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Abstract

Caldebn type reproducing formulae with applications have been studied on one- and higher-dimensional
Lipschitz graphs. In this note we study higher order Caldeeproducing formulae on star-shaped and
non-star-shaped closed Lipschitz curves and surfaces.
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0. Introduction

Function spaces and singular integrals on curves and surfacess(sge3| 2, 8,

7]) are closely related to boundary value problems on the same type of curves and
surfaces. There have been growing interests in non-smooth, viz. Lipschitz-types,
curves and surfaces (se&4] and [9]). Of technical importance in dealing with

the above mentioned problems is Littlewood-Paley decomposition of functions. In
our notation it is continuous (integral) and discrete types of Caldeeproducing
formulae. Besides the direct use of the integral type Caldsreproducing formulae,

one can construct discrete type wavelet frames on curves and surfaces using the integr
formulae. Examples of this approach can be found&hdnd [13] concerning function
spaces and operator theory on Lipschitz graphs. The latter solves a long standing
open problem on giving a constructive proof of the result that any BMO function on
a Lipschitz graph can be decomposed into a sum of two functions of which one is a
bounded function and the other is the Cauchy singular integral of a bounded function.
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This generalizes Uchiyama'’s constructive proof of the famous Fefferman-Stein result.
The study in 3] deals with one dimensional graphs only. In this paper we generalize

the methods of13] to closed, star- and non-start-shaped, Lipschitz curves, and further
to higher dimensional surfaces.

1. On star-shaped Lipschitz curves

Throughout this papeétris arbitrary, but fixed positive integer representing the order
of the Caldeoh reproducing formula under study. Calderon’s reproducing formula
on Lipschitz graphs in relation to Cauchy’s formula is studied in our contex]in [
and []. The formula on one-dimensional Lipschitz graphs reads as followsGLet
be the graph of a Lipschitz function defined on the whole real line. fFarL?(G),

1 < p < oo, there holds

p.v./ J?f(z)% =(-1'C f(z), ae zeG,

[ee}

whereC, =222 — 1), J f(z) =t'FOz+it), F» =d' F/dZ, and

Ifz—i/ 1f dn, zeC\G
()—zﬂién_z(n) n, zeC\G,

andJ; is the convolution integral operator on the graph with the kernel

- I t!
e = ez

We have the alternative form for the above formula:

p. v./ 2P F@(z 4 2it)dt = (-1)'C f(2, ae zeG.
Let G be the graph of a continuous functi@(x) = X +iAX), -7 < X < m,
whereA(—n) = A(xr) and A is a Lipschitz function, that is&(x) € L*®([—m, 7]).
Denote byy the star-shaped Lipschitz curve given by the parametric equation=
€™, —r < x < 7. Itis easy to see that is star-shaped Lipschitz with pofe= 0,
if and only if it is of this form. Fourier analysis on star-shaped Lipschitz curves is
studied in [LQ].
Denote the Cauchy integral

1 f(n)
F(Z)—ﬁfyn_zd”’ z¢y.
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To stress thaF is being induced by the boundary ddtawe writeF = F(f). It has
the alternative form as a convolution operatorjomsing the natural multiplicative
structure inC,

d
F(2) =/¢(an)f(n)7n, z¢vy,
Y

where
$(2) = L1
2ri1—n’
and the measure/2zi dn/n is the normalized complex measurejn
1 d
L fdn_,
27i J, n

as a consequence of Cauchy’s Theorem. far L(y), denote
1 dn
I(H)=FO0O) =— [ f(n)—.
(1) V) o /y () "
Define the circular Dirac operator by

d
r,f(z)= Zd_z f(2),

which is the differential operator along the circle. Indeed, on the circle usiag'”,
we have

L gy
FQF(Z)_deF(z)_ldeF(e ).

The following decomposition is consistent with the Dirac operator decomposition in
Section2,

Introduce the operator
J & = (nr) T, F)Er),

which is a convolution operator using the natural multiplicative structure of the com-
plex number field. The kernel,(¢,17) = (Inr)'(T,¢)(n~*&r) can be explicitly
computed using the expressiondofit is holomorphic in both) and&, and its mixed
kth-derivatives iy andé are dominated b, (Inr)' |w —r&|"'~**ony. We have

(J26)(E) = (Inn)?(T7 F)(Er?).
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Below we will use the notation ‘. [*. It does not denote the conventional
principal value of the integral, but has the meaning

00 €
lim + lim .
e—1+ P €e'—=1— 0

Throughout this note we will adopt this less strict meaning o¥:pappropriate to the
context.

The continuous type Calden reproducing formula for star-shaped Lipschitz curves
is given by

THEOREM1. Let f € LP(y), 1 < p < oo. Then

*© dr
1) D'V-/ (FHE=—=C(fE —-I1(f), aetey,
0 rinr
where thép.v.’ integral is with respectto = 1.

ProoOF. Changing variable™ = r, it suffices to prove

(2) p.v./ootz'l(FS'F)(geZ‘)dt =C(f@&) —1(f), ae&ey.

e}

A direct calculation gives

oy _ (4 ) oy _ 1 ﬂ) w
Ty F)(&e )_<Zsz (&) =2 at (F@Ee™)),

and therefore,

2k
3 (TyF) (e ™) = (=2)°" (%) (Fe™), kez'

Using integration by parts, the left-hand side 8f i6 equal to

00 d 21-1
272| p V./ t2|71d <a> (F(gefﬂ))

=2 [ lim t?-1 <£>2I1(F(§e2‘))— lim t?-1 <£>2I1(F(§e2‘))+
N d t——o0 dt

t—+o00 t

t—0— dt dt

00 d 2-2
-2 -1 p.v./ t?-2d (E) (F(se”))]

2-1 2-1
+ fim 27 (g) (Fge™) — lim t27 <3> (Fge?) —
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Now we show that the four limits are all zero. Note that for some constnts
k=12...,2 —1,

d\2! 2-1 dk
2a-1_ [, 2 _ k2
4) ry (Zdz> > CZ o
and
dk k! f(n)
(dz“) F@ = 2 , (n— z)1+'<d77

The relation 8) implies

2

-1 C k't2| 1 (ge Zt)k
k / G —gemuk WA

d 2-1
© () Feey =22y
Using the Lebesgue Convergence Theorem to each of the entries in the summation
we conclude that the first limit is zero &s> +o0.
Now we study the second limit correspondingtte> —oo. Using Holder’s in-
equality, we have, fog € (1,00),1/q + 1/p = 1 andt being sufficiently close
to —o0,

(5™ |Ee2|k 1/q
21/07 2t)Hk(n)dn|<tz|1 /H_E;ﬁmalm I llieg)

< Ceq 27 fllogy, 1<k<2 -1

This shows that the second limit is zero.

Next we prove that the third and fourth limits are zero. kétdenote the class
of the functions holomorphic in some annulus containimndt can be shown that/
is dense inLP(y), 1 < p < oo [10]. We show thatly, commutes withF, that is,
IyF(f) = F(T, ). Infact, using Laurent series expansions of functions/irand
that of the functiory, and invoking Cauchy’s theorem far¢ y, we have

1 d
TyF)(2) = o /(Fe)z¢(2nl)f(n) 717
Y

L[ @hm

_i/ (zn™H(T f)()d—n_
- 27i y¢77 ’ nn_Zﬂiy n—2

Denote byf + and f ~ the two parts, corresponding to the positive and negative powers,
in the Laurent expansion df. Hence,f* is holomorphic inside a disc containing
and f ~ is holomorphic outside a disc containipg Fort > O,

2-1 —2t _i/ (F§|71f+)(’7)
CRGe™ =50 | ==y
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and, fort < 0, we have

(F2| lF)(Eefzt) — 1 / (Fglilfi)(n) dT]
v

270 n—2z

Lettingt — O, respectively, by virtue of the Plemelj theorem in the context, we have

2-1¢+
I|m (F2| lF)(gefﬂ) — tll n % / (FQ ; _f Z)(”))

This implies that, forf € <7,

d 2-1
li 2-1( 2 F(Ee2)) =0
im t (dt) (F@Ee™)

t—0+

dnp=T2"1f*E), £ey.

Now we considerf € LP(y). We prove that fot € (0, §), wheres is a fixed positive
number less than 1, the operator

O<t<s$

d 21-1
T, . f(&) = supt?” l(m) (FEe ™))

is dominated by the maximal functidvi f , wheref = f ™ + f—, f* are the Hardy
space components df inside or outside/, respectively. To prove this, we use the
relation ), and show that each entry of the summation is dominated by the maximum
function. Notice that every entry irb)

—2t\k
o ] e

é:e 2t)l+k

tk

_ nflée 2t)1+k | f+(’7)| dT),

it is sufficient to show that if; andé are close enough, then the kernel of the above
integral is dominated by a Poisson type kernel. In fact, using the parametric expressior
of y, we haven = €A & — dOHAY) |f x andy are close enough modulor2

then

|1 o ei (x—y)—(A(x)fA(y)+2t)| Z c ((X _ y)z + (A(X) - A(y) + 2t)2)1/2 )

If the Lipschitz constantN of y is less than 1, then it is easy to show, using the
elementary inequalitg® > (a + b)?/2 — b2, that

(X — ¥)2 + (AX) — A®Y) + 2t > eyl (x — y)* + t2].

If the Lipschitz constaniN of y is greater than or equal to 1, then using the same
inequality we have

(X —Y)? + (AX) — A®Y) + 2t)* > (X — y)* + (AXX) — A(Y) + 2t)°/(2N)
> cn[(X — y)? + 7).
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And so

tk
<c .
T (X y)? 1)

tk

The right-hand side is a Poisson type kernel. An analogous argument gives that for
somed’ € (—1, 0), the operator

2-1
T, f() = supt?™ <£> (Fe™?)

0>t>¢’ dt

F (g) be the Cauchy integral @f. We have
> A})
<m, (T, (f —9)&) > 1/2})

is dominated byM f —.
Denote bym, the arc-length measure gn Leti > 0, f € LP(y), g € & and
d 2-1
T $2-1( 2 —2t
m, ({BJ[@M t (dt> (FEe™)
d 2-1
T $2-1( 2 —2t

+m, ({BJ@M t (dt) (F(@Ee )| > K/2}>
<m,({cM(f —9)" () > 2/2) = ¢ (I'f — Gl /)"

Since« is dense inLP(y), the last entry may be made as small as we want. This
concludes that the fourth limit is zero. Similarly, we can show that the third limit is

zero.
Repeating this argument, we have

00 d 21-1
272| p V./ t2|71d <a> (F(gefﬂ))

00 d 2-2
=22[—@2 - D]p. v./ t?—2d (E) (FEe?) =-..

— 22— - D!]p.v. /Oo d(F(ge™) =272 — DI(F (&) — 1 (F)),

by involving the Plemelj theorem in the context. The proof is complete. O

2. Star-shaped Lipschitz surfaces

Denote byR" = {x;&; + -+ + X.€, : X € R, i = 1,...,n}, wheree? = —1,
ee = —ee,i # j,i,j =1...,n LetX be a star-shaped Lipschitz surface in
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R" whose pole is at the origin. We recall that both the réatliZnensional Clifford
algebraR™ and the complex™2dimensional Clifford algebr&™ have basis vectors
es, whereS= (j;,... ,Js),1<s<n1<ji<---<]js jkeZandes =g, - - €
For S= ¢, we identifye; with gy = 1.

Let F be a real or complex Clifford-valued function defined in an operfsetR"
and F(x) = ) gesFs, whereS runs over the above described ordered subsets of
{1,...,n}. Fis said to bdeft-monogenién €, if

s

DF(x) =0, xe,

whereD = €9, +--- +€,d,, andDF(x) =), > sees(dFs/dx) (see, for example,
[1] or [4]). Similarly we can defingight-monogenidunctions.

A surface is called atar-shaped Lipschitz surfaci it is star-shaped and locally
Lipschitz (see 9]). Fourier analysis on star-shaped Lipschitz surfaces is studied
in[11, 12].

For f € L1(X), the function

6) FX)=F(HX) =

/ E(y —xn(y) f(y)do(y), xeR"\ X,
z

Wn-1
is left-monogenic, whera(y) is the outward normal ok aty € %, do(y) is the
surface area olt, E is the Cauchy kerndt(y) = —y/|y|", andw,_; the surface area
of the (n — 1)-dimensional unit sphere.

The functionF (x) may be re-written as

(7 F(X) = / H(y ™) E)n(y) f (y) do(y),
z

n-1
whereH (x) = E(x — 1). Formally the above is a convolution integral with kerkkl
using the multiplication of Clifford numbers.

The spherical Dirac operatdy, is defined through the decomposition

1

for the polar coordinate = rp, || = 1. Note that the decomposition is obtained
by expressing the Dirac operatdr in the spherical coordinates ®&". For any
left-monogenic functionf the above decomposition gives, f =T, f.

The Caldeoh reproducing formula for star-shaped Lipschitz surfaces has the same
form.

THEOREMZ2. For f € LP(2), 1 < p < oo, we have
o d
®) p.v./ Jff(x)#:@(f(x)—F(O)), ae xes,
0

whereJ; f(x) = (Int)"(I', F)(xr), and the’p. v.” integral is with respect to = 1.
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Note thatJ, is a convolution integral operator on the surface. The mikeéd
derivatives of its kernel), (x,y) = (Inr)'(l“'nH)(yflxr) is left-monogenic in the
x-variable and dominated b@,(Inr)'|y — rx|™'=*"+1 on the surface. The explicit
expression of the kernel may be computed using the reldtjor= rd, on left-
monogenic functions.

PrOOF. By changing variable™ = r, we note that it is equivalent to show

p.v./mtz'1(F,§2'>F)(xe2t)dt =C(f(x)— F(0), ae xeZX.

[ee}

SinceF is left-monogenic, we have’, F)(xe™®) = (ro. F)(xe ). For a fixedt, it
is easy to verify that, fok =rn, |n| = 1,

o F)(xe?) = ra)(F(xe?))
and
(ro)(F(nre™?)) = —2*1%0:(77“9*”))'
Therefore, we have

2l
T2F)(xe?) =272 (%) (F(xe™?)).

So it suffices to prove
0 d @)
(9) 22 p.v./ t2-1 (&) (Fxe2)dt =C(f(x) — F(0)), ae xeX.

The proof of Theoreni can be adapted to show)( We only note that the formula
(4) should be replaced by

d\2! 2-1 dk
-1 _ el _ k =
(10) L= (r dr) = 2. Gl e

on monogenic functions; the proof of the commutativity betweemdI", follows the
same line (L1, page 624] alsolZ)); and the local Poisson kernel property is proved
using local coordinates. O

3. Non-star-shaped closed Lipschitz surfaces

Let © be a simply-connected bounded Lipschitz domaiRrand X its boundary.
In this section we assuni® is not star-shaped. Ldt € L1(X), then, as before,

(11) F(x) =

Wn-1

/ E(y —0n(y) f (y) do (y)
)
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is well defined and left-monogenic fare R" \ .

It is easy to show (see als@]] that there exists a constant> 0, depending on
the Lipschitz constant af, such that for every € X at which there exists a tangent
plane toX, the interval segmenix, x — 4hn(x)) is entirely contained irf2 and the
interval segmengx + 4hn(x), x) is entirely contained ifR" \ (X U Q).

Denote byd, the directional derivative in the directiam(x). Introducing the
pseudo-differential operator

Joe F OO = (3 F) (X = tN(X)),
whose kernel is dominated Igt' |y — x — tn(x)|~'~"*1, we have
THEOREM3. For f € LP(2), 1 < p < oo, we have
| " 2 dt
(-1'C f(x) =p. v./ (35 Hx —tn(x) T
—h

+ / G, yny) f(y)do(y), ae xeX,
Wn-1Jyx
where
2 d 21—k
G(x,y) = (-1)'*1272 kX:l:(—l)k’lhz"k (ﬁ) (E(y — X+ 2tn(X))) lt=n

d 21—k
+ h? (&) (EC(y = X+ 2tn(X))) lt=-n,
is an integrable kernel ity for a.e. X € X at which there exists a tangent planeXo

PrROOF. Taking into account that(x)? = —1, a similar argument as in Secti@n
gives

h
p. V. /htz'l(aﬂx)F)(x — 2tn(x)) dt

h 2l
= (=122 p.v./ t2-1 <£> (F(x — 2tn(x)) dt
_h dt

2l d 21—k
= (-1)22 [;(—1)“%” (E) (F(x —2tn(x) | ,_,

d 21—k
4 2k (&) (F(x — 2tn(x))) |t:7h +@2 - DI (x)
owing to the Plemelj theorem in the context. Thus we have

h
(-D'Cf(x) =p. v./ 27102, F)(x — tn(x)) dt
h
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B 2 - B d 21—k
+ (_1)|+12 2 kX:;(_l)k lh2| k <a> (F(X o Ztn(X))) |t:h

+ h?k (gfk (F(x — 2tn(x))) |
dt t==h"

Using the definition ofJ , we obtain the desired formula. O

The reproducing formula obtained in Theor@ris not of the same type as that in
Theoren® but involves aremainder as a well-behaved convolution integral operator. It
may be a shortcome that the differential directiong), in the definition of ;) is not
a smooth vector field o&. For non-star-shaped closed surfaces there does not exist
a uniform spherical coordinate system so that the radial direction is non-tangential to
almost all points on the surface. Usingherical coveringf X, however, we can
deduce a similar result to TheoremWe proceed as follows.

Denote by{S,} = {(p.,r« n«)} @ set of spherical coordinate system, where for
a fixeda, p, is the pole andr,, n,) is the spherical coordinate system with respect
to p,. We say thaf{S,} is a spherical coveringpf %, if the following conditions
hold:

(i) foreverya, p, € Q;

(i) for everya there exists a simply-connected open Wgtc R"! such that
Xe(res Me), 0 < 1, < 00, 1, € U, is alocal parameterization of a partR? in which
¥ is star-shaped fay, € U,, and the radial direction is uniformly non-tangential for
almost alln, € U, (thatis, the angle between the radial and the normal directions is
dominated by a constant less thaf2 for almost all points in, (R, U,) N ¥); and

(i) for theU,’s specified in (i), J, X.(R*,U,) N X = X.
Owing to (ii) we also have, = (pq, ra, Nus Uy)-

The existence of spherical coverings for non-star-shaped closed Lipschitz surface:s
can be easily justified from the definition of Lipschitz domains in terms of local
coordinate systems (se@).

For any pointp € R", denote byf, the functionf (- + p) and byX, the surface
{y—p|ye Z}. We have the following theorem.

THEOREMA4. Let 3 be a non-star-shaped closed Lipschitz surfates LP(Z),
1 < p < o0 and let{S,} be a spherical covering &. Then

*© d
(12) p.v./ FH00— = G100 ~ F(p),
0

wherer = r, is the radial parameter 0§, = (P., v, Ne> Ua), X € X, (R, U,) N X,

Jf0 = (nr) (T Fp ) (X = pr).
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wherel’, =T, , F is defined by11), the‘p.v.” integral is with respect to = 1.

PrOOF. Forx € x,(R*, U,) N X, the formula (0) can be rewritten as

Fpa(X - poz) =

[ By = pon) fr @) doy,

n—-1J3%,,

In the proof of Theoren2 only local Lipschitz property ok is used. So we can use
the same proof to show

p.v./oo 321002 Z G (f ) — Fy (0.
0 rinr

SinceF, (0) = F(p,), we obtain the desired formula. O

Note that forn = 2, Theorem3 and Theorem! provide the formulae for the
boundaries of simply-connected bounded Lipschitz domains in the complex plane.
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