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In this note, structures of null solutions of the polynomial Dirac operators D — A, DX, D" + Z;:ol biD/ are
studied, where D is the Dirac operator in R}, 1,b; € C,j=0,...,n—1, D% = I is the identity operator.
Explicit decompositions of null solutions of the polynomial Dirac operators in the respectively relevant sub-
spaces are obtained which are used to derive their Taylor series expansions. The solutions of inhomogeneous
equation p(D)f = g are discussed for a special class of R"-valued continuous functions g.
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1 INTRODUCTION

Let R™ be the real associative Clifford algebra generated by {ej, es, ..., e}, where the
basic vectors ey, ..., e, satisfy the relations e;e; + eje; = —26;,i,j = 1,...,n. Viewed as
a linear algebra R" is real 2”-dimensional with the basis elements eg, e, ..., en,
€162, ...y € ... €, ... 0 ...m | <ji <---<j. <m, where ep=1 is the algebraic
unit element. Similarly, denote by C™ the Complex Clifford algebra generated by
{er1,en,...,en}.

Denote by R™ the real linear subspace of R spanned by {e,es,...,eu}. A typical
element of R” is denoted by x = xje; + -+ + xue,,X; € R. Define R} = {x = xo+
x| xg € R, x € R"}. The Dirac operator in R™ is defined to be D = 3", ¢;(3/dx;). The
Dirac operator in RY' is D = (3/9xp) + D. The Dirac operators are generalizations of
the Cauchy—Riemann operator in the complex plane. The operators D* = — Z}":l &/ Bxf,
and, with D = (3/dxo) —D, DD =DD = );",8°/dx;, are respectively the Laplace
operators in R” and RY".
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Let  be a domain in R}. If f: Q2 — R"™ is a C' function satisfying (Df)(x) =
Z;":O ej(9f/dy,) = 0, then fis said to be left-monogenic in . The set of left-monogenic
functions in Q forms a right-module, denoted by M(,.)(SZ;R(’”)). We only consider
left-monogenic functions and we omit the subscript (r) in M(r)(Q;R(’”)) as discussed
below. Monogenic functions in R” are defined similarly.

It is known that in a number of aspects monogenic functions are analogous to ana-
lytic functions in one complex variable. For instance, both of them have Cauchy—Green
formula, Cauchy integral formula, Maximum Modulus Theorem, Morera’s Theorem
(see [1]) etc. There have been studies on null solutions of the operators D — A [2],
D — M, M any bounded operator commuting with all e;(9/dx;) [3], D — b(x) [4] and
Dk, D* ([5,6]) etc. In [7] fundamental solutions of polynomial Dirac equations
p(D) = (D" + Z}ZOI b;D’) in R™ are constructed. In [8] Ryan obtained the Cauchy—
Green formula for null solutions of p(D).

In this article, structures of solutions of D — A, (D — 1)*, p(D) = D" + Z;:Ol biD’ are
studied. Decompositions of null solutions of p(D) in the relevant subspaces are obtained
with which their Taylor series expansions are deduced. These results reveal that
solutions of polynomial Dirac operators in R}" are closely related to monogenic func-
tions and null solutions of ordinary differential equations (d"/dx{) + 27:_01 bix
(d/dx})=0. As application, in Section 5 solutions of inhomogeneous equations
p(D)f = g are discussed for a special class of R"”)-valued continuous functions g.

2 THE SOLUTIONS OF (D—A)f =0
In the following, assume that €2 is a domain (open and connected) in R’ containing the
origin and denote 2y = {xy € R|3 x such that (xp, x) € 2}. We have

Lemma 1 Let g € CY(2, C™) and h be a scalar valued differentiable function defined in
Qo, then

D(hg) = (Dh)g + h(Dg) = h'(x0)g(x) + h(x0)(Dg)().

LEMMA 2 For any f € C(Q,C™), A € C, we have
(D = Mf(x) = " D(e™f)(x).

The above two Lemmas can be proved through direct computation.
Denote ker(D — 1) = {f| f € C'(R) such that (D — 1)f = 0}, where A € C. In below,
denote h(xo)M (2 R™) = {f| f = h(x0)g(x). g € M(2R™)}.

TueoreM 1 ker(D — A) = 0 M (2; R™).
Proof This is an immediate consequence of (D — A)f(x) = e*D(e™*f)(x). [ |
CoroLLARY | If f € ker(D — 1), then in a neighborhood of the origin in RY',

0 k ( ,—AXg
f =Y Y vy D 0

k=0 (1,0 ) o 7 O =0
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where

1
Vo(x) = eo, Vi =z, Viy...t;(%) =7 Z ZhZh 2 ()

(h,.... ) e (1,....mY, and z; = xjey — xper, 1 = 1,...,m, and ne(ly, ..., 1;) runs over all
distinguishable permutations of (I, ...,1[;).

Proof If fis the solution of (D — A)f = 0, then from Theorem 1 ¢~*¥f(x) is a mono-
genic function. Thus by Taylor expansion of monogenic functions in [1], we have

o0 Kk ( ,—Axo
=3 Y ¥ e

k=0 (I e, It) O+ O x=0

Remark 1 By a different method Kisil proved similar results in [3] for operator D — M,
where M is any bounded operator commuting with all e;0/9x;. He proved that solutions
fof (D — M)f =0 can be represented as f(x) = eM%g(x), where g is a monogenic func-
tion. Theorem 1 is a particular case of this general result as the multiplication operators
M, defined by M, f = Af for complex numbers A commute with all e;d/0x;.

Remark 2 1In [4] Ryan proved that if f(x) is a solution of (D — b(x))f = 0, where
b(x) = (DB)(x) and B(x) is a real valued C' function, then f(x) is of the form
f(x) = eBYf(x), where fi(x) is a monogenic function with respect to D, and vice
versa. This may be regarded as the analogous result of Theorem 1 in R for D.

3 THE SOLUTIONS OF D*f=0

There has been literature on function theory of null solutions of D* and D* (for
instance, see [5,6]), where the null solutions are called (k)-monogenic functions. In
this article we use the notation ker(D¥) = {f| D*f(x) =0,f € C¥} and ker(DF) =

{f 1D (x) = 0}.
LeMMA 3 The functions x)h(x), h € M(Q;R™), j=0,1,...,k — 1, belong to ker(D"),

and thus U=} X[ M(;R™) C ker(DF).
Proof Let h € ker(D), i.e., Dh=0, by Lemma 1,

DF(x)hy = DFY(D(x]h)) = D=1 ((x)) I + x)(Dh)) = jD*=(x}; " h).
Then by induction, for any 0 <j <k — 1,

DF(x)hy = jD "\ (x[ 'y = - = D" =0.

THEOREM 2 (see [5]) If fis left-(k)-monogenic in a domain 2 C RY', then

1. fis real analytic in Q;



18 Y.F. GONG et al.

2. Suppose that the origin O € Q, then there is a neighborhood of O in Q in which f can be
written as

oo inf(n,k—1) J =i DJ
N yIDIf
=3 Y e

=0 =0 (helup)? ! ey

) (€)

x=0

where (I, ..., l—;) € {1,... ,m)".

Since series (3) is absolutely convergent in an open neighborhood of the origin O, it
can also be written as

k—1 n oo k-1 Jj P
- x] o= Dif
Sx) = ( Z + Z ) Z = Vit (%) Ay

n=0 j=0 n=k j=0/ (i1,..., 1,,_,-)] : I | x=0

k—1 k—1 k—1 oo x(j) an__/D_,‘f
“(LX+XY) ¥ @yl

- — - . 8X[ s 8)61 _

Jj=0 n=j J=0 n=k/ (l1,..c; L) ! " x=0

k=1 _j 00 n—i 1 J
x} yIDIf
Sl Vi ()2
T 2 Vi@
= (n./ (o) g
k—1 _j 00 sy
X a'D/
= %(Z > Vst )
=0 /" \n=0 Uhot) X | —o
k—1 _J
X
=) i,
j=0 7"

where fj(x), j=0,1,...,k — 1, are monogenic in the open neighborhood of the origin
O. We therefore have

THEOREM 3 ker(DK) has the direct sum decomposition:
ker(D¥) = M(2:R™) ® xoM(Q: R™) @ -+ @ x§ ' M(2: R™). )
In a recent paper ([9]) Ryan proved that if D*f(x) = 0, then

F) = fox) + x/1(x) + -+ X i1 (x), Q)

where D fi(x) =0,7=0,...,k — 1. This result is considered to be analogous to what we
have in Theorem 3. On the other hand, direct computation shows that in the context R}’
for a non-zero monogenic function £, the function D*(xf) is no longer identical to zero
in general. This shows that the statement made from the above mentioned Ryan’s result
by replacing D by D and x by x is not true in RY'.

From Lemma 3 x5~'M(2; R™) C ker(D¥). So Theorem 3 can also written as

ker(D¥) = ker(D*"") @ x{~' M(2; R™). (6)
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Note that for f e ker(D¥) the reduction in the proof of Lemma 3 shows that
g=/f—1/(k = D! xk"ID*=1f € ker(D*~!). Hence f has an alternative decomposition
f(x) = g(x) + 1/(k — 1) x5~ D*=1f, where g(x) is a (k — 1)-monogenic function.

4 THE SOLUTIONS OF p(D)f =0

For a polynomial p(A) = A" + b A" + ...+ b,, by € C, j=1,...,n, one can associate
it with a polynomial Dirac operators p(D) = D" + b;D"~! + ... 4+ b,. Polynomial p(})
is called the characteristic polynomial of p(D). In [7,8] fundamental solutions of p(D)
in R” and function theory of solutions of p(D) are studied.

Denote ker(p(D)) = {f| p(D)f =0, f € C"(S2; C"™)}. The set ker(p(D)) is a right
Hilbert C”-module. Since p(1) has the decomposition

pA) =R =211 (A = L), ()

where A; € C, i =1,...,n, are the solutions of p(A) =0, the associated polynomial
Dirac operator p(D) has the decomposition

pD)=(D—x)--- (D= 4p). ®)

Every operator D — A; in (8) commutes with the others.

LEmMA 4 Let (L) = ]_[2,11()» — M)™ be a polynomial of \, ni. € N, then

1 L&y 1 [adnd (v— Ak)”*] 1
——= : . 9
(2) ,; ,; (e = J)! [dk”" 7wy Lo, =) ®)

Proof The rational function 1/m(}) has a decomposition into partial fractions:
TR e
( —1 j=1 ()L )‘k)j
We have, for 1 <s </,

K—)L,HX 1 ny A A 1 n ‘
VA S D i A O R

(%) et it (A=A k) =
Clearly,
™ (= )" , ,
- 7 — _ | . —
|:dk"~vf () ,\=x.\._ (o =ty T=1oot

In below we first study the case that all A; in the decomposition (8) are different. In
this case the coefficients in (9) can be easﬂy worked out.
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THEOREM 4 If A; in (8),j =1,...,n, are all different, then
ker(p(D)) = ker(D — 1) & - - - @ ker(D — A,,). (10)

Proof In the assumed case we have /=n and /[, =1 in Lemma 4. Through simple com-
putation (or refer to Lagrange’s formula of interpolation) we have the identical relation

which implies the identical relation for the Dirac operator D, viz.

=10

=1 /;ék

where I is the identity operator. So, for any f € C"~1(Q;C™),

[ = Z(]‘[ k_k> (11)

k=1 \ j#k

Since f € ker(p(D)), we have

(]‘[ﬁ _i)] € ker(D — Ap).

J#k

CorOLLARY 2 If A; in (8), j=1,...,n, are all different, then
ker(p(D)) = ' M(Q;R™) @ - -- @ & M(Q; R™). (12)

CorOLLARY 3 If A; in (8), j=1,...,n, are all different, and f € ker(p(D)), then the
Taylor expansions of f is

2 & MV () ¥ (e ([ T (D = 1))
SO=32 ) T o Y
k=1 j=0 (Iy,..1)) Hiaék( k= hi) Xy T Oy =0
Proof This is an immediate consequence of (11) and (1). |

THEOREM 5 If p(D) = (D — 1)" in (8), then ker((D — 1)") = e*ker(D") and
ker((D — 1)") = " M(Q2;R™) @ xo* " M(Q; R™) @ --- @ xj ' M(Q;R™).  (13)
Proof Inductively, we have
(D= W)'f = (D= 1"~ (@D ™f)(x) = - - - = D" (e S )(x).

The result then follows from Theorem 3. |
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CoroLLARY 4 If f € ker((D — A)"), then f has the Taylor expansions at the origin O

inf(n—

(n—1,k) ak ij —AX0
’C e

E § =2 V... I~ ,( ) ( /)

=0 J

(ol 10X

f)y=e")"

k=0 x=0

Proof Theorem 5 asserts that f € ker((D — A)") implies e=*¥f e ker(D"). The asser-
tion then follows from Theorem 2.

Now we study the general case. Let Aj,...,A; be all the different roots in (8) with
corresponding multiples #ny,...,n, m+---+m=n, nmeN, j=1,...,1. The
polynomial Dirac operator p(D) in (8) can be written as

pD)= (D —1)" (D — )" (14)
|
THEOREM 6 If p(D) in Eq. (8) has the decomposition Eq. (14), then
ker(p(D)) = ker(D — 1)" @ - -- @ ker(D — A))". (15)
Proof  First we note that for any j, the operator (D — A;)" commutes with the other
(D — )", i #j. This implies that functions in ker((D — A /)'") belong to ker(p(D)).

On the other hand, let 7(A) = ]_[k I(A A)™ be the characteristic polynomial of
p(D). Then by the identical relation (9) in Lemma 4,

B [ m 1 A=/ (A — Ap)™ (L)
=22 [dm—f () Lm = M)’ 1o

k=1 j=1

Denote m; ;(A) = 7(A)/(A — M), 1 <j < i, we have,
/(D) = (D = 7)™ (D = M) (D = M) (D = hgey )" (D = 2", (17)

For any f € C"'(22; C™), we have the decomposition

[ n 1 d”"_j ()\, _ )\k)n;\,
Ve ik L .

If f € ker(p(D)), by (17) we have m; ;(D)f € ker((D — M), j=1,...,n. Taking into
account

ker(D — Ax) C ker((D — Ap)?) C --- C ker((D — Ax)™), (19)

for any /' € ker(p(D)), we have
e
Zﬂk,j(D)f € ker((D — a)™).
Jj=1

The proof is complete. u
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Remark 3 The proof of Theorems 4 and 6 gives rise to explicit decomposition form-
ulas for functions in ker(p(D)). The decomposition in the proof of Theorem 6 is, in fact,
finer than what is stated in Theorem 6. Based on Lagrange’s formula of interpolation
we have a recursive method to work out all the coefficients in decomposition formulas.
As example, if f €ker((D —A)*(D —Ay)?), then replace the identical relation
=D —=x1)/(Aa — 1)) + (D — r2)/(A1 — X2))f into itself, we have

/,_D—M(D—M D—)Q) D—)\.Q(D_)\.], D—)»gf)

= +
A — A \ A2 —Alf A — Ao AM—A\ Ay — Ay Al — Ao

(D= ) (D—/\l)(D—)»z)f+(D—)»z)2
(=) A2 = 2D — A2 (A — A)

_D=-n), Z(D—/\l)(D—?»z)<D—M D= ) (D—n),

= +
(2 — 1) (A2 = AD( —2A2) \ A2 — )»lf A—=2 (1 — 22)?

_D=a) DA (D—h) o D—M)D =) (D—da)
=0 IR UR — — 0/ + .
(A2 — A1) (A2 = A1)"(A1 — A2) (A2 = AD(A = A2)

Note that in the recursion procedure, an allowed recursion step is one after that there is
no power of (D — ;) exceeding the maximal power (D — A;)", and the recursion steps
end when in each term of the summation there is only one j for which the corresponding
operator (D — ;) is with a less power than (D — ;)" but all the others have the max-
imal powers. This recursion method is clearly applicable to general polynomial opera-
tors p(D) = (D — A)" ---(D — )",

CorOLLARY 5 Let p(D)y=D—-r)"---D—=1)", m+---+m=n, neN, j=
1,....,1, then

ker(p(D)) = " M(;R"™) @ " xg M(R™) @ - - @ M0 x ' M(2; R™)

@ O M(Q:R™) @ ¥ xgM(QR™) @ -+ @ x> M(Q: R™)

x M M(Q; R(”’)) @ M0 xg M(2; R(m)) DD ekm’xg’f1 M(2; R(’")).

Proof It is concluded from Theorems 3, 5 and 6. |

As a direct application of Theorem 6, the Taylor expansion of f € ker(p(D)) can
also be derived from Corollary 4 and (18).

Remark 4 1t is seen from Corollary 5 that the solutions of p(D)f =0 are closely
related to monogenic functions and the linear independent solutions xe™, j =
1,....,l, k=0,...,n;—1, of the ordinary differential equation p(d/dxo)g(xo) =
((d" /dxxg) + 5=y b(d? [dx}))g(xo) = 0. where p(d/dxo) = [Ti—y((d/dxo) — 2i)™.

Remark 5 Theorems 4 and 6 still hold for polynomial Dirac operators p(D) in R”,
while Corollaries 2-5 and Theorem 5, do not remain in the same form for ker(p(D)).
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5 APPLICATION TO THE SOLUTIONS OF p(D)f =g

Structures of solutions of polynomial Dirac equations p(D)f = 0 have been studied in
the previous sections. In this section, solutions of inhomogeneous equations

pD)f =g (20)

will be discussed. The following two theorems can be easily proved.

THEOREM 7 If in the equation p(D)f = g the function g can be decomposed into g =
g1+ g, and f;(x) is a solution of p(D)f =g;, j=1,2, then fi+/f> is a solution of
pD)f =g.

THEOREM 8 Let f1(x) be a solution of p(D)f = g. Then all solutions of p(D)f = g have
the form f(x) = f1(x) + h(x), where h € ker(p(D)).

According to Theorems 7 and 8, to solve an equation (20) is reduced to find a
particular solution of the equation. There is no general approach for an arbitrary
R -valued continuous function g. We claim that for functions g of the form g(x) =
H(x0)G(x), where H is a function in a real variable and G € M(2; R™), and therefore
any linear combination of such functions, we are able to deduce a particular solution.

Suggested by the theory of linear ordinary differential equations we assume that a
particular solution of the Eq. (20) in the case g(x) = H(xo)G(x), G € M(;R™), is
of the form f(x) = F(x()G(x), where F is a function in a real variable. Then, based
on the Lemma 1,

D/(F(x0)G(x)) = % Gix), j=1,...,n. (21)
)CO

Inserting (21) into (20), we are reduced to

p(d> Flxo) = H(x). 22)

dXo

Thus a particular solution f of Eq. (20) with g(x) = H(x0)G(x), G € M(S;R™), is
reduced to a particular solution F(x,) of the associated ordinary differential equation
(22), that can be solved completely for functions like

H(xo) = pi(xo)e™,  H(xg) = e*[p}"(x0) cos Bxo + pi” (xo) sin o],

where p;(xo), pgl)(xo), pgz)(xo) are polynomials of x, and «, 8 are real numbers.

Owing to Theorems 7, 8 and the above discussion, for a large class of functions g
expressible by a sum of functions of the form H;(xy)G;(x) with G; € M(S2:R"™), the
Eq. (20) can be solved completely.
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