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Abstract

The notion of intrinsic mode functions (IMFs) in the algorithm of Hilbert-Huang transform (HHT) [N.E. Huang, Z. Shen,
S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London A 454 (1998) 903-995] is essentially an
engineering description in relation to mono-components of nonlinear and non-stationary signals. In this note we prove a version
of Bedrosian’s theorem on the unit circle. We give a sufficient condition together with an example for nonlinean i ésas
make the unit quadrature signal&’eto be analytic. We also establish a corresponding relationship between the periodic and
non-periodic signals on the whole time range.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction or the frequency domain separately, and thus does not
enjoy the time-frequency localization. The latter leads
The frequency of non-stationary signals varies with to the study of windowed Fourier transform and wavelet
time. The traditional Fourier analysis, however, can not transform, which are bivariate representations of sig-
expose the time-varying property of frequency of non- nals in time and frequency domains simultaneously,
stationary signals. This is due to the basic fact that and offer finite time-frequency localizatigd]. They,
in Fourier analysis a general signal is superposition on the other hand, both have the shortcoming that they
of harmonic waves of which each has a constant fre- use fixed time-frequency atoms to match a large variety
guency. In mathematics Fourier transform is a kind of of signals. It would be often the case that these fixed
univariate representation of signals in the time domain time-frequency atoms are not timrinsic components
of the signal under study. The ideal method of time-
"+ Corresponding author. Tel.: +86 2788664113 fr'equer)cy analysjs woqld .be Qegomposition adapting a
E-mail addressedsttq@umac.mo (T. Qian); signal into certain basic intrinsic components which
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one can define meaningfuktantaneous frequenand
furthermore construct time-frequency distribution.

Recently, Norden E. Huang presented a new time-

frequency algorithm for nonlinear and non-stationary
signal analysis: Hilbert-Huang transform (HHT) (see
[8,6,7]. By using the algorithm of empirical mode de-

composition (EMD), any multi-component can be de-
composed into a finite sum of intrinsic mode functions
(IMFs), which are essentially mono-components. The
notion of IMF defined by Huang plays a crucial role

in the HHT algorithm. The original concept of IMFs is

an engineering description: The local maximums and
minimums take turn to occur, and between a pair of

adjacent local extremes, the signal is monotone and
passes through the zero only once, and is of the local
symmetry, i.e., the mean of any adjacent pair of upper _
and lower envelopes is of the zero value. Experiments H(f)(r) = —i Z sgn@)ci €X',

show that IMFs behave nicely with Hilbert transform in
the following sens6,8]: Each term of the IMFs in the

EMD, regarded as mono-component of the signal, is the

real part of a complex-valued sign#lz) = a(r) €7
satisfying the equatiok(f)(¢) = —i f(¢), whereH( f)
is the Hilbert transform of (z) on the real line, defined
by

’Hf(t)——Vp/

Functions satisfying the equati®f( /)(t) = —i f(¢)
are calledanalytic signals Through this representa-
tion instantaneous frequenci@say be defined as the
derivative of phasé(r). This inspires us to ask: How to
characterize functiorsandé such that the quadrature
signala(r) € is analytic? In this note we restrict our-
selves mainly to the unitcircle (corresponding to the pe-

f (X)

(1.1)
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nal theory in the same pattern as in HHT. Without loss
of generality, we assume that a signd}t) is defined

in [—7, 7]. We further assume that € L2([—x, 7]).
Betweerf and its associated Fourier series there holds

o]

f()= Z cr €X,

k=—o00

wherec, = ¢,(f) is thenth Fourier coefficient of,

and the convergence is in tiié-norm sense. Based on

Carleson’s Theorem the equivalence holds also in the

almost everywhere point-wise convergence sense.
The Hilbert transform of (¢), t € [—n, n], or onthe

unit circle, is defined through Fourier multiplier, by

(2.1)
k=—
where sgri) is the signum function
Lk=12,...
sgnk) =14 -1, k=-1,-2,... (2.2)
0, k=0.
Accordingly, we have
~ e .
fO+IH(N@O) =co+2) crel. (2.3)

k=1

It is easy to show thatc, are bounded as
f € L¥([—m, n]). As consequence, the serieg +
232 1 ek z* converges to an analytic function flaf <

1. By writing z = r €, 0 < r < 1, this further implies
that f(¢) + iH(f)(z) is the boundary value of the above

riodic case) and the unit quadrature case (correspond-defined analytic function in the unit disc.

ing to a = 1). We provide a sufficient condition on
non-linear functiong(r) giving rise to analytic signals,
i.e., satisfying(€?®) = —ie?®, or, equivalently,

H(cosH(t)) = sinf(r). An example is presented for

We note that the circular Hilbert transforfg has
the property

20 = —F() +a, (2.4)

such signals. There is a close relation between analyticwherea is a complex number.

signals and Bedrosian’s theorg¢in10]. The unit circle
(periodic) version of a Bedrosian’s theorem is proved.

2. Hilbert transform on the circle

We study periodic signals on the whole time range,
or, equivalently, study signals defined on compact in-

tervals. In the case here is a corresponding analytic sig-

Itis known (see, for instancfl, 2] or[9]) that, based
on the Fourier series version of Parseval’'s formula, the
above defined circular Hilbert transform has an alter-
native form as a singular integral:

/e‘<|x|<ﬂ COt( ) ft—s)ds, ae.
(2.5)

1 .
— lim
27 e—0t

HEG) =
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Using its Fourier multiplier definition one easily Theorem 3.1. Suppose thatfi, f» € L2([—, 7]).

gets, for instance,
F(cosnt) = sinnt.
Indeed, coar = 1/2(e” " + e~1""). Hence,
. —i . .
H(cosnt) = ?(sgn(—n)e*'”’ + sgn@)€e™)
—i. . .
= ?2| sinnt = sinnt.

Similarly, it(sinnt) = — cosnt.

3. Analytic signals on circle

_ Suppose that withf € L?([—, 7]) we obtained
‘H f, and, as deduced in the previous secti@(y) +

i'itlf(t) is the boundary value of an analytic function in

the unit disc. We write

F@O) +IHf(0) = p(r) €90, (3.1)
where
o) = v/ 720) + (FLr2.  cosa(r) = 1,
o(t)
and Sirﬂ(t)z};](;()t). (3.2)

For any real-valued functioff € L2([—, n]), we

may associate it with a complex-valued function,

A[ f1(1), defined, in the above notation, by
ALFUD = p(0) €70,

We call A[ f](¢) the analytic signal associated with f
From(2.4) one easily deduces that

(3.3)

HALF() = —i(ALF1(r) — a),

wherea is a complex number. On the other hand, if

F = f + ig satisfies
HF = —i(F — a),

then modular constanﬁf =g.

The following Bedrosian’s theorem in the circular

case is expected.

Then
Alf1f2] = fiAlfe] (3.4)
if there existsk e Z™ U {0} such that
cn(f1) =0, [n|>K and c,(f2)=0, [n]<K.
Proof. Let

K .
A0 =) c(f)e”, and

n=—K

—K-1 _
falt) = ( S )Cm(fz)e"”’.

m=—00 m=K+1

Since A[ f1 /2] keeps allc,(f1f2), n > 0 and kills all
cn(fLf2), n < 0 we have

Alfifd = Y alfr)em(f2)

n+m=0

+2) ( > Cn(fl)cm(fz)) Ch

k=1 \n+m=k

Z Z en(fr)ck—n(f2) €.

=K

Note that the Fourier coefficients,(f2) form < —K

do not play any role in the last expression. On the other

hand,
f1ALf2]

K oo
= ( > cn(fl)é"f>2( > cm(fz)é'"f)

n=—K m=K+1

e} K
=2) Z en(Fr)ckn(f2) €.
k=1n=—K

Therefore, we havel[ /1 12] =
complete the proof. O

f1A[ f2], and then we

Corollary 3.2. Let f1 and f> be reatvalued If

n<-—-K

cn(f1) =0 for
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and
cm(A[f2]) =0, for

ThenA[ f1f2] = fiAl f2]-

m<K.

Proof. Sincefi, f2 arereal-valued, their Fourier coef-
ficients satisfy the Hermitian relatien( f;) = c—,(f3)-
The assertion then follows froffheorem 3.1 [

The last corollary shows that jf(r) = o(¢) coso(r)
and the amplitude has low frequencies and cé@g)

They are the cases with linear phases. For non-linear
unit analytic signals we have the following result.

Theorem 4.1. Let a be a complex number such
that|a| < 1,andz,(z) = (z — a)/(1 — az) be the cor-
responding Mbius transform Then the unimodular
functionz,(€), t € [—m, n], is a unit analytic signal

Note thatr, conformally maps the unit disc to the
unit disc,a to 0, and the unit circle to the unit circle.
Thus the parametric functiorn (€') is of modular one.

has high frequencies such that the two frequencies Proof. Write z,(€") = €%, From the knowledge of

ranges are disjoint, then
T(p(r) coso(1)) = p(t)H(coso(?)).

We therefore are interested in finding those phaégs
for which

6'(1) >0, and H(coso(r)) = sina(r),

as in such cases the signal
p(5) €70

is an analytic signal.

In the sequel bynit analytic signals on the circle
we mean those
@) =60, with 6'() >0,
and #(cos(r)) = siné(r). (3.5)

The conceptinit analytic signals on the linis de-
fined similarly where the circular Hilbert transfori
is replaced by the Hilbert transforfi (see(1.1)) on
the real line.

4. Existence of non-trivial unit analytic signals
As trivial example of unit analytic signals we have,
for any integem,
H(cosqt + b)) = H(cosnt cosb — sinnz sinb)
= cosbH(cosnt) — sinbH(sinnt)
= cosb sinnt + sinb cosnt

= sin(r + b).

M@obius transform we know that the parametric func-
tion6,(¢) is strictly increasing ané(xr) — 6(—x) = 2.
The function is in fact absolutely continuous and the
derivative satisfies

1 do,(r)
27 dr
1 1— |al?

T 27 1—2lalcost — 1) + a2 palt) > 0,
wherea = |a| €%, andp, is the Poisson kernel for the
pointa (seeg[5]).

The functionz,(z) is analytic in an open neighbor-
hood of the closed unit disc, thus it can be expressed
by the Cauchy integral over the unit circle:

T a04(s)
7.(z) = i/ ¢ ds,

it
- Z=re".
27 J_, €5 —z2

Lettingr — 17, by the Plemelj’'s formula, we have
o) — %eie(r) + %iyi[ do)

The last equality is further reduced to

d90) — iy 90,

Substituting & with cosd,(t) +isin6,(r) in the
above equality, and comparing the real- and the
imaginary-parts of the obtained equality, we arrive

F cos8,(t) = sinbu (7).

as desired, and, even further,

H sinb,(1) = — cost, ().

The proof is complete. O
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For a further generalization of the theory please see
[11].

We present an example here. Taking=1/2 in
Theorem 4.1we have

g% = (1) +is(r),

where

3sint

_5005t—4 .
T 5_4cost’

" 5—_4cos’

c(1) s(t)

The theorem asserts that the functign) + is(¢) is a
unitanalytic signal. As verification of the theorem, now
we prove this fact using elementary computation. We
shall show

(i) (1) +s%(1) =1;
(i) s'(2) = h(t)c(),
i) H(c(t)) = s().

h(t) = O;

Under (i)—(iii), we may write
c(r) = cosi(t), s(r) = sind(r),

emzzﬁvmomh H(cosA(t)) = sind(r).

Now,
(5 cost — 4) + (3sinr)?
(5 — 4 cost)?

_ 25c081+ 16— 40cog + 9sirf ¢
o 25+ 16 cog ¢ — 40 cos ’

A(t) + 52(r) =

On replacing 16 by 16 sfir + 16 cog ¢ in the numer-
ator, we have?(r) + s%(r) = 1. This proves (i).

Next, we have
, d 3sint 15cos — 12
(1) = — = .
dr \5—4cos (5 — 4 cost)?
Therefore
s'(1) 3

=— >0
5—4cos ~

(1)
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To show (iii), we point out that

3

S COSAE -

o) =—3+3cost+---+

s(t) = 3sint+ -+ + g2y sinnr + -

The circular Hilbert transform may be applied term by
termto the serieq(r), and we then obtain (iii). The term
by term operation is justified by the?-boundedness of
the circular Hilbert transform (Riesz Theorem) and by
the convergence in the?-sense of series representing
the functionc(r). Figs. 1 and 2llustrate the plots of the
signal f(r) = (5cost — 4)/(5 — 4 cost) and its phase

in the Hilbert domain, in one period and in several pe-
riods, respectively.

From (i) to (iii), we know that, the phase

’ztic(t) 3sint
0(¢) = arctan = arctan————,
®) c(t 5cos — 4
satisfies that
0'(t) = h(t), cos(t) =c(r), and

F cosi(t) = He(t) = s(r) = sind(e).
That is to say that'®") is an analytic signal.

5. Signals on the whole time range

This section will be based on the Cayley transform
that conformally maps the upper-half-complex plane
to the unit disc

w= -,
Z+1

It maps the real line to the unit circle via

—t_i—t2_1+i 2t
i T 2yl 2y
On letting
-1 1 — tarf(s/2)
COoSs = = - ,
2+1 1+ tarf(s/2)
2t 2tan
and sins = = 6/2) ,
2+1  1+tark(s/2)
we have
s=2tan 1t
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signal f(t)=(5cost-4)/(5-4cost), te [-m,x] phase plot of the signal f(t)=(5cost-4)/(5-4cost), te [-m.x] in Hilbert domain
1 . ; . — - . 1.5 : : : : ; . : ! !
0.8+ .
0.6+ .
04f 1 ¥
02} 5
= 3
= 0r i g
-0.2} 105
0
-0.41 R E
-0.6+ 4
-0.8}
10100 200 300 400 500 600 700 21 —08 —06 04 02 0 02 04 06 08 1
time t signal f(t)
Fig. 1. The signalf(r) = (5cost — 4)/(5 — 4 cos) in one period and its phase plot in Hilbert domain.
Owing to the conformal property of the mapping an- Now we use the example in the previous section to

alytic functions on the upper-half-plane are mapping to obtain a unit analytic signal on the real line. Note that
analytic functions on the unit disc, and, vice versa. So, froms = 2tarr!+ we have
if F(s) = cosd(s) + isind(s) is a unitanalytic function

- it Ci 1— 972
defined on the unit circle, then () = c(2 tan‘lt) _ g teR.
f(t) = cosd(2tan 1) +ising(2tar 1)
is a unit analytic function on the upper-half-plane, and The Hilbert transform off (¢) is
we have
Hf@) = s(2tan 1) & reR
_ . _ = = —, e R.
H(coso(2tarm 1 1)) = sino(2 tar 1 7). 1+ 92
signal f(t)=(5cost-4)/(5-4cost), te [-20x,20x] phase plot of the signal f(t)=(5cost-4)/(5-4cost), te [-20r,20x] in Hilbert domain
1 ; ; : : ; 1.5
08} il
0.6 1 |
0.4 { =
£
- 0.2 . é
£ o i é
-02 1z
D
o
-0.4 E T
-0.6 4
-0.8} 1
1o 200 400 600 800 1000 1200 1400 31 0.5 0 05 1 15
time t signal f(t)

Fig. 2. The signalf(r) = (5cost — 4)/(5 — 4 cos) in several periods and its phase plot in Hilbert domain.
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the signal 1(t)=(1-9t%)/(1+9t%)

0.8+
06+
0.4+
0.2+

f(t)

02,
—04.
—06k

-0.8}+

-1

1000 1500
time t

500 2000 2500

H(t)
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phase plot of the signal f(t)=(1-9t°)/(1+9t%), te R in Hilbert domain
1 : : v : : .

0.8
06 |
04 |
02 |

0F
-0.2
—04}
06|
-0.8

= 02 04 06 08 1

08 -06 04 —02 0
signal f(t)

Fig. 3. The signalf(r) = (1 — 92)/(1 + 92), t € R and its phase plot in Hilbert domain.

As verification the last relation can be obtained from
direct calculation:

1V /001—9x2 1
P oo L4921 —x

1 18
1)@ — ) dr= (92 + 1)

2 o0
P /_oo (9x2 +

V. /Oo * + ! + ! dx
X V.pP.
P oo \ 2 4+1 241 r—x
18 © 1 6t
= ————V.p. dx = .
92+ P /_Oo o1 T 192
The phase is

¢(t) = arctan teR.

6t
1-—92

Its derivative is the Poisson kernel of the real line
and thus is always positiv€ig. 3illustrates the plots
of the signalf(r) = (1 — 9?)/(1 + 9r?) and its phase
in the Hilbert domain.
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