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INTRODUCTION

Higher dimensional extensions of the Paley–Wiener Theorem have been
studied, for instance, in [1, 6, 11, 14, 16]. In [16] a corresponding exten-
sion is obtained by imbedding Rn into Cn and by reducing it to the one
complex variable case. The present work uses the imbedding of Rn into the
real-Clifford algebra R (n) (see the notation in Section 1). The latter imbed-
ding provides Rn with a global complex structure in analogy with the
imbedding of R into the complex plane. Under this frame we present in this
note the precise analogue of the classical Paley–Wiener Theorem which has
been targeted by others. In [1] results of the same kind are obtained of
which either stronger conditions are imposed (see [1, 30.10]) or weaker
conclusions, namely, in the distribution sense, are obtained (see [1, 30.19]).
In [11] a set of results is obtained in which the pointwise estimate in the
usual Paley–Wiener Theorem is replaced by an integral inequality.

It is well known that the classical Paley–Wiener Theorem has important
applications to a wide range of topics in function theory of one complex
variable and approximation of one real variable, etc. As an example, in the
Shannon sampling and interpolation using the sinc functions, the sampling



scale is determined by the constant R (see Section 2, Theorem 2.1) appear-
ing in the exponential part of the estimate for the holomorphic function
under study [17]. Owing to the analogous complex structure in Rn induced
by the Dirac operator (see Section 1), the Paley–Wiener Theorem proved in
this note offers the same applications to topics in several real variables.

In Section 1 we provide the basic knowledge of Clifford analysis used in
the paper. In Section 2 we formulate and prove the Paley–Wiener Theorem.
Our proof is guided by the one for the classical Paley–Wiener Theorem
cited in [19]. In Section 3 we show that the concept of monogenic func-
tions is a natural way to represent conjugate harmonic systems. As an
application, we present a new result on conjugate harmonic systems.

Some alternative proofs of the classical Paley–Wiener Theorem invoke
the Phragmén–Lindelöf Theorem in one complex variable (see, for
instance, [3, 16]). The proof of the latter theorem involves products of
complex analytic functions and makes use of the fact that the product of
two analytic functions is still analytic. This fails in the Clifford setting. In
general, products of monogenic functions are no longer monogenic. It
would be interesting, however, to see the generalization of the Phragmén–
Liwdelöf Theorem in the Clifford analysis setting, and accordingly, a proof
of the Paley–Wiener Theorem using the generalized Phragmén–Liwdelöf
Theorem.

1. PRELIMINARIES

Most of the basic knowledge and notation recalled in this section are
referred to [1, 2, 4].

Let e1, ..., en be basic elements satisfying eiej+ejei=−2dij, where dij=1
if i=j and dij=0 otherwise, i, j=1, 2, ..., n. Let

Rn={x
¯
=x1e1+·· ·+xnen : xj ¥ R, j=1, 2, ..., n}

be identical with the usual Euclidean space Rn, and

Rn1={x0+x¯
: x0 ¥ R, x

¯
¥ Rn}.

An element in Rn1 is called a vector. The real (complex) Clifford algebra
generated by e1, e2, ..., en, denoted by R (n) (C (n)), is the associative algebra
generated by e1, e2, ..., en, over the real (complex) field R (C). A general
element in R (n), therefore, is of the form x=;S xSeS, where eS=
ei1ei2 · · · eil , and S runs over all the ordered subsets of {1, 2, ..., n}, namely

S={1 [ i1 < i2 < · · · < il [ n}, 1 [ l [ n.
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The natural inner product between x and y in C (n), denoted by Ox, yP, is
the complex number ;S xSyS, where x=;S xSeS and y=;S ySeS. The
norm associated with this inner product is

|x|=Ox, xP
1
2=1C

S
|xS |22

1
2

.

If x, y, ..., u are vectors, then

|xy · · · u|=|x| |y| · · · |u|.

The conjugate of a vector x=x0+x¯
is defined as x̄=x0−x¯

. It is easy to
verify that 0 ] x ¥ Rn1 implies

x−1=
x̄
|x|2
.

The unit sphere {x ¥ Rn1 : |x|=1} is denoted by Sn. We use B(x, r) for the
open ball in Rn1 centered at x with radius r.

In below we will study functions defined in Rn or Rn1 taking values in
C (n). So, they are of the form f(x)=;S fS(x) eS, where fS are complex-
valued functions. We will be using the Dirac operator

D=D0+Da
,

where D0=“/“x0 and D
a
=(“/“x1)=e1+·· ·+(“/“xn) en. To be symme-

tric, we also write D0=“/“x0=(“/“x0) e0, with e0=1. We define the
‘‘left’’ and ‘‘right’’ roles of the operators D by

Df=C
n

i=0
C
S

“fS
“xi

eieS

and

fD=C
n

i=0
C
S

“fS
“xi

eSei.

If Df=0 in a domain (open and connected) W, then we say that f is left-
monogenic in W; and, if fD=0 in W, we say that f in right-monogenic in W.
If f is both left- and right-monogenic, then we say that f is monogenic.

The Cauchy Theorem holds in the present case: Let W be a domain of
Lipschitz boundary “W and g be right- and f be left-monogenic in a neigh-
borhood of W 2 “W. Then

F
“W

g(y) n(y) f(y) ds(y)=0,
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where n(y) is the outward unit normal to the surface “W at y and ds(y) is
the area measure. We also have the Cauchy Formulas. Under the above
assumptions,

g(x)=
1
wn

F
“W

g(y) n(y) E(y−x) ds(y), x ¥ W

and

f(x)=
1
wn

F
“W

E(y−x) n(y) f(y) ds(y), x ¥ W,

where

E(x)=
x̄
|x|n+1

is the Cauchy kernel, and wn=2p (n+1)/2/C(
n+1
2 ) is the area of the

n-dimensional unit sphere Sn in Rn1.
We will use the Taylor expansion of left-monogenic functions: If f is left-

monogenic in a domain containing B(0, r) 2 “B(0, r), then

f(x)=C
.

k=0

1
wn

F
“B(0, r)

P (k)(y−1x) E(y) n(y) f(y) ds(y), x ¥ B(0, r), (1)

where

P (k)(y−1x)=|y−1x|k C+n+1, k(t, g), (2)

and

C+n+1, k(t, g)=
1
1−n

[−(n+k−1) G
n−1
2
k (Ot, gP)

+(1−n) G
n+1
2
k−1(Ot, gP)(Ot, gP− t̄g)], (3)

where x=|x| t, y=|y| g, and Gnk is the Gegenbauer polynomial of degree
k associated with n (see [2]).

The function in (2) being a function of y−1x can be seen from (3) and the
relations

Ot, gP=
Oy−1x, 1P
|y−1x|

and t̄g=1 y
−1x
|y−1x|
2−1. (4)
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We note that in (1) the integral region “B(0, r) can be changed to any
“B(0, r) with 0 < r < r (see [18, 2]).

The Taylor expansion (1) is originated by [10] and, independently by
[9], and was followed by various versions later on (see [1, 2] for instance).
The form (1) is taken from [2] combined with a recent study on the form
in [7, 8].

We correspondingly have Taylor expansions at points different from the
origin, and those for right-monogenic functions. We also have Laurent
expansions of one-sided or two-sided monogenic functions on annulus. In
the present paper, we only use Taylor expansions at the origin, and we will
be based on the following facts:

• |P (k)(y−1x)| [ Cnkn(|x|k/|y|k) (established by combining estimates (8)
and (9) of [10, p. 431]), where Cn stands for a constant depending on the
dimension n but not k.

• P (k)(y−1x) is a polynomial in x of degree k (see [2, 18]).

The Fourier transform in Rn is defined by

F(f)(t
¯
)=F

Rn
e−iOx¯ , t¯Pf(x¯

) dx
¯

and the inverse Fourier transform is defined by

F−1(g)(x
¯
)=

1
(2p)n

F
Rn
e iOx¯ , t¯Pg(t

¯
) dt
¯
.

Here t
¯
=t1e1+·· ·+tnen. To extend the Fourier transform to Rn1, we need

first to extend the exponential function e iOx¯ , t¯P. Denote, for x=x0+x¯
,

e(x, t
¯
)=e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
)+e iOx¯ , t¯Pex0 |t¯ |q−(t

¯
),

where

q± (t
¯
)=
1
2
11±i t¯|t

¯
|
2.

It is easy to verify that

q−q+=q+q−=0, q2±=q± , q++q−=1.

The function e(x, t
¯
) is obviously an extension of e(x

¯
, t
¯
)=e iOx¯ , t¯P onto

Rn1×Rn. It is easy to verify that e(x, t
¯
) is monogenic in x ¥ Rn1 for any
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fixed t
¯

. Generalizations of the exponential function of this kind can be first
found in Sommen’s work [12, 13], and then in [4], where t

¯
is further

extended to t
¯
=t
¯
+ig
¯
¥ Cn.

It is well known that if f ¥ L2(Rn), then f=f++f−, where f+ is the
boundary value of a function in the Hardy space H2 in the upper-half-
space, and f− is the boundary value of a function in the Hardy space H2 in
the lower-half-space (see [4, 5]). The monogenic Hardy functions, still
denoted by f+ and f−, in the upper and lower half spaces are, in fact,
given by

f ±(x)=
1
(2p)n

F
Rn
e iOx¯ , t¯Pe + x0 |t¯ |q± (t

¯
)F(f|Rn)(t

¯
) dt
¯
, ±x0 > 0,

respectively.
In [1] a Clifford valued generalized function theory is developed. Below

we will adopt the definition that T is called a tempered distribution, if T is a
continuous linear functional from S(Rn) to C (n), where S(Rn) is the
Schwarz class of rapidly decreasing functions. This is equivalent with the
one defined in [1] using modules but it also enables us to quickly define
Fourier transforms of tempered distributions, by

F(T)(j)=T(F(j)), -j ¥S(Rn),

which is just to perform Fourier transform on each of the components of
the distribution. We will use the results

F(1)=(2p)n d, F−1(ta11 · · ·t
an
n )=i

−|a|Dad,

where a=(a1, ..., an), Da=(“/“x1)a1 · · · (“/“xn)an and d is the usual Dirac
d function.

2. THE PALEY–WIENER THEOREM

The theorem is stated as follows

Theorem 2.1. Let f: Rn1 Q C (n) be left-monogenic in Rn1, f|Rn ¥ L
2(Rn),

and R > 0 be a positive number. Then the following two assertions are
equivalent:

(i) There exists a constant C such that

|f(x)| [ CeR |x|, -x ¥ Rn1.

(ii) supp F(f|Rn) … B(0, R).
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Moreover, if one of the above conditions holds, then we have

f(x)=
1
(2p)n

F
Rn
e(x, t
¯
)F(f|Rn)(t

¯
) dt
¯
, x ¥ Rn1.

Proof. (ii) S (i). Assume that (ii) holds. Let

F(x)=
1
(2p)n

F
Rn
e(x, t
¯
)F(f|Rn)(t

¯
) dt
¯
.

Denote by qB(0, R) the characteristic function of B(0, R). Since supp F(f|Rn)
… B(0, R), we have

F(x)=
1
(2p)n

F
Rn
e(x, t
¯
) qB(0, R)(t

¯
)F(f|Rn)(t

¯
) dt
¯
.

The Hölder inequality then implies

|F(x)| [ CeR |x0 | ||qB(0, R) ||2 ||F(f|Rn)||2 [ CeR |x|.

Since f(x
¯
)=F(x

¯
) in Rn and both are left-monogenic in Rn1, we conclude

that f(x)=F(x). Thus f(x) is of the desired estimate.
(i) S (ii). Assume that (i) holds. Consider

G+(x)=
1
(2p)n

F
Rn
e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
) f(t
¯
) dt
¯
, x0 > 0, (5)

which is well defined as f ¥ L2(Rn). It is easy to show that G+(x) is left-
monogenic for x0 > 0. Substituting f(t

¯
) by its Taylor series (1), the identity

(5) may be rewritten as

G+(x)=
1
(2p)n

F
Rn
e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
)

×1 C
.

k=0

1
wn

F
“B(0, r)

P (k)(y−1t
¯
) E(y) n(y) f(y) ds(y)2 dt

¯

= lim
NQ.

1
(2p)n

F
Rn
e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
) qB(0, N)(t

¯
)

×1 C
.

k=0

1
wn

F
“B(0, r)

P (k)(y−1t
¯
) E(y) n(y) f(y) ds(y)2 dt

¯
,
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where r is any positive number. Owing to the uniform convergence prop-
erty of the series for |t

¯
| [N, we have

G+(x)= lim
NQ.

1
(2p)n

C
.

k=0

1
wn

×F
“B(0, r)

1F
Rn
e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
) qB(0, N)(t

¯
) P (k)(y−1t

¯
) dt
¯
2

×E(y) n(y) f(y) ds(y). (6)

We now prove that for x0 > 0, we can exchange the order of taking the
limit NQ. and taking the summation ;.

k=0, by showing that the series is
dominated by an absolutely convergent one independent of N for x0 > R.
Accepting that, we will consequently have

G+(x)=C
.

k=0

1
(2p)nwn

F
“B(0, r)

×1F
Rn
e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
) P (k)(y−1t

¯
) dt
¯
2

×E(y) n(y) f(y) ds(y), x0 > R. (7)

In fact, using the bounds of P (k)(y−1t
¯
), and that of f(y), and the spheri-

cal coordinates, we have

1
(2p)nwn
:F
“B(0, r)

1F
Rn
e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
) P (k)(y−1t

¯
) dt
¯
2

×E(y) n(y) f(y) ds(y) :

[ Cnkn F
Rn
e−x0 |t¯ | |t

¯
|k r−kr−nrneRr dt

¯

=Cnkn
eRr

rk
F
.

0
e−x0ssk+n−1 ds

=Cnkn
eRr

rk
(k+n−1)!
xk+n0

.

The last inequality holds for any r > 0. Taking the minimum value of the
last expression with respect to r, we have that the series in G+(x) is
dominated by

Cn C
.

k=0
kn(k+n−1)! 1 e

k
2k Rk 1

xn+k0

=
Cn
xn0

C
.

k=0
dk
1
xk0
, (8)
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where

dk=kn(k+n−1)! 1
e
k
2k Rk.

Using Stirling’s formula, we conclude that

lim
kQ.
(dk)

1
k=R.

Using Hadamard’s criterion, the convergence radius of the associated
power series is R−1. Correspondingly, the series (8) converges for x0 > R.
Now we have justified that we can exchange the limit procedure NQ.

and the summation ;.

k=0 in (6) if x0 > R, and thus (7) holds for x0 > R.
Let jm(t

¯
) be a sequence of functions in C.0 (R

n) such that jm(t
¯
)=0 if

|t
¯
| [ 1

m and jm(t
¯
)=1 if |t

¯
| \ 2

m and 0 [ jm(t
¯
) [ 1 otherwise. Obviously,

jm Q 1 distributionally. We rewrite G+(x) as

G+(x)=
1
(2p)n

C
.

k=0

1
wn

×F
“B(0, r)

1 lim
mQ.

F
Rn
e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
) jm(t

¯
) P (k)(y−1t

¯
) dt
¯
2

×E(y) n(y) f(y) ds(y), x0 > R.

Since e iOx¯ , ·Pe−x0 | · |q+( · ) jm( · ) ¥S(Rn), the inside integral can be rewritten
in the notation of distribution:

P (k)(y−1( · ))(e iOx¯ , ·Pe−x0 | · |q+( · ) jm( · ))

=F−1(P(k)(y−1( · ))(F(e iOx¯ , ·Pe−x0 | · |q+( · ) jm( · ))))

=i−k(P (k)(y−1D
a
) d)(F(e iOx¯ , ·Pe−x0 | · |q+( · )) fF(jm)). (9)

Now

F(e iOx¯ , ·Pe−x0 | · |q+( · ))=
1
2
F(e iOx¯ , ·Pe−x0 | · |)+

1
2
F 1e iOx¯ , ·Pe−x0 | · | i( · )

| · |
2 ,

where

1
2
F(e iOx¯ , ·Pe−x0 | · |)(z

¯
)=
1
2
F

Rn
e−iOz¯ , t¯Pe iOx¯ , t¯Pe−x0 |t¯ | dt

¯

=
1
2
F

Rn
e−iOz¯ −x¯ , t¯Pe−x0 |t¯ | dt

¯

=c̃
x0

(x20+|z
¯
−x
¯
|2)

n+1
2

,

where c̃=2n−1p (n−1)/2C(n+12 ).
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We subsequently have

1
2
F 1e iOx¯ , ·Pe−x0 | · | i( · )

| · |
2 (z
¯
)=
1
2
F
.

x0
D
a x¯

F(e iOx¯ , ·Pe−t | · |)(z
¯
) dt

=c̃ F
.

x0
D
a x¯
1 t

(t2+|z
¯
−x
¯
|2)

n+1
2

2 dt

=c̃
z
¯
−x
¯

(x20+|z
¯
−x
¯
|2)

n+1
2

.

Hence

F(e iOx¯ , ·Pe−x0 | · |q+( · ))(z
¯
)=c̃

x−z
¯|x−z
¯
|n+1
=−c̃E(z

¯
−x). (10)

(Note that this computation may be omitted if one directly uses the corre-
sponding result in [4].) Therefore, (9) becomes

− c̃i−k(P (k)(y−1D
a
) d)(E( · −x) fF(jm))

=− c̃i−k(−1)k d((P(k)(y−1D
a
) E)( · −x) fF(jm))

=− c̃ik((P(k)(y−1D
a
) E)( · −x) fF(jm))(0).

Since F(jm)Q (2p)n d, we conclude that

F
Rn
e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
) P (k)(y−1t

¯
) dt
¯
=−(2p)n c̃ik(P (k)(y−1D

a
) E)(−x).

Thus for x0 > R, we have

G+(x)=−c̃ C
.

k=0

ik

wn
F
“B(0, r)

(P (k)(y−1D
a
) E)(−x) E(y) n(y) f(y) ds(y).

(11)

We next point out that the series expression of G+(x) in (11) for x0 > R can
be monogenically extended to all x ¥ Rn1 with |x| > R.

In fact, invoking the estimate

|(Pk(y−1D
a
) E)(−x)| [ Cnkn

1
|x|n+k

1
|y|k
,
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we can proceed as before with a general entry of the series (11), and we
obtain that the series (11) is dominated by

c̃ C
.

k=0
kn(k+n−1)! 1 e

k
2k Rk 1

|x|n+k
.

The same argument then implies that the series (11) converges uniformly in
any compact set in the region |x| > R and thus the sum function is left-
monogenic for |x| > R.

Now we define

G−(x)=
1
(2p)n

F
.

−.
e iOx¯ , t¯Pex0 |t¯ |q−(t

¯
) f(t
¯
) dt
¯
, x0 < 0, (12)

that is left-monogenic for x0 < 0. Using the same procedure we can first
show that for −x0 > R,

G−(x)=c̃ C
.

k=0

ik

wn
F
“B(0, r)

(P (k)(y−1D
a
) E)(−x) E(y) n(y) f(y) ds(y),

(13)

and then G−(x) can be monogenically extended to |x| > R using the series
expansion (13). We will be content with only pointing out how the negative
sign in the beginning of formula (11) drops off in the case of (13).

When we compute F(e iOx¯ , ·Pex0 | · |q−( · )), with x −0=−x0 > 0, we first
write it as F(e iOx¯ , ·Pe−x

−

0 | · |q−( · )). Then, as before, we have

1
2
F(e iOx¯ , ·Pe−x

−

0 | · |)(z
¯
)=c̃

x −0
(xŒ20+|z

¯
−x
¯
|2)

n+1
2

.

We accordingly have

1
2
F1e iOx¯ , ·Pe−x −0 | · | 1 −i ( · )

| · |
22 (z
¯
)=−c̃

z
¯
−x
¯

(xŒ20+|z
¯
−x
¯
|2)

n+1
2

.

Putting together, we have

F(e iOx¯ , ·Pex0 | · |q−( · ))(z
¯
)=−c̃

x−z
¯|x−z
¯
|n+1
=c̃E(z

¯
−x). (14)
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Now we show that G+ and G− have the alternative forms

G+(x0+x¯
)=
1
wn

F
Rn
E((x0+x¯

)−z
¯
)F(f|Rn)(−z

¯
) dz
¯

and

G−(−x0+x¯
)=−

1
wn

F
Rn
E((−x0+x¯

)−z
¯
)F(f|Rn)(−z

¯
) dz
¯
,

respectively. In fact, owing to Parseval’s identity

F
Rn
h(t
¯
) g(t
¯
) dt
¯
=F

Rn
F(h)(z

¯
)F(g)(−z

¯
) dz
¯
,

and the identity (10), we have

G+(x0+x¯
)=

1
(2p)n

F
Rn
e iOx¯ , t¯Pe−x0 |t¯ |q+(t

¯
) f(t
¯
) dt
¯

=
1
(2p)n

F
Rn

F(e iOx¯ , ·Pe−x0 | · |q+( · ))(z
¯
)F(f|Rn)(−z

¯
) dz
¯

=
1
wn

F
Rn
E((x0+x¯

)−z
¯
)F(f|Rn)(−z

¯
) dz
¯
.

The last step uses the relation 1/wn=c̃/(2p)n. The expression for G− can
be proved similarly by using (14). The Plemelj formula (see [4]) then gives

lim
x0 Q 0+

(G+(x0+x¯
)+G−(−x0+x¯

))=F(f|Rn)(−x¯
).

This, together with the series expressions (11) and (13) for |x| > R, gives
F(f|Rn)(x¯

)=0 for |x
¯
| > R. Therefore supp F(f|Rn) … B(0, R).

To show

f(x)=
1
(2p)n

F
Rn
e(x, t
¯
)F(f|Rn)(t

¯
) dt
¯
, x ¥ Rn1,

we notice that the left-hand side is equal to the right-hand side if x0=0.
Since both sides are left-monogenic in Rn1 and coincident in Rn, they have
to be equal. L
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3. AN APPLICATION TO CONJUGATE
HARMONIC SYSTEM IN Rn1

If an ordered set of n+1 functions u0(x0, x1, ..., xn), u1(x0, x1, ..., xn), ...,
un(x0, x1, ..., xn) satisfies the relations

˛ C
n

j=0

“uj
“xj
=0

“uk
“xj
=
“uj
“xk
, 0 [ k < j [ n,

then it is called a conjugate harmonic system (see [15, 16]). Below we
denote

U=−u0+u1e1+·· ·+unen.

Proposition 3.1. An ordered set of functions u0, u1, ..., un is a conjugate
harmonic system if and only if the corresponding vector-valued function U is
monogenic.

Proof. Denote u
¯
=u1e1+·· ·+unen. Then

DU=(D0+Da
)(−u0+u¯

)

=1−D0u0− C
n

j=1

“uj
“xj
2+(D0u¯ −Da u0)+ C

1 [ k < j [ n

1“uk
“xj
−
“uj
“xk
2 ejek.

So, DU=0 if and only if

˛ C
n

j=0

“uj
“xj
=0

“uk
“xj
=
“uj
“xk
, 0 [ k < j [ n.

The right-monogenity is proved similarly. L

The proposition indicates that the Clifford algebra frame of Rn is a
natural one to study Hardy spaces in relation to the space (see [5]). The
following is an immediate consequence of Theorem 2.1.

Theorem 3.1. Let u0, u1, ..., un be a conjugate harmonic system in Rn1.
Let U|Rn ¥ L2(Rn). Then

|U(x)| [ CeR |x|
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if and only if

suppF(U)(0, · ) … B(0, R),

where F(U)(0, t
¯
)=F(U|Rn)(t

¯
). Moreover, if one of the above conditions

holds, then

U(x)=
1
(2p)n

F
Rn
e(x, t
¯
)F(U)(0, t

¯
) dt
¯
.
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