ } } } +xn&1 en&1)=��
&� P (&k)

n (x) dxn ,
where cn=��

&� (1+t2)&((n+1)�2) dt; (vi) P(&k)=I(P(k&1)); (vii) if n is odd,
then P(k&1)={(( } )n+k+2).

Remark 1. The definition of the monomial functions together with the
properties proved in Proposition 1 provides a generalization of Fueter's
result for quaternions. The latter asserts that if f 0(z)=u(x, y)+iv(x, y) is
holomorphically defined in a relatively open set O of the upper half

complex plane, then the function 2(f 0
�

(q)) is regular (i.e., quaternionic
monogenic) for q # O9 , where 2 is the Laplacian in four variables q0 , q1 , q2 ,
q3 . Sce generalized the result in 1957 to Rn

1 for n being odd integers. The
assertions (iii) and (vii) amount to re-producing Sce's result for zk, k # Z.
The assertion (vii), in particular, shows that, if n is odd, then P(k&1) may
be alternatively and consistently defined by using the operator {, instead of
using the Kelvin inversion.

A first development of this theme and a proof of (vii) is contained in
[Q6]. The assertions (i)�(vi) will be concerned in the present paper, of
which brief proofs will now be outlined.

Proof. Using the Fourier transform result on rational homogeneous
functions with harmonic numerators (see [St]) and the relation

( } )&k
�

(x)=\ x�
|x| 2+

k

=
(&1)k&1

(k&1)! \
�

�x0+
k&1

\ x�
|x|2+ ,
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we have

P(&k)(x)={(( } )&k)(x)=}&1
n

(&1)k&1

(k&1)! \
�

�x0+
k&1

M \ ( } )
| } |2+

=}&1
n

(&1)k&1

(k&1)! \
�

�x0+
k&1

R \#1, n(2? i |!| )n&1 !�
|!|1+n+

=}&1
n

(&1)k&1

(k&1)! \
�

�x0+
k&1

#2
1, n(2? i)n&1 x�

|x|1+n

=}&1
n

(&1)k&1

(k&1)!
}n \ �

�x0+
k&1

E(x),

where we have let }n=(2? i)n&1 #2
1, n=(2i)n&1 1 2( n+1

2 ). This implies that
P(&k) is monogenic for all k # Z+. The monogeneity of P(k&1) and the
homogeneity of P(&k) and P(k&1) are easy consequences of the established
expression and the properties of the Kelvin inversion. This completes the
proofs of (i) to (iv). The assertion (v) follows from (i) and (ii) and the
identity

cnP (&1)
n&1 (x0+x1e1+ } } } +xn&1 en&1)=|

�

&�
P (&1)

n (x) dxn ,

proved through a direct computation. (vi) follows from the relation I 2=
identity.

The assertion (ii) of Proposition 1 implies

Proposition 2. The monomials satisfy the following estimates: for
k # Z+,

|P(&k)(x)|�Cnkn |x|&(n+k&1), |x|>1, (3)

and

|P(k)(x)|�Cnkn |x|k, |x|<1. (4)

It has the following

Corollary 1.

E(x&1)=P(&1)(x)+P(&2)(x)+ } } } +P(&k)(x)+ } } } , |x|>1, (5)
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and

E(1&x)=P(0)(x)+P(1)(x)+ } } } +P(k)(x)+ } } } , |x|<1. (6)

Proof. (5) follows from the Taylor expansion of E(x&1) and the
estimate (3). Owing to the relation I(E( } &1))(x)=E(x) E(x&1&1)=
E(1&x) and the estimate (4), applying the Kelvin inversion to both sides
of (5), we obtain (6).

Noticing that {( 1
z&1)=E(x&1), the relation (5) is obtained, at least

formally, by applying the mapping { term by term to the series

1
z&1

=
1
z

+
1
z2+ } } } +

1
zk+ } } } , |z|>1;

and (6) is obtained similarly from

1
1&z

=1+z+z2+ } } } +zk+ } } } , |z|<1.

To develop this aspect we recall some standard terminology and conven-
tion. A series of the form ��

k=&� ck(z&a)k, ck , a # C, is called a Laurent
series at a. If ck=0 for all k<0, it is also called a power or Taylor series,
and if ck=0 for all k�0, a principal series. For a, ck # R the series ,(x)=
� ckP(k)(x&ae0) and f 0(z)=� ck(z&a)k will be said to be associated to
each other and the relation is denoted by ,=(f 0. The notation is also
valid for a pair of functions defined through associated series. We define the
function f 0=� ck(z&a)k to be the holomorphic extension with the largest
open connected domain, called holomorphic domain, from the function
originally defined through the power series in its convergence disk. The
same convention applies to principal series. A function defined through a
Laurent series is the one holomorphically defined in the intersection set of
the holomorphic domains of its Taylor and principal series parts. Adopting
this convention, the series ��

k=1 zk+�&1
&� &zk=&1+ 2

1&z defines a
function holomorphic in C"[1]. The convention also applies to func-
tions defined through � ck P(k)(x&ae0), but using ``monogenic'' in place of
``holomorphic''. An example is that

:
�

k=1

P(k)(x)+ :
&1

&�

&P(k)(x)

defines a function monogenic everywhere except x=1. It follows, from
(5) and (6), that it is the function 2E(1&x), and, thus, ((&1+ 2

1&z)=
2E(1&x).
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For non-intrinsic series the following proposition is observed.

Proposition 3. If the function f 0 is defined in an intrinsic set, then both
the functions g0(z)= 1

2 ( f 0(z)+f 0(z� )) and h0(z)= 1
2i ( f 0(z)&f 0(z� )) are intrinsic,

defined in the same intrinsic set, and f 0= g0+ih0.

The proposition suggests extending ( by

(( f 0)=((g0)+i((h0).

The functions f 0 and (( f 0) are said to be associated to each other. In this
manner it is easy to see that, for a # R, ck # C, we have f 0(z)=��

&�

ck(z&a)k= g0+ih0, where g0(z)=��
&� Re(ck)(z&a)k and h0(z)=

��
&� Im(ck)(z&a)k, and ��

&� ckP(k)(x&ae0) is associated with f 0.
The following is a consequence of Proposition 2.

Proposition 4. If a # R, ck # C and �\�
k=\1 ck(z&a)k is absolutely

convergent in |(z&a)\1|<r, then �\�
k=\1 ck P(k)(x&ae0) is absolutely

convergent in |(x&ae0)\1|<r.

Owing to Proposition 4 the mapping { may be extended to Laurent
series. Note that, if f 0 represents a principal series, then {( f 0)=(( f 0); and,
if f 0=��

k=0 ck(z&a)k representing a power series and the dimension n is
odd, then {(��

k=0 ck(z&a)k)=(��
k=n&1 ckP(k&n+1)(x&ae0 ), exhibiting a

shift of coefficients. In the sequel we shall use the correspondence ( rather
than {. This is especially convenient as we always use the Kelvin inversion
to reduce power series to principal series.

In the following we shall call the series of the form � ck(z&a)k, a, ck # R
intrinsic series.

For the case of n being an odd integer there is a direct relation between
the holomorphic domain of an intrinsic series in the complex plane and the
monogenic domain of its associated series in Rn

1 .

Proposition 5. Let � ck(z&a)k be an intrinsic series whose holomorphic
domain is an open intrinsic set, O, then the associated series � ck P(k)

(x&ae0) in Rn
1 for n odd can be monogenically extended to the intrinsic

set O9 .

Proof. Write n=2m+1. First we consider the principal series case. Let
f 0=�&1

k=&� ck(z&a)k be an intrinsic principal series with the convergence
disc BC (a, $). For x # BRn

1
(ae0 , $), we have
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(( f 0)(x)= :
&1

&�

ckP(k)(x&ae0)

=}n :
&1

k=&�

ck2m( } &a)k
�

(x)

=}n2m \ :
&1

k=&�

ck( } &a)k

�

(x)+
=}n2m( f 0

�
),

where change of order of differentiation and summation is justified by
Proposition 4. Now since f 0 can be holomorphically extended to O, by
invoking Sce's result on the pointwise monogeneity for n odd ([Sce]), the
function (( f 0)(x) can be monogenically extended to at least O9 .

Let now f 0 be an intrinsic power series holomorphically defined in an
intrinsic open set O. Denoting by I c the Kelvin inversion in the complex
plane, we have that I cf 0 is an intrinsic principal series holomorphically
defined in the intrinsic set O&1=[z # C : z&1 # O]. Then the assertion for
power series follows from what is proved for principal series together with

the relations I c2=identity, I 2=identity and O9 &1=O&1
�

.
The assertion for Laurent series follows from what have been proved for

principal and power series. The proof is complete.
We shall use the following sets in the complex plane. Set, for | # (0, ?

2),

Sc
|, \=[z # C : |arg (\z)|<|],

where the angle arg (z) of the complex number z takes values in (&?, ?],

Sc
|, \(?)=[z # C : |Re(z)|�?, z # Sc

|, \],

Sc
|=Sc

|, + _ Sc
|, & ,

Sc
|(?)=Sc

|, +(?) _ Sc
|, &(?),

Wc
|, \(?)=[z # C : |Re(z)|�? and \Im(z)>0] _ Sc

|(?),

Hc
|, \=[z=exp(i') # C: ' # Wc

|, \(?)],

and

Hc
|=Hc

|, + & Hc
|, & .

These sets are illustrated in the diagram. Wc
|, +(?) and Wc

|, &(?) are ``W''
and ``M'' shaped regions, respectively. Hc

|, + is a heart-shaped region, and
the complement of Hc

|, & is a heart-shaped region. With the obvious mean-
ing we shall sometimes write Hc

|, \=eiWc
|, \

(?).
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The following function spaces will be used:

K(Hc
|, \)={,0: Hc

|, \ � C: ,0 is holomorphic and satisfies

|,0(z)|�
C+

|1&z|
in every Hc

+, \ , 0<+<|= ,

K(Hc
|)=[,0: Hc

| � C: ,0=,0, ++,0, &, ,0, \ # K(Hc
|, \)],

H�(Sc
|, \)=[b: Sc

|, \ � C: b is holomorphic and satisfies

|b(z)|�C+ in every Sc
+, \ , 0<+<|],

and

H�(Sc
|)=[b: Sc

| � C: b\=b/[z # C : \Re z>0] # H �(Sc
|, \)].
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Remark 2. The sets and function spaces introduced above naturally fit
into our theory for closed curves and surfaces. Using those and related
ones, we have built up our integral theories on infinite Lipschitz graphs in
a series of earlier work [McQ1�2], [LMcQ], [LMcS], [GLQ] and
[Ta], on starlike Lipschitz curves in the complex plane in [Q1] and
[GQW], on the n-torus and its Lipschitz perturbations in [Q3] and [Q4]
and on starlike Lipschitz surfaces in the quaternionic space in [Q5].
Informally, we may just recall that H�(Sc

|, \) and H �(Sc
|) are spaces

of Fourier multipliers and K(Hc
|, \) and K(Hc

|) are spaces of kernels of
singular integrals. On the Fourier multiplier side, this is consistent with the
fact that the closure of Sc

| contains the spectrum of the spherical Dirac
operator on a Lipschitz curves or surfaces whose Lipschitz constants are
less than tan(|). On the singular integral side, in the complex plane for
instance, we consider convolution integrals of the form �# ,(z'&1) f (') d'

' ,
z # #, on starlike Lipschitz curves # whose Lipschitz constants are less than
tan(|). It is easy to verify that the condition z, ' # # implies z'&1 # Hc

| for
|>arc tan(N) (see [Q1], [GQW]). This requires that our kernel func-
tions ought to be defined in Hc

| .

In Rn
1 we shall be working on heart-shaped regions or their complements

H|, \={x # Rn
1 :

(\ln |x| )
arg (e0 , x)

<tan |==Hc
|, \

�
,

and

H|=H|, + & H|, &=Hc
|

�
.

That is

H|={x # Rn
1 :

|ln |x| |
arg (e0 , x)

<tan |= .

Remark 3. The reason for using these sets on surfaces is the same as
that described in Remark 2 for star-shaped Lipschitz curves. Precisely, we
shall be working on convolution singular integral on star-shaped Lipschitz
surfaces and the kernel functions ought to be defined in H| . The following
observation for the complex plane case motivated the definition of H| : It
is easy to show that a star-shaped Lipschitz curve has the parameterisation
#=#(x)=ei(x+iA(x)), where A=A(x) is a 2?-periodic Lipschitz function.
Assume that the Lipschitz constant of # is less than tan |. Then for
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z=exp i(x+iA(x)), '=exp i( y+iA( y)), we have z'&1=exp i((x& y)+
i(A(x)&A( y))). This implies that

|ln |z'&1| |
arg (z'&1, 1)

=
|A(x)&A( y)|

|x& y|
<tan |.

In Rn
1 we shall be using the function spaces

K(H|, \)=[,: H|, \ � C(n) : , is monogenic and satisfies

|,(x)|�C+�|1&x|n, x # H+, \ , 0<+<|],

and

K(H|)=[,: H| � C(n) : ,=,++,&, ,\ # K(H|, \)].

Now we are ready to state our main technical result.

Theorem 1. If b # H�(Sc
|, \) and ,(x)=�\�

k=\1 b(k) P(k)(x), then , #
K(H|, \).

Remark 4. In [Q1] we prove the following interesting holomorphic
extension result: Let b # H�(Sc

|, \) and f 0(z)=�\�
k=\1 b(k) zk. Then f 0,

originally defined inside or outside the unit circle corresponding to the case
``+'' or ``&'', respectively, can be holomorphically extended to Hc

|, \

satisfying the estimate

| f 0(z)|�
C+

|1&z|
, z # Hc

+, \ , 0<+<|.

We also prove that the converse result holds. The holomorphic extension
result has significant applications to the singular integral theory on starlike
Lipschitz curves ([Q1], [GQW]). Theorem 1 is the counterpart result in
the Rn

1 context.

Proof for n odd. Let n=2m+1. Owing to Proposition 3 we are reduced
to prove the theorem for b in H�, r(Sc

|, \), where

H�, r(Sc
|, \)=[b # H�(Sc

|, \) : b|R & Sc
|, \

is real-valued)].

In fact, in the decomposition b= g0+ih0 both g0 and h0 belong to
H�, r(Sc

|, \) and are bounded by the bounds of b. We shall first consider
the case ``&'', and then use the Kelvin inversion to conclude the case ``+''.
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Now assume b # H�, r(Sc
|, &) and consider ,(x)=��

k=1 b(&k) P(&k)(x)
=2m,0(x0 , |x

�
| ), where ,0(z)=��

k=1 b(&k) z&k. It is a basic result of
[Q1] that ,0 # K(Hc

|, &). We can further derive, by using Cauchy's formula
(see Lemma 6 of [Q5]), that

|(,0) ( j) (z)|�
2 j ! C+

$ j (+)
1

|1&z| 1+ j ,
(7)

z # Hc
+, & , 0<+<|, j # Z+ _ [0],

where C+ is the constant in the definition of K(Hc
|, &), $(+)=min

[ 1
2 , tan(|&+)].
Proposition 5 then asserts that , is monogenically defined in H|, & . We

are left to show that

|,(x)|�
C+

|1&x|n , x # H+, &=Hc
+, &

�
, 0<+<|.

The following Lemma summaries the techniques used by Sce ([Sc]).

Lemma 1. Let f 0(z)=u(s, t)+iv(s, t) be a function holomorphically
defined in a relatively open set U of the upper half complex plane. Denote
u0=u, v0=v, and, for l # Z+,

ul=2l
1
t

�ul&1

�t
, vl=2l \�vl&1

�t
1
t
&

vl&1

t2 +=2l
�
�t \

v l&1

t + .

Then

2l f 0
�

(x)=ul (x0 , |x
�
| )+

x
|x

�
|

vl (x0 , |x
�
| ), x0+i |x

�
| # U.

In order to prove the estimate we only need to consider the points xr1
in the region H|, & . We shall deal with two cases.

Case 1. |x
�
|>($(+)�2m+1�2) |1&x|.

Owing to Lemma 1, this reduces to study ul and vl in the region Hc
|, &

with the conditions that zr1 and |t|r |1&z|. We shall later substitute
z=s+it, s=x0 , t=|x

�
|. We observe that u=u0 , v=v0 and 1

t all are of the
magnitude 1�|1&z|, and taking derivative with respect to t to each of them
will reduce the power by one in the magnitude and so get the magnitude
1�|1&z|2. To obtain u1 , for instance, starting from u0 , we first take the
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derivative and then divide the result by t, leading to the magnitude
1�|1&z|3. Repeating this procedure up to m times to get um , we obtain
the magnitude 1�|1&z|2m+1=1�|1&z|n. The estimate for vm is proved
similarly.

Case 2. |x
�
|�($(+)�2m+1�2) |1&x|.

Points in H|, & satisfying xr1, x0�1, belong to Case 1 and have been
considered. Now we assume x0>1.

Owing to Lemma 1, we need to show, for any 0<+<|,

|um(s, t)|+|vm(s, t)|�
C+, m

|1&z|n , z=s+it # Hc
+, & .

We shall first study ul , 0�l�m. The proof will involve partial
derivatives of ul with respect to its second argument. We claim that for
z=s+itr1, s>1, z # Hc

+, & , $=$(+) and |t|�($�2m+1�2) |1&z|, there
hold

(i) ul is even with respect to its second argument; and

(ii) for any integer 0� j<�,

} � j

�t j ul (s, t)}�C+Cl2
lj ( j+4l )!

$2l+ j

1
|1&z|2l+ j+1 , j even,

and

} � j

�t j ul (s, t)}�C+Cl 2
lj ( j+5l )!

$2l+ j

1
|1&z|2l+ j+1 , j odd.

We shall use mathematical induction on l. The assertions for l=0 are from
the corresponding properties of ,0.

Now assume (i) and (ii) hold for the indices l: 0�l�m&1. We shall
verify that they remain to hold for the next index l+1.

The assertion (i) for the index l+1 follows from the definition of ul+1

and the assertion (i) for the index l.
Now we prove (ii) for l+1. Since ul (s, t) is an even function with respect

to t, �ul ��t is odd with respect to t. This implies (�ul ��t)(s, 0)=0, and the
same reasoning gives ((�2k+1ul)�(�t2k+1))(s, 0)=0 for k # Z+ _ [0]. For
small t the Taylor expansion of (�ul ��t)(s, t) as t=0 is

ul+1(s, t)=
2(l+1)

t
�ul

�t
(s, t)=2(l+1) :

�

k=0

�2k+2u l

�t2k+2 (s, 0)

(2k+1)!
t2k.
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Taking derivatives with respect to t up to j times, for j even we obtain

� j

�t j ul+1(s, t)=2(l+1) :
�

k= j�2

�2k+2ul

�t2k+2 (s, 0)
(2k)(2k&1) } } } (2k& j+1)

(2k+1)!
t2k& j.

Using the induction hypothesis (ii) for the index l and changing the index
k to j�2+k, we have

} � j

�t j ul+1(s, t)}�2(l+1)
C+Cl 2

l( j+2)

$2(l+1)+ j |1&z|2(l+1)+ j+1

_ :
�

k=0

( j+4l+2k+2)! 22kl

( j+2k+1)!

_( j+2k) } } } (2k+1) \ t
$ |1&z|+

2k

�2(l+1)
C+Cl 2

l( j+2)

$2(l+1)+ j |1&z| 2(l+1)+ j+1

_ :
�

k=0

( j+4l+2k+2) } } } (2k+2)
2k ,

where we have used the condition t
$ |1&z| �1�2m+1�2.

The last series is evaluated in the following

Lemma 2.

:
�

k=0

( j+4l+2k+2) } } } (2k+2)
2k =2 j+4l+3 \j+4l+2

2 + !. (8)

Proof. Denote by s the sum of the series. Then 1
2s is the sum of the

series obtained by multiplying the original series, term by term, by 1
2 . The

common trick of evaluating the sum of the difference series then gives

s=2( j+4l+2) :
�

k=0

( j+4l+2k) } } } (2k+2)
2k .

Repeating the procedure up to j+4l+2
2 times, we obtain

s=2( j+4l+2)�2( j+4l+2)!! 2=2 j+4l+3 \j+4l+2
2 + !.

The proof is complete.
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In order to simplify the expression of the constant Cl , we rather use the
following weaker estimate derived from Lemma 2:

:
�

k=0

( j+4l+2k+2) } } } (2k+2)
2k �2 j+4l&1( j+4( j+1))!.

This last estimate gives the desired estimate for |(� j��t j) ul+1(s, t)| with
Cl=l ! 23l(l&1).

For the case j being odd a similar estimate gives

} � j

�t j ul+1(s, t) }�2(l+1)
C+Cl 2

l( j+2)

$2(l+1)+ j |1&z|2(l+1)+ j+1

t
$ |1&z|

_ :
�

k=0

( j+5l+2k+3)! 22kl

( j+2k+2)!

_( j+2k+1) } } } (2k+3) \ t
$ |1&z|+

2k

�2(l+1)
C+Cl 2

l( j+2)

$2(l+1)+ j |1&z|2(l+1)+ j+1

1
2m+1�2

_ :
�

k=0

( j+5l+2k+3) } } } (2k+3)
2k

�
C+Cl+12(l+1) j ( j+5(l+1))!

$2(l+1)+ j

1
|1&z|2(l+1)+ j+1

with an appropriate constant Cl .
Letting l=m, j=0, we obtain the desired estimate for um .
Now we study vm and still consider the two cases |x

�
|>($(+)�2m+1�2)

|1&x| and |x
�
|�($(+)�2m+1�2) |1&x|. The first case is the easy part and

may be dealt with by using a similar argument as used for um . For the
second case we shall prove: For 0�l�m, z=s+itr1, s>1, z # Hc

+, & ,
0<+<|, and |t|�($�2m+1�2) |1&z|,

(i) vl is odd with respect to its second argument;

(ii) for any integer 0� j<�

} � j

�t j vl (s, t)}�C+Cl2
lj ( j+5l )!

$2l+ j

1
|1&z|2l+ j+1 , j even,

386 TAO QIAN



and

} � j

�t j vl (s, t)}�C+Cl 2
lj ( j+4l )!

$2l+ j

1
|1&z|2l+ j+1 , j odd.

We shall use mathematical induction and the proof is similar to that for +l .
For l=0 (i) and (ii) are consequences of the corresponding properties

of ,0.
Now assume (i) and (ii) to hold for the index l: 0�l�m&1. We are to

verify that they hold for l+1.
The assertion (i) for l+1 follows from the definition of vl+1 and the

assertion (i) for the index l.
Now we prove (ii) for l+1. Since vl (s, t) is an odd function with respect

to t, we have (�2kvl (s, 0))��t2k=0 for k # Z+ _ [0] and so its Taylor
expansion in t at t=0 reads

vl (s, t)= :
�

k=0

�2k+1vl (s, 0)
�t2k+1

(2k+1)!
t2k+1.

Hence,

t
�vl (s, t)

�t
= :

�

k=0

�2k+1vl (s, 0)
�t2k+1

(2k)!
t2k+1

and

vl+1(s, t)=2(l+1)
t

�vl

�t
&v

t2

=2(l+1) :
�

k=0

2k+2
(2k+3)!

�2k+3vl (s, 0)
�t2k+3 t2k+1.

Taking derivative with respect to t up to j times, discussing the two cases
that j is even and odd, similar methods as used above give the desired
estimates for l+1.

Taking l=m and j=0 in the estimate for | � j

�t j vl (s, t)|, we obtain the
desired estimate for vm .

Now consider the case ``+''. Assume b # H�, r(Sc
|, +) and �(x)=

��
i=1 b(i) P(i)(x). The Kelvin inversion implies that I(�)(x)=�&�

i=&1 b$(i)
P(i&1)(x), where b$(z)=b(&z) # H�, r(Sc

|, &). Since I(�)={(�0), where
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�0(z)=�&�
i=&1 b$(i) zi&1= 1

z �&�
i=&1 b$(i) zi # Hc

|, & , the conclusions for the
above considered case ``&'' all apply to I(�). Using the relation
�=I2(�)=E(q) I(�)(x&1) and the fact that x # H&, + if and only if x&1 #
H&, & , we have

|�(x)|=|E(x) I(�)(x&1)|�
1

|x| n C&
1

|1&x&1|n

=C&
1

|1&x|n , x # H&, + .

This concludes the case b # H�, r(Sc
|, +) and the proof for n being odd is

complete.

Proof for n even. The same argument reduces the case ``+'' to the case
``&''. Let b # H�, r(Sc

|, &) and consider ,(x)=��
k=1 b(&k) P (&k)

n (x). Now
n+1 is odd and so the conclusions obtained in the first part applies to
n+1. From (v) of Proposition 1 we obtain

cn+1,(x)=|
�

&�
:
�

k=1

b(&k) P (&k)
n+1 (x+xn+1en+1) dxn+1 ,

where the function , is monogenically defined in H|, & , which is the inter-
section of Rn

1 and the corresponding H|, & set in Rn+1
1 , and changing of

order of integration and summation is justified by the right order of decaying
of P (k)

n+1 at the infinity. We further have

|cn+1,(x)|�C& |
�

&�

1
|1&(x+xn+1en+1)|n+1 dxn+1

�C&
1

|1&x|n , x # H&, & .

Corollary 2. Let b # H�(Sc
|) and ,(x)=��

i=&� $ b(i) P(i)(x). Then
, # K(H|).

Remark 5. The holomorphic extension result noted in Remark 4 can be
extended to the cases where b is holomorphic, bounded near the origin,
satisfying |b(z)|�C& |z| s, |z|>1, for &�<s<� in smaller sectors Sc

&, \

([Q2])). Theorem 1 can also be extended to those cases. Details will not
be included here, but the following result, with a proof similar to that of
Theorem 1 (see [Q2]), will be used in the proof of Proposition 8 (also see
Lemma 5).
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Theorem 2. Let &�<s<�, s{&1, &2, ..., and b a holomorphic
function in Sc

|, \ satisfying the estimates

|b(z)|�C+ |z\1| s, in every Sc
+, \ , 0<+<|.

Then ,(x)=�\�
i=\1 b(i) P(i)(x) can be monogenically extended to H|, \

satisfying

|,\(x)|�C+ " b( } )
|( } )\1| s"L�(Sc

+$
)

1
|1&x| s+n ,

x # H+, \ , 0<+<+$<|.

2. SINGULAR INTEGRALS AND FOURIER MULTIPLIERS

A surface 7 is said to be a starlike Lipschitz surface, if it is n-dimensional
and star-shaped about the origin, and there exists a constant M<� such
that x, x$ # 7 implies that

|ln |x&1x$| |
arg (x, x$)

�M.

The minimum value of M is called the Lipschitz constant of 7, denoted by
N=Lip(7).

Since locally ln |x&1x$|=ln(1+(|x&1x$|&1))|r( |x&1x$|&1)r |x&1|
( |x$|&|x| )r( |x$|&|x| ), the above defined sense of Lipschitz is consistent
with the ordinary sense.

Let s # SRn
1

and we consider the mapping rs : x � sxs&1, x # Rn
1 . Although

rs does not preserve Rn
1 , it enjoys the following properties.

Lemma 3. For any x, y # Rn
1 , we have (i) |rs( y&1x)|=| y&1x| and more

generally rs preserves norms of the elements in R(n) that can be expressed as
a product of vectors; (ii) (rs(x), rs( y)) =(x, y); (iii) arg (rs(x), rs( y))=
arg (x, y); (iv) (rs( y))&1 rs(x)=rs( y&1x); (v) There exists a vector s # SRn

1

such that rs( y&1x)=| y|&1 x~ , where x~ # Rn
1 . Moreover, |x& y|=| |y| e0&x~ |

and arg ( y, x)=arg ( | y | e0 , x~ ); and (vi) For the same s as in (v) we have
rs(E( y))=E( y).

Proof. (i) is an immediate consequence of the property of the norm
defined in Section 1. (ii) is a consequence of (i) owing to the relation
between the inner product and the norm in C(n). (iii) is a consequence of
(i) and (ii). (iv) is trivial. To prove (v), we introduce a new basic vector e$
such that e$2=1 and e$ei=&ei e$, i=1, ..., n. Let f0=e$, f i=ei f0 , i=1, ..., n.
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We have f 2
i =1, fi f j=&fj f i , 0�i, j�n, i{ j. So [fj]n

j=0 forms a basis of
type (n+1, 0). It is a basis of Rn+1=Rn+1, 0=[x0f0+ } } } +xn fn : xj # R,
j=0, 1, ..., n]. Owing to the property of the Clifford group in Rn+1, we can
choose s # Rn

1 such that the mapping: ( } ) � (sf0)( } )(s f0)&1 on Rn+1 maps
yf0 to f0 | y| (see [DSS]). The same mapping maps x f0 to, namely, f0 x~ ,
where x~ # Rn

1 . Therefore, we have rs( y&1x)=[(s f0)( y f0)(s f0)&1]&1 [(s f0)
(x f0)(s f0)&1]=(f0 | y| )&1 (f0x~ )=| y|&1 x~ . Since the mappings induced by
elements in the Clifford group preserve distance between vectors, we
have |x& y|=| yf0&x f0 |=|f0 | y|&f0x~ |=| |y| e0&x~ |. By virtue of (iii),
arg( y, x)=arg(rs( y), rs(x))=arg(f0 | y|, f0x~ )=arg( | y| e0 , x~ ). The proof of
(vi) is proceeded as follows. rs(E( y))= 1

| y|n&1 s( y&1e0) s&1= 1
| y|n&1 ( | y| &1 f0)

(f0e0e0
t), where e0

t=(sf0)(f0)(s f0)&1=s f0 s&1=f0
y�

| y| , where the last iden-
tity is deduced from (sf0)( y f0)(s f0)&1=f0 | y|. Substituting the expression
of e0

t , we obtain rs(E( y))=E( y).

Remark 6. We explain how the sets H| are related to starlike Lipschitz
surfaces. Lemma 3 implies that, by choosing an appropriate s # SRn

1
,

ln |x&1x$|=ln |rs(x&1x$)|=ln | |x|&1 x~ |. On the other hand, arg(x, x$)=
arg( |x| e0 , x~ )=arg(e0 , |x|&1 x~ ). So, if x and x$ belong to a starlike
Lipschitz surface with Lipschitz constant N, then ( |ln |x&1x$| |�arg(x, x$))=
(|ln | |x|&1 x~ |�arg(1, |x| &1 x~ ))�N. This implies that |x|&1 x~ # H| for any
| # (arc tan(N ), ?

2) (also see the proof of Proposition 7).
We shall be working on a fixed star-shaped Lipschitz surface 7 with

Lipschitz constant N and we assume that | # (arc tan(N ), ?
2).

Denote

\=min[ |x|: x # 7] and @=max[ |x|: x # 7].

Without loss of generality we can assume \<1<@.
We shall be working on L2(7)=L2(7, d_), where d_ is the surface area

measure. The norm of f # L2(7) is denoted by & f &.
Coifman�McIntosh�Meyer's Theorem (CMcM' Theorem) asserts that

on any Lipschitz surface 7 the Cauchy integral operator

C7 f (x)= p.v.
1

0n
|

7
E(x& y) n( y) f ( y) d_( y),

where n( y) is the outward normal of 7 at y # 7, 0n the surface area of the
n-dimensional unit sphere SRn

1
, can be extended to a bounded operator in

L2(7) ([CMcM], [Mc1]).
We shall be using

A=[ f : f (x) is left-monogenic in \&s<|x|<@+s for some s>0]
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as the class of our test functions. It is a consequence of CMcM's Theorem
that A is dense in L2(7) (see [CM], also [GQW] and [Q5]).

Now assume that f # A. In the annulus where f is defined we have the
Laurent series expansion

f (x)= :
�

k=0

Pk( f )(x)+ :
�

k=0

Qk( f )(x),

where for k # Z+ _ [0], Pk( f ) belongs to the finite dimensional right
module Mk of k-homogeneous left-monogenic functions in Rn

1 , and Qk( f )
belongs to the finite dimensional right module M&(k+n) of &(k+n)-
homogeneous left-monogenic functions in Rn

1"[0]. The spaces Mk and
M&k are eigenspaces of the left-spherical Dirac operator and the mappings
Pk : f � Pk( f ) and Qk : f � Qk( f ) are the projection operators on Mk and
M&(k+n) , respectively. If f is k-homogeneous spherical harmonic, k�1,
then f =f ++ f &, where f + # Mk and f & # M&k+1&n . It is noted that the
spaces Mk , k=&1, &2, ..., &n+1, do not exist ([DSS]). We shall
postpone introducing more details of the Dirac operator to the later part
of this section.

Formally one may consider the Fourier multiplier operator induced by
a bounded sequence (bk) defined by

M(bk) f (x)= :
�

k=0

bk Pk( f )(x)+ :
�

k=0

b&k&1Qk( f )(x).

It is easy to see that M(bk) : A � A is a linear operator and one may ask
whether M(bk) extends to a bounded operator in L2(7). If 7 is a sphere,
then the boundedness is an immediate consequence of the Plancherel
theorem under merely the condition that (bk) is a bounded sequence (see,
e.g. [DSS]). If 7 is a starlike Lipschitz surface, then the condition is not
sufficient. We constructed an example in [Q1] showing that in R1

1=C
there is an unbounded operator of this sort.

As the main result of the paper we shall prove

Theorem 3. Let | # (arc tan(N ), ?
2). If b # H �(Sc

|), then with the con-
vention b(0)=0, the above defined M(b(k)) can be extended to a bounded
operator from L2(7) to L2(7). Moreover,

&M(b(k))&L2(7) � L2(7)�C& &b&L�(Sc
&) , arc tan(N )<&<|.

Remark 7. The boundedness is of the same sort as CMcM's Theorem.
Since the surfaces are of the homogeneous type in the sense of the doubling
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measure condition, the L2-boundedness implies the L p-boundedness for
1< p<�, as well as the weak-type (1, 1) boundedness, by virtue of the
standard Caldero� n�Zygmund techniques (see [St], [Da2]).

In order to prove the theorem we need to employ the singular integral
convolution expression of the operator. We shall start with the same type
expressions of the projection operators Pk and Qk .

According to Section 1.6.4 of Chapter 2 of [DSS], we have, in the
annulus where f is defined,

Pk( f )(x)=
1

0n
|

7
| y&1x|k C +

n+1, k(!, ') E( y) n( y) f ( y) d_( y)

and

Qk( f )(x)=
1

0n
|

7
| y&1x| &k&n C &

n+1, k(!, ') E( y) n( y) f ( y) d_( y),

where x=|x| !, y=| y| ',

C +
n+1, k(!, ')=

1
1&n

[&(n+k&1) C (n&1)�2
k ((!, ') )

+(1&n) C (n+1)�2
k&1 ((!, ') )((!, ')&!� ')],

and

C &
n+1, k(!, ')=

1
n&1

[(k+1) C (n&1)�2
k+1 ((!, ') )

+(1&n) C (n+1)�2
k ((', !) )((', !)&'� !)],

where C &
k is the Gegenbauer polynomial of degree k associated with &.

It is noted that C \
n+1, k are functions of y&1x. This may be seen from the

relations

(!, ') =
( y&1x, 1)

| y&1x|
, '� !=

y&1x
| y&1x|

and !� '=\ y&1x
| y&1x|+

&1

.

Now for k # Z+ _ [0], define

P� (k)( y&1x)=| y&1x|k C +
n+1, k(!, ')

and

P� (&k&1)( y&1x)=| y&1x|&k&n C &
n+1, k(!, ').
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It is noted that both P� (k) and P� (&k&1) are defined in the two-forms Rn
1_

Rn
1 , and P� (k)( y&1x) E( y) and P� (&k&1)( y&1x) E( y) are monogenic functions

in both variables x and y (see the sections on Laurent series in [DSS]). If,
in particular, y=1, then the above functions in the two forms reduce to
P(k)(x) and P(&k&1)(x), respectively. This is seen by comparing the Taylor
and Laurent expansions of E(x&1) and E(1&x) and (5) and (6)). The
domains of P� (k) and P� (&k&1) may be extended to R(n)_R(n), as inner
product and vector product both can be extended to the latter product
space.

Using these notations, we have, for k # Z+ _ [0], f # A,

Pk( f )(x)=
1

0n
|

7
P� (k)( y&1x) E( y) n( y) f ( y) d_( y)

and

Qk( f )(x)=
1

0n
|

7
P� (&k&1)( y&1x) E( y) n( y) f ( y) d_( y).

Accordingly, we have

f (x)= :
�

k=&�

1
0n

|
7

P� (k)( y&1x) E( y) n( y) f ( y) d_( y).

Remark 8. This is consistent with the convolution integral expressions
of the projection operators in the complex and quaternionic contexts.
Indeed, if f 0 is a holomorphic function in the annulus \&s<|z|<@+s in
C, _ a star-shaped Lipschitz curve in the annulus, then the Laurent series
of f 0 is given by

f 0(z)= :
�

k=&�

1
2? |

_
('&1z)k f 0(')

d'
'

.

See [Q5] for the analogue in the quaternionic space. In each of these con-
texts we write the projection operators as convolution integral operators
using the natural multiplicative structure of the underlying space. The
difference in the Rn

1 context with the previous ones is that now the kernel
functions are defined in the two-forms in Rn

1_Rn
1 .

The above defined functions P� (k) enjoy the following property.

Proposition 6. For any s # SRn
1

we have P� (k)(rs( y&1x))=rs(P� (k)( y&1x)).

Proof. This may be deduced from (i), (ii), (iv) of Lemma 3 and the
facts that rs is the identity on scalars.
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We shall call

,� ( y&1x)= :
�

&�

bkP� (k)( y&1x)

the kernel function associated with the multiplier operator M(bk) .

Proposition 7. Let | # (arc tan(N), ?
2) and b # H�(Sc

|). Then the kernel
function ,� ( y&1x) E( y) associated with the sequence (b(k)) in the manner
given above is monogenically defined in an open neighborhood of
7_7"[(x, y): x= y]. Moreover, in the neighborhood,

|,� ( y&1x)|�
C

|1& y&1x|n .

Proof. Let us first consider the left-monogeneity with respect to x.
Choosing s # SRn

1
as in Lemma 3, applying the mapping rs term by term to

the entries of the series ,� ( y&1x) E( y) and using the relation I=rs&1 rs

and Lemma 3, we have ,� ( y&1x) E( y)=rs&1(,� ( | y|&1 x~ ) E( y)). Denote
Dx~ =(���x~ 0) e0+(���x~ 1) e1+ } } } +(���x~ n) en , where every x~ k is a linear
combination of xi , the components of x, whose coefficients are determined
by the chosen s # SRn

1
based on the relation (s f0)(x f0)(s f0)&1=f0x~ . Since

x~ =s&1xs&1, we have Ds&1E(x~ )=Ds&1(sx� s�|x|n+1)=0. Therefore, Ds&1=
p(s) Dx~ , where p(s) is a rational function in S. Since now D(,� ( y&1x) E( y))
=(Ds&1)(,( | y| &1 x~ ) E( y) s = ( p(s) Dx~ )(,( | y|&1 x~ ) E( y) s, by invoking
Theorem 1 and Remark 6, we conclude that for any fixed y$, x$ # 7 and
x${ y$, ,� ( y&1x) E( y) is left-monogenically defined in a neighborhood U of
x$ where y$ # U, and ,� ( y&1x) satisfies the desired estimate with the con-
stant C depending on the size of the neighborhood.

Now consider the right-monogeneity of ,� ( y&1x) E( y) with respect to x. It
follows from the relation E( y) E(1&xy&1)=E(x& y)=E(1& y&1x) E( y)
that

E( y) P� (k)(xy&1)=P� (k)( y&1x) E( y).

We then conclude

E( y) ,� (xy&1)=,� ( y&1x) E( y)
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(also see e.g. [BDS] or [DSS]). This enables us to consider E( y) ,� (xy&1)
instead of ,� ( y&1x) E( y). A similar argument as above establishes the
right-monogeneity in x of the function.

Now we consider the monogeneity in y of the function ,� ( y&1x) E( y). We
claim that the function is also of the form �(x&1y) E(x), where �� is a func-
tion like ,� associated with a certain bounded holomorphic function. To
show this we recall the relation

C&
n+1, k(!, ') '� =C +

n+1, k(', !) !�

(see page 183 formula (1.12) of [DSS]) that implies

P� (k)( y&1x) E( y)=P� (&k&1)(x&1y) E(x).

So, if ,� is defined through b # H�(Sc
|) by ,� (x)=�$ b(k) P(k)(x), then

�� ( y)=�k{&1 b$(k) P(k)( y), where b$(z)=b(&z&1). The function b$ is
similar to the function b and the proof of Theorem 1 can be modified to
show that the function �� enjoys the same properties as ,� does. Having
proved this, the monogeneity in y follows from the conclusions established
in the early part of the proof. The proof is complete.

Using Theorem 2 for s=1 in stead of Theorem 1 in the above proof, we
obtain

Proposition 8. Let | # (arc tan(N), ?
2) and b holomorphic in Sc

| , bounded
near the origin and satisfying |b(z)|�C+ |z| at � in Sc

+ , 0<+<|. Then the
kernel function ,� ( y&1x) E( y) associated with the sequence (b(k)) is
monogenically defined in both x and y in a neighborhood of 7_7"[x= y].
Moreover,

|,� ( y&1x)|�
C

|1& y&1x|n+1 ,

For b # H�(Sc
|) we write briefly M(b(k))=Mb , i.e.

Mb f (x)= :
�

k=1

b(k) Pk( f )(x)+ :
�

k=1

b(&k) Qk&1( f )(x).

Now for x # 7, rr1 and r<1, consider the function

M r
b f (x)= :

�

k=1

b(k) Pk( f )(rx)+ :
�

k=1

b(&k) Qk&1( f )(r&1x)

=Pr(x)+Qr(x), \&x<|x|<@+s.
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Using the convolution expressions of the projections, we have

Pr(x)= :
�

k=1

b(k)
1

0n
|

7
P� (k)( y&1rx) E( y) n( y) f ( y) d_( y)

=
1

0n
|

7 \ :
�

k=1

b(k) P� (k)( y&1rx)+ E( y) n( y) f ( y) d_( y)

=
1

0n
|

7
,� +( y&1rx) E( y) n( y) f ( y) d_( y),

where ,� +=��
k=1 b(k) P� (k). Similarly, we have

Qr(q)=
1

0n
|

7
,� &( y&1r&1x) E( y) n( y) f ( y) d_( y),

where ,� &=�&1
k=&� b(k) P� (k).

Since the series defining M r
b f uniformly converges as r � 1&, we can

exchange the order of taking limit and summation, and obtain

Mb f (x)= lim
r � 1&

1
0n

|
7

(,� +( y&1rx)+,� &( y&1r&1x))

_E( y) n( y) f ( y) d_( y).

Theorem 4. If b # H �(Sc
|), then for any f # A and x # 7, we have

Mb f (x)= lim
r � 1&

1
0n

|
7

(,� +( y&1rx)+,� &( y&1r&1x))

_E( y) n( y) f ( y) d_( y)

= lim
= � 0

1
0n {|| y&x|>=, y # 7

,� ( y&1x) E( y) n( y) f ( y) d_( y)

+,� 1(=, x) f (x)= ,

where ,� =,� ++,� & is the function associated with b as specified in
Corollary 2 and ,� 1 the bounded continuous function: ,� 1=,� +, 1+,� &, 1, where

,� \, 1(=, x)=|
S(=, x, \)

,� \( y&1x) E( y) n( y) d_( y),

where S(=, x, \) is the part of the sphere | y&x|== inside or outside 7,
depending on \ taking + or &.
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Proof. We shall only consider the ``+'' half of the equality correspond-
ing to the decompositions ,� =,� ++,� & and ,� 1=,� +, 1+,� &, 1, as the ``&''
half can be dealt with similarly. For a fixed =>0, the integral can be
decomposed into

lim
r � 1& {|| y&x|>=, y # 7

,� +( y&1rx) E( y) n( y) f ( y) d_( y)

+|
| y&x|�=, y # 7

,� +( y&1rx) E( y) n( y) f ( y) d_( y)= .

As r � 1&, the first part tends to

|
| y&x|>=, y # 7

,� +( y&1x) E( y) n( y) f ( y) d_( y).

The second part can be further decomposed into

|
| y&x| �=, y # 7

,� +( y&1rx) E( y) n( y)( f ( y)& f (x)) d_( y)

+|
| y&x|�=, y # 7

,� +( y&1rx) E( y) n( y) d_( y) f (x).

As = � 0, the first integral tends to zero uniformly with respect to r � 1&;
invoking Cauchy's theorem, for a fixed =, the second integral tends to
,� +, 1(=, x) f (x) as r � 1&. The proof is complete.

The proof of Theorem 3 adopts the idea of [CM]. To proceed, some
preparations on Hardy spaces of monogenic functions and geometry
related to the surface 7 will be needed (see [Mi] for the theory of Clifford
monogenic Hardy spaces on higher-dimensional Lipschitz graphs).

Let 2 and 2c be the bounded and unbounded connected components of
Rn

1"7. For :>0, define the non-tangential approach regions 4:(x) and
4c

:(x) to a point x # 7 to be

4:(x)=4:(x, 2)=[x # 2 : | y&x|<(1+:) dist( y, 7)],

and

4c
:(x)=4:(x, 2c)=[x # 2c : | y&x|<(1+:) dist( y, 7)].

It is easy to show, similarly to the complex variable case considered in
[K1] and [JK], that there exists a positive constant :0 , depending on the
Lipschitz constant of 7 only, such that 4:(x)/2 and 4c

:(x)/2c for
0<:<:0 and all x # 7. The following argument is independent of specially
chosen : # (0, :0). We choose and fix : from now on.
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Let f be defined in 2. The interior non-tangential maximal function N:( f )
is defined by

N:( f )(x)=sup[ | f (x)|: y # 4:(x)], x # 7.

The exterior non-tangential maximal function N c
:( f ) is defined similarly.

For 0<p0<�, the (left-) Hardy space H p0(2) is defined by

H p0(2)=[ f: f is left-monogenic in 2, and N:( f ) # L p0(7)].

If f # H p0(2), then & f &H p0(2) is defined as the L p0 norm of N:( f ) on 7.
The space H p0(2c) is defined similarly, except that the functions in

H p0(2c) are assumed to vanish at the infinity. Similarly to the monogenic
Hardy space case studied in [Mi], one can prove

Proposition 9. If f # H p0(2), p0>1, then the non-tangential limit of f,

lim
y � x, y # 4:(x)

f ( y)

exists almost everywhere with respect to the surface measure on 7. Still using
f to denote the limit function, we have

CN, p0
& f &H p0(2)�& f &L p0(7)�C$N, p0

& f &H p0(2) ,

where CN, p0
, C$N, p0

depend on the Lipschitz constant N and p0 .

In other words, for p0>1, the H p0(2) norm of a function is equivalent
to the L p0 norm of its non-tangential limit on the boundary. A similar
result holds for functions in the Hardy space associated with 2c.

In polar coordinate system the Dirac operator D can be decomposed
into

D=`�r&
1
r

�`=` \�r&
1
r

1` + ,

where 1` is a first order differential operator depending only on the angular
coordinates known as spherical Dirac operator (see [DSS] or [L]). It is
known that

1` f (`)=kf (`), f # Mk , (9)

where Mk , k{&1, &2, ..., &n+1, is the subspace of k-homogeneous left-
monogenic functions. For f # A we define 1` ( f |7) to be the restriction on
7 of the monogenic extension of 1` ( f |SRn

1
). The definition of 1` can be

extended to 1` : A � A.
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The following result on norm equivalence of higher order g-functions of
f # H 2(2) and the proof of it both are similar to those for Lipschitz graphs
studied in [Mi] (also see [JK]). The counterpart result holds for
f # H 2(2c).

Proposition 10. Suppose that f # H 2(2). Then the norm & f &H 2(2) is
equivalent to the norm

|
1

0
|

7
|(1 j

` f )(sx)| 2 (1&s)2 j&1 d_(x)
ds
s

, j=1, 2, ...

The following is equivalent to CMcM's Theorem on 7 ([CMcM]).

Proposition 11. Suppose that f # L2(7). Then there exist f + # H 2(2)
and f & # H 2(2c) such that their non-tangential boundary limits, still denoted
by f +, f &, respectively, lie in L2(7), and f =f ++ f &. The mappings f � f \

are continuous on L2(7).

It is easy to see that if f # A, then the natural decomposition of f into
its power series part and principal series part is identical to the decomposition
given in Proposition 11.

Denote by 7s , 0<s<1, the surface [sx: x # 7].

Lemma 4. Let x0 # 7, 0<s<1, and x=sx0 . Then there exists a
constant C7 such that

|1& y&1x|�C7[(1&- s)2+%2]1�2, y # 7- s ,

where %=arg (x, y).

Proof. It is equivalent to prove

| y&x|�C7 - s [(1&- s)2+%2]1�2, y # 7- s .

Let x0=r0 !, y=r', x1=- s x0 # 7- s , where !, ' # SRn
1
. A direct computa-

tions shows

| y&x|2=r2 _(1&;)2+4; sin2 %
2&

�C7 s[(1&;)2+;%2], (10)

where ;= sr0
r .

If s is small, then ; is small and 1&; has a positive lower bound. Since
the right hand side of the desired inequality is bounded from above, it is
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dominated by a constant multiple of 1&;. We thus obtain the desired
estimate.

Now assume that s is close to, but less than 1. In this case ; has a
positive lower bound. We have two subcases to consider. Denote r1=
|x1|=- s r0 .

(i)
r1
r �s&1�4. In this case ;�s1�4 and so 1&;�1&s1�4>C(1&- s).

The desired estimate then follows.

(ii)
r1
r >s&1�4. In this case

ln(s&1�4)<ln \r1

r +�N%,

where we have used the fact that 7- s is Lipschitz with the Lipschitz
constant N, and so

%>
1

4N
ln(s)�

1
4N

(1&- s).

Therefore,

%>
1
2

%+
1

8N
(1&- s).

Substituting into (10) and ignoring the entry related to 1&;, we obtain the
desired estimate.

Proof of Theorem 3. Let f # A. Using the decomposition of f defined
in Proposition 11, we have f =f ++ f &, where f + # H 2(2), f & # H 2(2c),
& f \&L2(7)�CN & f &L2(7) . We also have Mb f =Mb+ f ++Mb& f &, where

Mb\ f \(x)= lim
r � 1& |

7
,� \(r\1y&1x) E( y) n( y) f ( y) d_( y), x # 7.

Mb\ f \ can be left-monogenically extended to 2 and 2c by using

Mb\ f \(x)=|
7

,� \( y&1x) E( y) n( y) f ( y) d_( y),

for x # 2 and x # 2c, respectively.
Owing to Proposition 9, it suffices to show

&Mb\ f \&H2�CN & f \&H 2 .
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We will now prove the inequality for the case ``+'', as the case ``&'' may
be dealt with similarly. We will suppress the superscript ``+'' in below for
simplicity. Using the Taylor series expansion of f, and that of Mb f, we can
prove that 1` commutes with Mb . To prove this we exchange the order of
taking differentiation 1` and infinite summation which is justified by the
fast decay of Fourier expansions of functions in A. As consequence of the
commutativity we have, for x # 2,

1`Mb f (x)=
1

0n
|

7
,� ( y&1x) E( y) n( y) 1` f ( y) d_( y).

We also have

1 2
` Mb f (x)=

1
0n

|
7

1` (,� ( y&1x)) E( y) n( y) 1` f ( y) d_( y)

that is justified by the following

Lemma 5. If & # (arc tan(N ), |), then

|1` (,� ( y&1x))|�C&
1

|1& y&1x|n+1 , y # 7, x # 2.

Proof. In the expansion

,� ( y&1x) E( y)= :
�

k=1

b(k) P� (k)( y&1x) E( y),

substituting

P� (k)( y&1x) E( y)= :
|:
�
|=k

V:
�
(x) W:

�
( y),

where V:
�

# Mk , Q:
�

# M&n&k (see formula (1.15) of p. 184, Chapter 2,
[DSS]), and applying 1` with respect to x to the series, we obtain

1` (,� ( y&1x)) E( y)= :
�

k=1

kb(k) P� (k)( y&1x) E( y).

The right hand side series is associated with the multiplier b$(z)=zb(z).
Applying Proposition 8, we conclude the lemma.
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Now we continue the proof of Theorem 3. For x # 7s changing the
contour in the integral expressing 1 2

` Mb ff (x) and using Lemma 5 and 4,
we have,

|1 2
` Mb f (x)|�C \|7

- s

|1` (,( y&1x))|
d_( y)
| y|n +

1�2

_\|7
- s

|1` (,( y&1x))| |1` f ( y)|2 d_( y)
| y| n +

1�2

�C \|7
- s

1
|1& y&1x| n+1

d_( y)
| y|n +

1�2

_\|7
- s

1
|1& y&1x|n+1 |1` f ( y)|2 d_( y)

| y| n +
1�2

�C \|7

1

((1&- s)2+%2
0)(n+1)�2

d_( y)+
1�2

_\|7

1

((1&- s)2+%2
0)(n+1)�2

|1` f (- s y)|2 d_( y)+
1�2

,

where %0 is the angle between x # 7s and y # 7.
Since

|
7

1

((1&- s)2+%2
0) (n+1)�2

d_( y)�C |
?

0

sinn&1 %0

((1&- s)2+%2
0) (n+1)�2

d%0

�C |
?

0

%n&1
0

((1&- s)2+%2
0) (n+1)�2

d%0

=C
1

1&- s
,

using Proposition 10 for j=1, 2, we have

&Mb f &2
H 2(2) r|

1

0
|

7
|1 2

`(Mb f )(sx)|2 (1&s)3 d_(x)
ds
s

�C |
1

0
|

7

1

1&- s \|7

1

((1&- s)2+%2
0) (n+1)�2

_|1` f (- s y)|2 d_( y)+ (1&- s)3 d_(x)
ds
s
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�C |
1

0
|

7
|1` f (- s y)| 2

_\|7

1&- s

((1&- s)2+%2
0)(n+1)�2

d_(x)+ (1&- s) d_( y)
ds
s

�C |
1

0
|

7
|1` f (- s y)| 2 (1&- s) d_( y)

ds
s

�C |
1

0
|

7
|1` f (sy)|2 (1&s) d_( y)

ds
s

rC & f &2
H 2(2) .

The bounds of the operator norm &Mb& can be derived from the proof of
Lemma 5 and the estimates obtained in Theorem 2. The proof is complete.

Remark 9. As in the standard cases the Hilbert transform on the unit
sphere and on star-shaped Lipschitz surfaces is defined via the Fourier mul-
tiplier b(z)=&i sgn(z), where sgn(z) is the signum function that takes the
value +1 for Re(z)>0 and the value &1 for Re(z)<0. The associated
singular integral is given by the kernel

1
0n

,� ( y&1x) E( y)=
1

0n
:
�

k=&�

$
&i sgn(k) P� (k)( y&1x) E( y)

= &
2i
0n

E(1& y&1x) E( y)=&
2i
0n

E( y&x).

When y=1, the above reduces to & 2i
0n

E(1&x)= 1
0n

((��
k=&� $&i sgn(k)

zk), as deduced in Section 2.

4. HOLOMORPHIC FUNCTIONAL CALCULUS OF THE
SPHERICAL DIRAC OPERATOR

We wish to point out that the class of the bounded operator Mb studied
in Section 2 constitutes a functional calculus of 1` , and is, in fact, identical
to the Cauchy�Dunford bounded holomorphic functional calculus of 1` .
For a discussion in relation to domains of Dirac operators on Lipschitz
graphs we refer the reader to [LMcQ] and [Mc3].

The operators Mb enjoy the following properties, and thus the class Mb ,
b # H �(Sc

|), is called a bounded holomorphic functional calculus.

403FOURIER ANALYSIS ON SURFACES



Let N=Lip(7), arc tan(N )<|< ?
2 , 1<p0<�, b, b1 , b2 # H �(Sc

|), and
:1 , :2 # C. Then

&Mb&L p0(7) � L p0(7) �Cp0 , & &b&L�(Sc
&) , arc tan(N )<&<|;

Mb1b2
=Mb1

b Mb2
;

M:1b1+:2b2
=:1 Mb1

+:2 Mb2
.

The first assertion is obtained in Remark 7. The second and the third are
derived by using Laurent series expansions of the test functions.

Denote by

R(*, 1`)=(*I&1`)&1

the resolvent operator of 1` at * # C. We show that for non-real *,
R(*, 1`)=M1�(*&( } )) . In fact, owing to the relation (9), the Fourier multi-
plier *&k is associated with the operator *I&1` , and therefore the
Fourier multiplier (*&k)&1 is associated with R(*, 1`). The property of
the functional calculus in relation to the boundedness then asserts that, for
1<p0<�,

&R(*, 1`)&L p0(7) � L p0(7)�
C&

|*|
, * � Sc

& .

Owing to this estimate, for b # Sc
| with good decays at both zero and the

infinity, the Cauchy�Dunford integral

b(1`) f=
1

2?i |
6

b(*) R(*, 1`) d* f

defines a bounded operator, where 6 is a path consisting of four rays:
[s exp(i%): s is from � to 0] _ [s exp(&i%): s is from 0 to �] _ [s exp
(i(?+%)): s is from � to 0] _ [s exp(i(?&%)): s is from 0 to ], and arc tan
(N )<%<|. The functions b of this sort form a dense subclass of H �(Sc

|)
in the sense specified in the Convergence Lemma of McIntosh in [Mc2].
Using the lemma, we can extend the definition given by the Cauchy�
Dunford integral and define a functional calculus b(1`) on general
functions b # H �(Sc

|).
Now we show b(1`)=Mb . Assume again that b has good decays at both

zero and the infinity, and f # A. Then change of order of integration and
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summation in the following chain of equalities may be justified, and we
have

b(1`) f (x)=
1

2?i |
6

b(*) R(*, 1`) d* f (x)

=
1

2?i |
6

b(*) :
�

k=&�

$
(*&k)&1

_
1

0n
|

7
P� (k)( y&1x) E( y) n( y) f ( y) d_( y) d*

=:
k

$ \ 1
2?i |

6
b(*)(*&k)&1 d*+

_
1

0n
|

7
P� (k)( y&1x) E( y) n( y) f ( y) d_( y)

=:
k

$
b(k)

1
0n

|
7

P� (k)( y&1x) E( y) n( y) f ( y) d_( y)

=Mb f ( y).

Denote by P\ the projection operators P\f =f \ as defined in Proposition 11.
It follows from the norm estimate of the resolvent R(*, 1`) that 1`P\ are
type-| operators (see [Mc2]).

The operators 1`P\ and 1` are identical to their dual operators on
L2(7) in the dual pair (L2(7), L2(7)) under the bilinear pairing

(( f, g)) =
1

0n
|

7
f (x) n(x) g(x) d_(x).

That is

((1`P\f, g))=(( f, 1`P\g))

and

((1` f, g))=(( f, 1` g)).

These can be easily derived from Parseval's identity

:
�

k=0

:
|;
�
|=k

*;
�
*$;

�
++;

�
+$;

�
=

1
0n

|
SR

n
1

f (x) n(x) g(x) d_(x),

in the notation of p. 193 of [DSS], and the relation (9).
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Analogous conclusions hold for the Banach space dual pairs (L p0(7),
L p$0(7)), 1< p0<�, 1

p0
+ 1

p$0
=1, under the same form of bilinear pairings.

For Hilbert and Banach space properties of the operators 1`P\ and 1`

we refer the reader to the general study on type-| operators in [Mc2] and
[CDMcY].

5. THE ANALOGOUS THEORY IN Rn

We outline how to establish an analogous theory in the symmetric
Euclidean spaces Rn=[x

�
=x1e1+ } } } +xn en : x i # R].

In Rn the Cauchy kernel is E
�
(x

�
)=x� �|x

�
� | n and the Dirac operator is

D
�

=(���x1) e1+ } } } +(���xn) en . We also have Cauchy's Theorem and
Cauchy's Formula ([DSS]). Corresponding to the formula (5), we have

E
�
(x

�
&e1)=P

�
(&1)(x

�
)+P

�
(&2)(x

�
)+ } } } +P

�
(&k)(x

�
)+ } } } , |x

�
|>1. (11)

In the relation

E
�
(x

�
&y

�
15)=

x
�
� &y�

�
|x

�
� &y

�
� |n= :

�

k=1

(&1)k&1

(k&1)!
( y

�
, {x

�
) k&1 x

�
�

|x
�
� |n , (12)

where {x
�
=(���x1 , ..., ���xn), letting y

�
=e1 , we obtain

P
�

(&k)(x
�
)=

(&1)k&1

(k&1)! \
�

�x1+
k&1

E
�
(x

�
).

From the Taylor series theory we know that the general entries of the
infinite series (12) is monogenic in both x

�
and y

�
with respect to D

�
. So

P
�

(&k)(x
�
)'s are monogenic. Define

P
�

(k&1)=I(P
�

(&k)), k # Z+,

where I
�

is the Kelvin inversion: I
�
( f )(x

�
)=E

�
f (x

�
&1). The property of the

Kelvin inversion asserts that P
�

(k&1)'s are monogenic. It can be easily
verified that Proposition 1 holds when we replace P(k) by P

�
(k), x by x

�
and

n by n&1.
There are corresponding objects like the heart shaped regions H|, \ in

the context, namely

H
�

|, \={x
�

# Rn :
(\ln |e1x

�
| )

arg (e1 , x
�
)

<tan |= ,
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and

H
�

|=H
�

|, + & H
�

|, & .

That is

H
�

|={x # Rn :
|ln |e1x

�
| |

arg (e1 , x
�
)
<tan |= .

We use the functions spaces

K(H
�

|, \)={,
�
: H

�
|, \ � C(n) : ,

�
is monogenic and satisfies

|,
�
(x

�
) |�

C+

|e1&x
�
|n&1 , 0<+<|= ,

and

K(H
�

|)=[,
�
: H

�

c
| � C(n) : ,

�
=,

�
++,

�
&, ,

�
\ # K(H

�
|, \)].

Like Theorem 1, the following is the main technical result.

Theorem 1$. If b # H �(Sc
|, \) and ,

�
(x

�
)=�\�

k=\1 b(k) P
�

(k)(x
�
), then

,
�

# K(H
�

|, \).

We shall postpone its proof to the end of the section. The analogous
result to Theorem 2 also holds.

Theorem 2$. Let &�<s<�, s{&1, &2, ..., and b a holomorphic
function in Sc

|, \ satisfying the estimates

|b(z)|�C+ |z\1| s, in every Sc
+, \ , 0<+<|.

Then ,
�
(x

�
)=�\�

i=\1 b(i) P
�

(i)(x
�
) can be monogenically extended to H

�
|, \

satisfying

|,
�

\(x
�
) |�C+ " b( } )

|( } )\1| s"L�(Sc
+$

)

1
|e1&x

�
| s+n&1 ,

x
�

# H
�

+, \ , 0<+<+$<|.
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A surface 7
�

in Rn is aid to be a starlike Lipschitz surface, if it is (n&1)-
dimensional and star-shaped about the origin, and there exists a constant
M<� such that x

�
, x

�
$ # 7

�
implies that

|ln |x
�

&1x
�
$| |

arg (x
�
, x

�
$)

�M.

The minimum value of M is called the Lipschitz constant of 7
�
, denoted by

N
�

=Lip(7
�
).

We shall use the class

A
�

=[ f: f (x
�
) is left-monogenic in \

�
&s<|x

�
|<@

�
+s for some s>0],

where \
�
=inf[ |x

�
|: x

�
# 7

�
] and @

�
=sup [ |x

�
|: x

�
# 7

�
]. It is a consequence of

CMcM's Theorem that A
�

is dense in L2(7
�
).

For f # A
�

we have the expansion

f (x
�
)= :

�

k=0

P
�

k( f )(x
�
)+ :

�

k=0

Q
�

k( f )(x
�
),

where for k # Z+ _ [0], P
�

k( f ) belongs to the finite dimensional right
module M

�
k of k-homogeneous left-monogenic functions defined in Rn, and

Q
�

k( f ) belongs to the finite dimensional right module M
�

&k&n+1 of
&(k+n&1)-homogeneous left-monogenic functions defined in Rn"[0].
The spaces M

�
k and M

�
&k&n+1 are eigenspaces of the associated spherical

left-Dirac operator 1
�

`
�
, defined by

D
�

=`
�
�r&

1
r

�`
�
=`

� \�r&
1
r

1
�

`
� + .

It is known that

1
�

`
�
f (`

�
)=kf (`

�
), f # M

�
k .

We consider the Fourier multiplier operator induced by a bounded
sequence (bk), defined by

M
�

(bk) f (x
�
)= :

�

k=0

bk P
�

k( f )(x
�
)+ :

�

k=0

b&k&1Q
�

k( f )(x
�
).

There are analogous singular integral expressions in the present case as in
Theorem 4. There is also an analogous Hardy H 2 space theory in the case.
Based on these, together with Theorem 1$ and Theorem 2$, we can adapt
the method for proving Theorem 3 in the Rn

1 case, step by step, to prove
the following
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Theorem 3$ . Let | # (arc tan(N
�

), ?
2). If b # H �(Sc

|), then with the con-
vention b(0)=0, the above defined M

�
b=M

�
(b(k)) extends to a bounded

operator from L2(7
�
) to L2(7

�
). Moreover,

&M
�

(b(k))&L2(7
�
) � L2(7

�
)�C& &b&L�(Sc

&) , arc tan(N
�

)<&<|.

Through the proof of Theorem 3$ we can show that the class of Fourier
multiplier operators M

�
b is identical to a certain class of singular integral

operators (see Theorem 4).We can also show, using the indications given in
Section 4, that the class is also identical to the Cauchy�Dunford bounded
holomorphic functional calculus of the spherical Dirac operator 1

�
`
�
.

The reader may have noticed that almost all objects in Rn are obtained
by simply putting underlines to the corresponding objects in Rn

1 , except
those in which e0=1 is replaced by e1 . In accordance with this, only
Theorem 1$ and Theorem 2$ need to be proved. Thanks to the fact that Rn

can be reduced to Rn&1
1 we are able to easily produce the theory in Rn. As

in the Rn
1 case we only give a proof of Theorem 1$.

Proof of Theorem 1$. As in the proof of Theorem 1, the case b # H �(Sc
|, \)

is reduced to the case b # H �, r(Sc
|, \), and the case b # H �, r(Sc

|, +) is
reduced to the case b # H �, r(Sc

|, &).
Let b # H�, r(Sc

|, &).We have

,
�
(x

�
)= :

�

k=1

b(&k) P
�

(&k)(x
�
)= :

�

k=1

b(&k)
(&1)k&1

(k&1)! \
�

�x1+
k&1

E
�
(x

�
)

=&e1 :
�

k=1

b(&k)
(&1)k&1

(k&1)! \
�

�x1+
k&1

\ x1&x2g1& } } } &xn gn&1

|x1+x2 g1+ } } } +xn gn&1| n+
=&e1 :

�

k=1

b(&k)
(&1)k&1

(k&1)! \
�

�x1+
k&1

E(x~ )

=&e1,� (x~ ),

where gi=ei+1e&1
1 , i=1, ..., n&1 are basic vectors like e1 , e2 , ..., en&1 and

x~ =x1+x2 g1+ } } } +xngn&1 , a vector in Rn&1
1 . We also have

D
�

=\ �
�x1

+
�

�x2

g1+ } } } +
�

�xn
gn&1+ e1=D� e1 ,

where D� is the Dirac operator in Rn&1
1 . We hence conclude that ,

�
is left-

monogenic with respect to D
�

in Rn if and only if ,� is left-monogenic with
respect to D� in Rn&1

1 . The heart-shaped regions H
�

|, \ are identical to those
in Rn&1

1 with e1 being replaced by 1. The desired left-monogeneity and the
estimate then follow from those of Theorem 1. The right-monogeneity can
be proved similarly, with the only difference that e1 is factorized out
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of E
�
(x

�
) from the right hand side, and of D

�
from the left hand side, and

define gi=e&1
1 e i+1 . The proof is complete.

The idea of the work is summarized as follows. The key and the
innovative method is to establish a corresponding relationship, through
generalizing Fueter's and Sce's results ([Sc], [Q6]), between the basic
functions of one complex variable: ..., z&2, z&1, 1, z, z2, ... and the functions
P(k) of one Clifford variable, called monomials. We then show that the
monomials give rise to, through convolution integrals, the projections of
functions on annuli onto the spaces of k-homogeneous monogenics. This is
shown to be of exactly the same as in the one complex variable case: The
projections there are given by convolution integrals using ..., z&2, z&1, 1, z, z2, ...
as kernels. The significant is that we are now able to estimate kernels of the
form of infinite series of the monomials (Theorem 1). This turns to be the
usual case on the sphere. It is remarkable that we achieve the estimates
without using special functions such as the Gegenbauer polynomials as
usually involved in the eigenspace decompositions (also see [BDS], [DSS]
and [L]). The desired properties of the kernels are reduced, through the
corresponding relationship, to a holomorphic extension result of Laurent
series of one complex variable obtained in [Q1] (also see [Q2], [Kh]).
The theory established in this paper thus supports the philosophy that
results that hold on the unit circle would also hold on the unit sphere via
the corresponding relationship between the basic function sequences in the
two spaces.
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