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Analytic unit quadrature signals with nonlinear phase
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Abstract

The notion of intrinsic mode functions (IMFs) in the algorithm of Hilbert-Huang transform (HHT) [N.E. Huang, Z. Shen,
S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London A 454 (1998) 903–995] is essentially an
engineering description in relation to mono-components of nonlinear and non-stationary signals. In this note we prove a version
of Bedrosian’s theorem on the unit circle. We give a sufficient condition together with an example for nonlinear phasesθ(t) that
make the unit quadrature signals eiθ(t) to be analytic. We also establish a corresponding relationship between the periodic and
non-periodic signals on the whole time range.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

The frequency of non-stationary signals varies with
ime. The traditional Fourier analysis, however, can not
xpose the time-varying property of frequency of non-
tationary signals. This is due to the basic fact that
n Fourier analysis a general signal is superposition
f harmonic waves of which each has a constant fre-
uency. In mathematics Fourier transform is a kind of
nivariate representation of signals in the time domain
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or the frequency domain separately, and thus doe
enjoy the time-frequency localization. The latter le
to the study of windowed Fourier transform and wav
transform, which are bivariate representations of
nals in time and frequency domains simultaneou
and offer finite time-frequency localization[4]. They,
on the other hand, both have the shortcoming that
use fixed time-frequency atoms to match a large va
of signals. It would be often the case that these fi
time-frequency atoms are not theintrinsic component
of the signal under study. The ideal method of tim
frequency analysis would be decomposition adapt
signal into certain basic intrinsic components wh
are mono-components[2,3]. For those componen
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one can define meaningfulinstantaneous frequencyand
furthermore construct time-frequency distribution.

Recently, Norden E. Huang presented a new time-
frequency algorithm for nonlinear and non-stationary
signal analysis: Hilbert-Huang transform (HHT) (see
[8,6,7]). By using the algorithm of empirical mode de-
composition (EMD), any multi-component can be de-
composed into a finite sum of intrinsic mode functions
(IMFs), which are essentially mono-components. The
notion of IMF defined by Huang plays a crucial role
in the HHT algorithm. The original concept of IMFs is
an engineering description: The local maximums and
minimums take turn to occur, and between a pair of
adjacent local extremes, the signal is monotone and
passes through the zero only once, and is of the local
symmetry, i.e., the mean of any adjacent pair of upper
and lower envelopes is of the zero value. Experiments
show that IMFs behave nicely with Hilbert transform in
the following sense[6,8]: Each term of the IMFs in the
EMD, regarded as mono-component of the signal, is the
real part of a complex-valued signalf (t) = a(t) eiθ(t)

satisfying the equationH(f )(t) = −if (t), whereH(f )
is the Hilbert transform off (t) on the real line, defined
by

Hf (t) = 1

π
v.p.

∫ ∞

−∞
f (x)

t − x
dx. (1.1)

Functions satisfying the equationH(f )(t) = −if (t)
are calledanalytic signals. Through this representa-
tion instantaneous frequenciesmay be defined as the
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nal theory in the same pattern as in HHT. Without loss
of generality, we assume that a signalf (t) is defined
in [−π, π]. We further assume thatf ∈ L2([−π, π]).
Betweenf and its associated Fourier series there holds

f (t) =
∞∑

k=−∞
ck eikt,

wherecn = cn(f ) is thenth Fourier coefficient off,
and the convergence is in theL2-norm sense. Based on
Carleson’s Theorem the equivalence holds also in the
almost everywhere point-wise convergence sense.

The Hilbert transform off (t), t ∈ [−π, π], or on the
unit circle, is defined through Fourier multiplier, by

H̃(f )(t) = −i
∞∑

k=−∞
sgn(k)ck eikt, (2.1)

where sgn(k) is the signum function

sgn(k) =




1, k = 1,2, . . .

−1, k = −1,−2, . . .

0, k = 0.

(2.2)

Accordingly, we have

f (t) + iH̃(f )(t) = c0 + 2
∞∑
k=1

ck eikt . (2.3)

It is easy to show thatck are bounded as
f
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erivative of phaseθ(t). This inspires us to ask: How
haracterize functionsa andθ such that the quadratu
ignala(t) eiθ(t) is analytic? In this note we restrict ou
elves mainly to the unit circle (corresponding to the
iodic case) and the unit quadrature case (corresp
ng to a ≡ 1). We provide a sufficient condition o
on-linear functionsθ(t) giving rise to analytic signal

.e., satisfyingH(eiθ(t)) = −i eiθ(t), or, equivalently
(cosθ(t)) = sinθ(t). An example is presented f

uch signals. There is a close relation between ana
ignals and Bedrosian’s theorem[1,10]. The unit circle
periodic) version of a Bedrosian’s theorem is prov

. Hilbert transform on the circle

We study periodic signals on the whole time ran
r, equivalently, study signals defined on compac

ervals. In the case here is a corresponding analytic
∈ L2([−π, π]). As consequence, the seriesc0 +∑∞
k=1 ckz

k converges to an analytic function for|z| <
. By writing z = r eit ,0 ≤ r < 1, this further implies

hatf (t) + iH̃(f )(t) is the boundary value of the abo
efined analytic function in the unit disc.

We note that the circular Hilbert transform̃H has
he property

˜ 2
(f )(t) = −f (t) + a, (2.4)

herea is a complex number.
It is known (see, for instance,[12] or [9]) that, base

n the Fourier series version of Parseval’s formula
bove defined circular Hilbert transform has an a
ative form as a singular integral:

˜ f (t) = 1

2π
lim
ε→0+

∫
ε<|s|≤π

cot
( s

2

)
f (t − s) ds, a.e

(2.5)
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Using its Fourier multiplier definition one easily
gets, for instance,

H̃(cosnt) = sinnt.

Indeed, cosnt = 1/2(e−int + e−int). Hence,

H̃(cosnt) = −i

2
(sgn(−n)e−int + sgn(n)eint)

= −i

2
2i sinnt = sinnt.

Similarly, H̃(sinnt) = − cosnt.

3. Analytic signals on circle

Suppose that withf ∈ L2([−π, π]) we obtained
H̃f, and, as deduced in the previous section,f (t) +
iH̃f (t) is the boundary value of an analytic function in
the unit disc. We write

f (t) + iH̃f (t) = ρ(t) eiθ(t), (3.1)

where

ρ(t) =
√
f 2(t) + (H̃f (t))2, cosθ(t) = f (t)

ρ(t)
,

and sinθ(t) = H̃f (t)

ρ(t)
. (3.2)

m on,
A
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w , if
F
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t
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Theorem 3.1. Suppose thatf1, f2 ∈ L2([−π, π]).
Then

A[f1f2] = f1A[f2] (3.4)

if there existsK ∈ Z
+ ∪ {0} such that

cn(f1) = 0, |n| > K and cn(f2) = 0, |n| ≤ K.

Proof. Let

f1(t) =
K∑

n=−K
cn(f1) eint, and

f2(t) =

 −K−1∑
m=−∞

+
∞∑

m=K+1


 cm(f2) eimt.

SinceA[f1f2] keeps allcn(f1f2), n ≥ 0 and kills all
cn(f1f2), n < 0 we have

A[f1f2] =
∑

n+m=0

cn(f1)cm(f2)

+2
∞∑
k=1


 ∑
n+m=k

cn(f1)cm(f2)


eikt

= 2
∞∑
k=1

K∑
n=−K

cn(f1)ck−n(f2) eikt .

N
d ther
h

f

T
c

C

c

For any real-valued functionf ∈ L2([−π, π]), we
ay associate it with a complex-valued functi
[f ](t), defined, in the above notation, by

[f ](t) = ρ(t) eiθ(t). (3.3)

e callA[f ](t) theanalytic signal associated with.
rom(2.4)one easily deduces that

˜ A[f ](t) = −i(A[f ](t) − a),

herea is a complex number. On the other hand
= f + ig satisfies

˜ F = −i(F − a),

hen modular constants̃Hf = g.
The following Bedrosian’s theorem in the circu

ase is expected.
ote that the Fourier coefficientscm(f2) for m < −K
o not play any role in the last expression. On the o
and,

1A[f2]

=
(

K∑
n=−K

cn(f1) eint

)
2


 ∞∑
m=K+1

cm(f2) eimt




= 2
∞∑
k=1

K∑
n=−K

cn(f1)ck−n(f2) eikt .

herefore, we haveA[f1f2] = f1A[f2], and then we
omplete the proof. �

orollary 3.2. Letf1 andf2 be real-valued. If

n(f1) = 0 for n < −K
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and

cm(A[f2]) = 0, for m ≤ K.

ThenA[f1f2] = f1A[f2].

Proof. Sincef1, f2 are real-valued, their Fourier coef-
ficients satisfy the Hermitian relationcn(fi) = c−n(fi).
The assertion then follows fromTheorem 3.1. �

The last corollary shows that iff (t) = ρ(t) cosθ(t)
and the amplitudeρ has low frequencies and cosθ(t)
has high frequencies such that the two frequencies
ranges are disjoint, then

H̃(ρ(t) cosθ(t)) = ρ(t)H̃(cosθ(t)).

We therefore are interested in finding those phasesθ(t)
for which

θ′(t) ≥ 0, and H̃(cosθ(t)) = sinθ(t),

as in such cases the signal

ρ(t) eiθ(t)

is an analytic signal.
In the sequel byunit analytic signals on the circle

we mean those

f (t) = eiθ(t), with θ′(t) ≥ 0,

a

fi
i
t

4

ve,
f

H

They are the cases with linear phases. For non-linear
unit analytic signals we have the following result.

Theorem 4.1. Let a be a complex number such
that |a| < 1, andτa(z) = (z− a)/(1 − āz) be the cor-
responding M¨obius transform. Then the unimodular
functionτa(eit), t ∈ [−π, π], is a unit analytic signal.

Note thatτa conformally maps the unit disc to the
unit disc,a to 0, and the unit circle to the unit circle.
Thus the parametric functionτa(eit) is of modular one.

Proof. Write τa(eit) = eiθa(t). From the knowledge of
Möbius transform we know that the parametric func-
tionθa(t) is strictly increasing andθ(π) − θ(−π) = 2π.
The function is in fact absolutely continuous and the
derivative satisfies
1

2π

dθa(t)

dt

= 1

2π

1 − |a|2
1 − 2|a| cos(t − ta) + |a|2 =: pa(t) > 0,

wherea = |a| eit0, andpa is the Poisson kernel for the
pointa (see[5]).

The functionτa(z) is analytic in an open neighbor-
hood of the closed unit disc, thus it can be expressed
by the Cauchy integral over the unit circle:

τa(z) = 1

2π

∫ π

−π
eiθa(s)

eis − z
ds, z = r eit .

L

e

T

e

S
a the
i

H

a

H

T

nd H̃(cosθ(t)) = sinθ(t). (3.5)

The conceptunit analytic signals on the lineis de-
ned similarly where the circular Hilbert transform̃H
s replaced by the Hilbert transformH (see(1.1)) on
he real line.

. Existence of non-trivial unit analytic signals

As trivial example of unit analytic signals we ha
or any integern,

˜ (cos(nt + b)) = H̃(cosnt cosb− sinnt sinb)

= cosbH̃(cosnt) − sinbH̃(sinnt)

= cosb sinnt + sinb cosnt

= sin(nt + b).
etting r → 1−, by the Plemelj’s formula, we have

iθ(t) = 1
2 eiθ(t) + 1

2iH̃eiθ(t).

he last equality is further reduced to

iθ(t) = iH̃eiθ(t).

ubstituting eiθ(t) with cosθa(t) + i sinθa(t) in the
bove equality, and comparing the real- and

maginary-parts of the obtained equality, we arrive

˜ cosθa(t) = sinθa(t),

s desired, and, even further,

˜ sinθa(t) = − cosθa(t).

he proof is complete. �
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For a further generalization of the theory please see
[11].

We present an example here. Takinga = 1/2 in
Theorem 4.1, we have

eiθa(t) = c(t) + is(t),

where

c(t) = 5 cost − 4

5 − 4 cost
, s(t) = 3 sint

5 − 4 cost
.

The theorem asserts that the functionc(t) + is(t) is a
unit analytic signal. As verification of the theorem, now
we prove this fact using elementary computation. We
shall show

(i) c2(t) + s2(t) = 1;
(ii) s′(t) = h(t)c(t), h(t) ≥ 0;

(iii) H̃(c(t)) = s(t).

Under (i)–(iii), we may write

c(t) = cosθ(t), s(t) = sinθ(t),

θ(t) =
∫ t

0
h(u) du, H̃(cosθ(t)) = sinθ(t).

Now,

c

O -
a

s

T

To show (iii), we point out that

c(t) = −1
2 + 3

4 cost + · · · + 3
2n+1 cosnt + · · · ,

s(t) = 3
4 sint + · · · + 3

2n+1 sinnt + · · · .
The circular Hilbert transform may be applied term by
term to the seriesc(t), and we then obtain (iii). The term
by term operation is justified by theL2-boundedness of
the circular Hilbert transform (Riesz Theorem) and by
the convergence in theL2-sense of series representing
the functionc(t). Figs. 1 and 2illustrate the plots of the
signalf (t) = (5 cost − 4)/(5 − 4 cost) and its phase
in the Hilbert domain, in one period and in several pe-
riods, respectively.

From (i) to (iii), we know that, the phase

θ(t) = arctan
H̃c(t)

c(t)
= arctan

3 sint

5 cost − 4
,

satisfies that

θ′(t) = h(t), cosθ(t) = c(t), and

H̃ cosθ(t) = H̃c(t) = s(t) = sinθ(t).

That is to say that eiθ(t) is an analytic signal.

5. Signals on the whole time range

This section will be based on the Cayley transform
that conformally maps the upper-half-complex plane
to the unit disc

ω

I

ω

O

c

a

w

s

2(t) + s2(t) = (5 cost − 4)2 + (3 sint)2

(5 − 4 cost)2

= 25 cos2 t + 16− 40 cost + 9 sin2 t

25+ 16 cos2 t − 40 cost
.

n replacing 16 by 16 sin2 t + 16 cos2 t in the numer
tor, we havec2(t) + s2(t) = 1. This proves (i).

Next, we have

′(t) = d

dt

(
3 sint

5 − 4 cost

)
= 15 cost − 12

(5 − 4 cost)2
.

herefore

s′(t)
c(t)

= 3

5 − 4 cost
> 0.
= z− i

z+ i
.

t maps the real line to the unit circle via

= t − i

t + i
= t2 − 1

t2 + 1
+ i

2t

t2 + 1
.

n letting

oss = t2 − 1

t2 + 1
= −1 − tan2(s/2)

1 + tan2(s/2)
,

nd sins = 2t

t2 + 1
= 2 tan(s/2)

1 + tan2(s/2)
,

e have

= 2 tan−1 t.
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Fig. 1. The signalf (t) = (5 cost − 4)/(5 − 4 cost) in one period and its phase plot in Hilbert domain.

Owing to the conformal property of the mapping an-
alytic functions on the upper-half-plane are mapping to
analytic functions on the unit disc, and, vice versa. So,
if F (s) = cosθ(s) + i sinθ(s) is a unit analytic function
defined on the unit circle, then

f (t) = cosθ(2 tan−1 t) + i sinθ(2 tan−1 t)

is a unit analytic function on the upper-half-plane, and
we have

H(cosθ(2 tan−1 t)) = sinθ(2 tan−1 t).

Now we use the example in the previous section to
obtain a unit analytic signal on the real line. Note that
from s = 2 tan−1 t we have

f (t) = c(2 tan−1 t) = 1 − 9t2

1 + 9t2
, t ∈ R.

The Hilbert transform off (t) is

Hf (t) = s(2 tan−1 t) = 6t

1 + 9t2
, t ∈ R.

Fig. 2. The signalf (t) = (5 cost − 4)/(5 − 4 cost) in several periods and its phase plot in Hilbert domain.
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Fig. 3. The signalf (t) = (1 − 9t2)/(1 + 9t2), t ∈ R and its phase plot in Hilbert domain.

As verification the last relation can be obtained from
direct calculation:

1

π
v.p.

∫ ∞

−∞
1 − 9x2

1 + 9x2

1

t − x
dx

= 2

π
v.p.

∫ ∞

−∞
1

(9x2 + 1)(t − x)
dx= 18

π(9t2 + 1)

× v.p.
∫ ∞

−∞

(
x

9x2 + 1
+ t

9x2 + 1
+ 1

t − x

)
dx

= 18t

π(9t2 + 1)
v.p.

∫ ∞

−∞
1

9x2 + 1
dx = 6t

1 + 9t2
.

The phase is

φ(t) = arctan
6t

1 − 9t2
, t ∈ R.

Its derivative is the Poisson kernel of the real line
and thus is always positive.Fig. 3 illustrates the plots
of the signalf (t) = (1 − 9t2)/(1 + 9t2) and its phase
in the Hilbert domain.
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