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1. Introduction

Quadrature signal processing is used in many fields of science and engineering, and
quadrature signals are necessary to describe the processing and implementation
that takes place in modern digital communication systems. It serves two purposes:
to determine the parameters needed for the construction of a necessary model, and
to confirm if the model constructed represents the physical phenomenon. Especially
nowadays, with the development of science and technology, a large amount of data
is waiting for further scientific exploration. Traditional data analysis methods such
as Fourier analysis, based on the linear stationary assumption have been shown to
be efficient for processing of linear and stationary data. However, data from real
systems, either natural or man-made ones, are most likely to be both nonlinear and
non-stationary. Many studies have shown that the traditional data analysis methods
are not suitable for analyzing nonlinear and non-stationary data. Only in recent
years have new methods been introduced to analyze non-stationary and nonlinear
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data. For example, wavelet analysis8 and the Wigner–Ville distribution22,23 are
designed for linear but non-stationary data. Meanwhile, various nonlinear time
series analysis methods are designed for nonlinear but stationary and deterministic
systems.

Recently, Huang presented a new time-frequency algorithm for nonlinear and
non-stationary signal analysis: Hilbert–Huang Transform (HHT).12,13 By using the
algorithm of empirical mode decomposition (EMD), any multi-component can be
decomposed into a finite sum of intrinsic mode functions (IMFs), which are essen-
tially mono-components. The notion of IMF defined by Huang plays a crucial role
in the HHT algorithm. The original concept of IMFs is an engineering description:
The local maximums and minimums take turn to occur, and between a pair of
adjacent local extremes, the signal is monotone and passes through the zero only
once, and is of the local symmetry, i.e. the mean of any adjacent pair of upper and
lower envelopes is of zero value. Experiments show that IMFs behave nicely with
Hilbert transform in the following sense12,13: Each term of the IMFs in the EMD,
regarded as mono-component of the signal, is the real part of a complex-valued
signal f(t) = a(t)eiθ(t) satisfying the equation H(f)(t) = −if(t), where H(f)(t) is
the Hilbert transform of f(t) on the line,21,25 defined by

H(f)(t) =
1
π

v.p.
∫ ∞

−∞

f(s)
t − s

ds. (1.1)

In Ref. 4, the authors show that these IMFs can be approximated by B-spline.
For a real-valued signal f(t), there are infinitely many ways to write f(t) as

a(t) cos θ(t). Gabor10,18 first used the Hilbert transform to generate the associated
analytic signal according to

fa(t) = f(t) + iH(f)(t) = a(t)eiθ(t), (1.2)

and then the original signal is the real part of the complex-valued function:
f(t) = Re fa(t) = a(t) cos θ(t). This amplitude-frequency modulation is unique
and is called the canonical modulation. In such a way we obtain the one-to-one cor-
respondence f(t) → (ρ(t), θ(t)), the latter being called the canonical pair associated
with f(t). With a canonical modulation, if θ′(t) ≥ 0, then θ′(t) is defined to be the
instantaneous frequency of the complex signal fa(t), and also that of the associated
real signal f(t) (see, for example, Refs. 7 and 18).

The notion of instantaneous frequency, however, is not valid for multi-
components. For instance, the “instantaneous frequency” of the signal f(t) =
cos t+cos 2t obtained through its analytic signal has negative values. This suggests
to decompose multi-components into the sum of mono-components to which mean-
ingful instantaneous frequency may be defined. So far, there is no strict mathemat-
ical definition of mono-components. A large number of literature discuss this prob-
lem, see, for example, Refs. 2, 3, 7, 16 and 18. We know that if x(t) = a(t) cos θ(t),
then fq(t) = a(t)eiθ(t) is the associated quadrature. The key problem is: Under
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what conditions the quadrature fq(t) coincides with the associated analytic signal
fa(t)? The relation fq(t) = fa(t) is equivalent to

H(a(t) cos θ(t)) = a(t) sin θ(t). (1.3)

This leads to the Bedrosian theorem2: if the spectrums of the amplitude a(t)
and that of cos θ(t) are respectively of low-pass and high-pass and disjoint, then

H(fg)(t) = f(t)Hg(t). (1.4)

If, in addition,

H cos θ(t) = sin θ(t), (1.5)

then fq(t) = fa(t), and the form f(t) = a(t) cos θ(t) is the canonical representation
of f(t). Since it is expected that the spectrums of amplitude is lower than that of
the unimodular part eiθ(t), then the assertion fq(t) = fa(t) is reduced to (1.5).

Nuttall theorem16 states that the energy estimation of error when quadrature
signal approximates to analytic signal. Vakman and Vainshtein22 offered a pointwise
estimation of the error between fa(t) and fq(t):

|fa(t) − fq(t)| ≤ 2√
2π

∫ 0

−∞

∣∣f̂q(ω)
∣∣dω.

Based on the Bedrosian and Nuttall theorems, a natural question occurs: For
an amplitude-frequency modulation signal f(t) = ρ(t) cos θ(t), under what con-
ditions on ρ and θ the associated quadrature signal ρ(t)eiθ(t) becomes analytic?
In Ref. 19, Qian proves that a strictly increasing function θ(t), t ∈ [0, 2π] with
m(θ([0, 2π])) = 2π gives rise to an analytic signal eiθ(t) if and only if dθ(t) is a har-
monic measure on the circle, and this result has a counterpart for strictly increasing
functions Θ(s) with m(Θ(R)) = 2π on the whole real line. In Ref. 5, we explore
some time-frequency aspects of the family of the new nonlinear Fourier atoms
{einθa(t) : n ∈ Z}, |a| < 1, where dθa(t) is a harmonic measure, that is, the deriva-
tive of θa(t) is the Poisson kernel. We show that cos θa(t) is of mono-component.5

That essentially means that θ′a(t) > 0, the Hilbert transform of cos θa(t) is sin θa(t),
and θa(t) can be decomposed into a sum of a linear part and a nonlinear but
periodic part.

This paper contains 4 sections. In Sec. 2, we recall some properties of nonlinear
Fourier atoms. In Sec. 3, we establish Kadec type 1

4 -theorem for the nonlinear
Fourier atoms. Section 4 mainly concerns frame stability in relation to this new
family of atoms.

2. Behavior of Nonlinear Fourier Atoms

An analytic signal is of the form

f(t) = ρ(t)eiθ(t),
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where ρ(t) and θ′(t) are the corresponding instantaneous amplitude and frequency of
f(t), which is the boundary value of an analytic function in the upper-half-complex
plane. In Ref. 19 (see also Ref. 20), Qian introduces θa(t) defined by

eiθa(t) = τa(eit) =
eit − a

1 − āeit
(2.1)

through the Möbius transformation

τa(z) =
z − a

1 − āz
(2.2)

that is a conformal mapping one-to-one and onto from the unit disc to itself under
the condition τ(a) = 0.

Note that θa(t) is defined on the unit circle and its derivative is the Poisson
kernel (see Refs. 11 or 19)

θ′a(t) = pa(t) =
1 − |a|2

1 − 2|a| cos(t − ta) + |a|2 .

The function θa may be continuously extended to the whole real line with the
property θa(t + 2π) = θa(t) + 2π whose derivative pa(t) is continuous and 2π-
periodic. The corresponding period functions eiξθa(t), ξ > 0, except for the trivial
case a = 0 corresponding to eiξt of the linear phase ξt, are not included in the
general form of Picinbono.18 Indeed, the derivatives of the phases of the signals in
Ref. 18 are not periodic. The atomic case of Picinbono was studied in Ref. 19.

Let a = |a|eita . We then obtain by a directly computation

eiθa(t) = eit A(t)
Ā(t)

,

where A(t) = 1 − |a|ei(ta−t). By noting that

Arg A(t) = arctan
|a| sin(t − ta)

1 − |a| cos(t − ta)
,

we get the explicit expression

θa(t) = t + 2 arctan
|a| sin(t − ta)

1 − |a| cos(t − ta)
. (2.3)

Note that the first part is linear and the second part is periodic, and the decompo-
sition is unique.

It is interesting to note that the signal cos θa(t) is a mono-component with
frequency modulation. To see this, we need to show that its Hilbert transform is
the corresponding sine function sin θa(t).

The circular Hilbert transform H̃11,25 of a function f =
∑

k ckeikt ∈ L2([0, 2π])
is defined by

H̃f(t) = −i
∑

k

sgn(k)ckeikt. (2.4)
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It has a singular integral expression

H̃f(t) =
1
2π

v.p.
∫ π

−π

cot
(

t − s

2

)
f(s)ds, a.e. (2.5)

In accordance with the Bedrosian theorem, it has been well accepted that if
H (a(t) cosφ(t)) = a(t) sin φ(t) and φ′(t) ≥ 0, then meaningful instantaneous ampli-
tudes and frequencies may be defined through the amplitude-frequency modulation
signal s(t) = a(t) cosφ(t). In the case, we regard s(t) as of mono-component.3

The following theorem states that cos θa(t) is a mono-component with constant
amplitude.

Proposition 2.1. (see Refs. 5 and 20) (i) Treating cos θa(t) as a function defined
on the unit circle, we have

H̃ cos θa(t) = sin θa(t), H sin θa(t) = − cos θa(t) + a, and (2.6)

(ii) treating cos θa(t) as a 2π-periodic function on the whole real line, we have

H cos θa(t) = sin θa(t), and H sin θa(t) = − cos θa(t). (2.7)

We provide an explicit representation for the function cos θa(t). By (2.3), we
have that

cos θa(t) = cos
(

2 arctan
|a| sin(t − ta)

1 − |a| cos(t − ta)

)
cos t

− sin
(

2 arctan
|a| sin(t − ta)

1 − |a| cos(t − ta)

)
sin t.

Through a direct computation, we have

cos θa(t) =
cos t − 2|a| cos ta + |a|2 cos(t − 2ta)

1 + |a|2 − 2|a| cos(t − ta)
.

In particular, when a is a real number less than 1, cos θa(t) can be simplified into

cos θa(t) =

(
1 + |a|2) cos t − 2|a|
1 + |a|2 − 2|a| cos t

.

With the notation θ′a(t) = pa(t), pa(t) being the Poisson kernel, we have p0 = 1.
There holds the estimates for pa:

1 − |a|
1 + |a| ≤ pa(t) ≤ 1 + |a|

1 − |a| . (2.8)

Define

L2
pa

([0, 2π]) =
{

f : [0, 2π] → C :
∫ 2π

0

|f(t)|2pa(t)dt < ∞
}

.

It is a Hilbert space equipped with the inner product

〈f, g〉pa
=
∫ 2π

0

f(t)g(t)pa(t)dt
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and the norm ‖f‖pa =
( ∫ 2π

0 |f(t)|2pa(t)dt
) 1

2 . We note that for a = 0, the space
L2

pa
([0, 2π]) reduces to the classical Hilbert space L2([0, 2π]) with the usual norm

‖f‖ =
( ∫ 2π

0
|f(t)|2dt

) 1
2 . From (2.8), we have equivalent relationship between the

two norms for f ∈ L2
a([0, 2π]) (also for f ∈ L2([0, 2π]))

1 − |a|
1 + |a| ‖f‖

2 ≤ ‖f‖2
pa

≤ 1 + |a|
1 − |a| ‖f‖

2. (2.9)

Note that all the spaces L2
pa

([0, 2π]), |a| < 1, are identical as function sets with
different but equivalent norms. Through change of variable the classical Carleson’s
Theorem reduces to the assertion (also see Ref. 19) that for any f ∈ L2

pa
([0, 2π]),

f(t) =
∑

n

ca
n(f)einθa(t), a.e.

The identity of the function sets then implies that the last equality also holds
for functions in f ∈ L2([0, 2π]). That is, the standard square integrable functions
can be approximated by the nonlinear Fourier atoms with the weighted Fourier
coefficients ca

n(f).

3. Kadec Type 1
4
-Theorem for Nonlinear Fourier Atoms

The notion of frame has been introduced by Duffin and Schaeffer.9 A sequence of
distinct vectors {φn : n ∈ Z} belongs to a separable Hilbert space H is said to be
a frame if there exist positive constants A and B such that

A‖f‖2 ≤
∞∑

n∈Z

|(f, φn)|2 ≤ B‖f‖2

for every f ∈ H . The numbers A and B are called the lower and upper bounds of
the frame.

If the sequence {φn : n ∈ Z} is a (Schauder) basis as well as a frame in H , then
{φn : n ∈ Z} is called a Riesz basis.

The fundamental stability criterion for Riesz basis, historically the first, is due to
Paley and Wiener.17 We formulate it as follows (see Ref. 9, Chap. 1, Theorem 13):

Proposition 3.1. Let {φn : n ∈ Z} be an orthonormal basis for a separable Hilbert
space H and let {ψn : n ∈ Z} be “close” to {φn : n ∈ Z} in the sense that∥∥∥∥∥

∑
n∈Z

cn(φn − ψn)

∥∥∥∥∥
H

≤ λ (3.1)

for some constant λ, 0 ≤ λ < 1, where {cn : n ∈ Z} is an arbitrary sequence
satisfying

∑
n∈Z

|cn|2 ≤ 1. Then {ψn : n ∈ Z} is a Riesz basis for H.

In the context of an orthonormal Fourier basis, Kadec proved the so-called
1
4 -theorem in his celebrated paper,14 see also Ref. 24.

We now establish the Kadec type 1
4 -theorem for the nonlinear Fourier atoms.
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Theorem 3.1. If {λn : n ∈ Z} is a sequence of real numbers for which

|λn − n| ≤ L <
1
4
, ∀ n ∈ Z, (3.2)

then {eiλnθa(t) : n ∈ Z} forms a Riesz basis for L2
a([0, 2π]) and for L2([0, 2π]).

Proof. Let the sequence {cn : n ∈ Z} satisfy
∑

n∈Z
|cn|2 ≤ 1. From the proof of

Kadec type 1
4 -theorem14,24 we know that there exists a constant λ, 0 ≤ λ < 1,

such that ∥∥∥∥∥
∑
n∈Z

cn(eint − eiλnt)

∥∥∥∥∥ ≤ λ < 1

holds for the standard orthonormal Fourier basis {eint : n ∈ Z} and for the sequence
{λn : n ∈ Z} satisfying the inequality (3.2).

On the other hand, by the change variable we have∥∥∥∥∥
∑
n∈Z

cn(einθa(t) − eiλnθa(t))

∥∥∥∥∥
pa

=

∥∥∥∥∥
∑
n∈Z

cn(eint − eiλnt)

∥∥∥∥∥ ≤ λ < 1.

This shows that the nonlinear Fourier atoms {einθa(t) : n ∈ Z} satisfy
the Paley–Wiener criterion (3.1) for the Hilbert space L2

a([0, 2π]). Therefore,
{eiλnθa(t) : n ∈ Z} forms a Riesz basis for L2

a([0, 2π]).
By (2.9), we finally get that {eiλnθa(t) : n ∈ Z} forms a Riesz basis for L2([0, 2π]).

The proof of Theorem 3.1 is complete.

It then follows that the nonlinear Fourier atoms {eiλnθa(t) : n ∈ Z} forms a
Riesz basis for L2([0, 2π]) under “sufficiently small” perturbations of the integers.
Accordingly, every function f in L2([0, 2π]) will have a unique nonlinear Fourier
series expansion

f(t) =
∑
n∈Z

cneiλnθa(t)

with
∑

n∈Z
|cn |2 < ∞. We now investigate the frame aspect of nonlinear Fourier

atoms {eiλnθa(t) : n ∈ Z}. From the general definition of frame, a system {eiλnθa(t) :
n ∈ Z} becomes a frame in L2([0, 2π]) with the lower and upper bounds A and B

provided that

A

∫ 2π

0

|φ(t)|2dt ≤
∑
n∈Z

∣∣∣∣
∫ 2π

0

φ(t)e−iλnθa(t)dt

∣∣∣∣
2

≤ B

∫ 2π

0

|φ(t)|2 dt

for every φ ∈ L2([0, 2π]).
A direct calculation gives the relationship of frames of the spaces L2([0, 2π])

and L2
a([0, 2π]), as follows.

Theorem 3.2. Suppose that the system {eiλnt : n ∈ Z} is a frame in L2([0, 2π])
with the lower and upper bounds A and B. Then, the system {eiλnθa(t) : n ∈ Z} is
also a frame in L2

a([0, 2π]) with the same bounds, and vice versa.
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Combining Theorem 3.2 with Ref. 24, Chap. 4, Theorem 13, there holds:

Theorem 3.3. Suppose that the system {eiλnθa(t) : n ∈ Z} is a frame in L2
a([0, 2π]).

Then there exists a positive constant L with the property that {eiµnθa(t) : n ∈ Z} is
a frame in L2

a([0, 2π]) whenever |λn − µn| ≤ L for every n. In the case, {eiµnθa(t) :
n ∈ Z} is also a frame in L2([0, 2π]).

We shall now show that Kadec type 1
4 -theorem can be improved. A better

estimate L is given by Balan for the standard Fourier basis. See Refs. 1 and 6 for
the relevant historical notes and further references therein.

Theorem 3.4. Suppose the system {eiλnθa(t) : n ∈ Z} is a frame in L2
a([0, 2π])

with lower and upper bounds A and B. Set

L =
1
4
− 1

π
arcsin

(
1√
2

(
1 −

√
A

B

))
.

If a real sequence {µn : n ∈ Z} satisfies |µn − λn| ≤ λ < L for every n ∈ N, then
the system {eiµnθa(t) : n ∈ Z} is a frame in L2

a([0, 2π]) with lower and upper bounds

A

(
1 −

√
A

B
(1 − cosλπ + sin λπ)

)2

and B(2 − cosλπ + sin λπ)2.

Furthermore, {eiµnθa(t) : n ∈ Z} is a frame in L2([0, 2π]) whenever |λn − µn| ≤
λ < L for every n with lower and upper bounds

A

(
1 −

√
A

B
(1 − cosλπ + sin λπ)

)2
1 − |a|
1 + |a|

and

B(2 − cosλπ + sin λπ))2
1 + |a|
1 − |a|

respectively.

Proof. By Theorem 3.2, we know that if the system {eiλnθa(t) : n ∈ Z} is a
frame in L2

a([0, 2π]) with the lower and upper bounds A and B, then the system
{eiλnt : n ∈ Z} is a frame in L2([0, 2π]) with the same bounds. Applying Theorem 1
in Ref. 1, the system {eiµnt : n ∈ Z} is a frame in L2([0, 2π]) with the lower and
upper bounds

A

(
1 −

√
A

B
(1 − cosλπ + sin λπ)

)2

and B(2 − cosλπ + sin λπ)2. In the case, Theorem 3.2 shows that the system
{eiµnθa(t) : n ∈ Z} is a frame in L2

a([0, 2π]) with the lower and upper bounds

A

(
1 −

√
A

B
(1 − cosλπ + sin λπ)

)2

and B(2 − cosλπ + sin λπ)2.

The last assertion in the theorem can be deduced from the inequalities (2.9).
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4. Weyl–Heisenberg Frames for Nonlinear Fourier Atoms

For any function f ∈ L1(R), the weighted Fourier transform is defined through the
2π-periodized function pa by

f̂a(ξ) =
1√
2π

∫
R

f(t)e−iξθa(t)pa(t) dt. (4.1)

Through change of variable, we have the relation

f̂a(ξ) = (f ◦ θ−1
a )̂ (ξ).

Since f ∈ L2(R) if and only if f ◦ θ−1
a ∈ L2(R), the last relation enables us to

define the corresponding weighted Fourier transform for functions in L2(R). Note
that when a = 0, it reduces to the standard Fourier transform

f̂(ξ) =
1√
2π

∫
R

f(t)e−iξtdt.

In distribution sense, we can check that the weighted Fourier transform of
cos θa(t) is 1

2 (δ(ξ − 1) + δ(ξ + 1)). The inverse formula of (4.1) takes the form

f(t) =
1√
2π

∫
R

f̂a(ξ)eiξθa(t)dξ. (4.2)

Define

L2
pa

(R) =
{

f : R → C :
∫

R

|f(t)|2pa(t)dt < ∞
}

.

Then, it is a Hilbert space equipped with the inner product

〈f, g〉pa
=
∫

R

f(t)g(t)pa(t)dt

and norm ‖f‖pa =
(∫

R
|f(t)|2pa(t)dt

) 1
2 . The Plancherel’s theorem now takes the

form ‖f‖2
pa

= ‖f̂a‖2, where ‖ · ‖p0 = ‖ · ‖. Furthermore, we have the equivalence of
the two norms

1 − |a|
1 + |a| ‖ · ‖

2 ≤ ‖ · ‖2
pa

≤ 1 + |a|
1 − |a| ‖ · ‖

2. (4.3)

Let I = [0, 2π] and let L2
pa

(I) = {f : f ∈ L2
pa

(R), supp f ⊂ I} and let χI be
the characteristic function of I with value 1 on I and 0 elsewhere. It is clear that∑

n∈Z

χI(t + 2πn) = 1, for a.e. t ∈ R. (4.4)

We have the following theorem (see also Ref. 19).

Theorem 4.1. For k ∈ Z, define

ea
k(t) :=

1√
2π

eikθa(t)χI(t). (4.5)

Then, the system {ea
k : k ∈ Z} is a complete orthonormal basis for L2

pa
(I).
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Proof. Since the function θa(t) strictly increases satisfying θ−1
a (t + 2πn) = θ−1

a (t)+
2πn, we have from (4.4),∑

n∈Z

χI(θ−1
a (t + 2πn)) = 1, for a.e. t ∈ R. (4.6)

It follows that

〈ea
m, ea

n〉pa =
1
2π

∫
R

eimθa(t)e−inθa(t)χI(t)pa(t)dt

=
1
2π

∫
R

χI(θ−1(x))ei(m−n)x dx

=
1
2π

∫ 2π

0

∑
k∈Z

χI(θ−1
a (x + 2πk))ei(m−n)x dx

=
1
2π

∫ 2π

0

ei(m−n)x dx

= δmn.

This shows that the system {ea
k : k ∈ Z} is orthonormal. For completeness, suppose

that f ∈ L2
pa

(I) and 〈f, ea
k〉pa = 0 for all k ∈ Z. Noting that fχI = f since

supp f ⊂ I, and changing variables, we obtain for all k ∈ Z,

0 = 〈f, ea
k〉pa =

1√
2π

∫
R

f(t)e−ikθa(t)χI(t)pa(t) dt

=
1√
2π

∫
R

f(t)e−ikθa(t)pa(t) dt

=
1√
2π

∫ 2π

0

∑
n∈Z

f(θ−1
a (t + 2πn))e−ikt dt.

By the standard completeness result for Fourier series,
∑

n∈Z
f(θ−1

a (t + 2πn)) is 0
in L2(I), hence is 0 a.e. on [0, 2π]. But this is 2π-periodic and thus is 0 a.e. on R.
Since

supp f ⊂ I and
∑
n∈Z

χI

(
θ−1

a (t + 2πn)
)

= 1,

the functions f
(
θ−1

a (t + 2πn)
)
, n ∈ Z, have a.e. disjoint supports, and hence each

must be 0 a.e. on R. Letting n = 0, we see that f(θ−1
a (t)) = 0, and f = 0 a.e. on I,

and the completeness follows.

To define the Weyl–Heisenberg frame, we introduce the operators of modulation
Ea

β and translation Tα for function f ∈ L2(R) by

Ea
βf(t) := eiβθa(t)f(t), β ∈ R

and

Tαf(t) := f(t − 2πα), α ∈ R.
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For simplicity, we also introduce the following auxiliary function:

G(t) :=
∑
n∈Z

|g(t − 2πn)|2.

Theorem 4.2. Let g ∈ L2(R) and let supp g ⊂ [0, 2π]. If there exist constants A

and B such that A ≤ G(t) ≤ B a.e., then {Ea
mTng}m,n∈Z is a Weyl–Heisenberg

frame for L2(R) with frame bounds A and B.

Proof. Let f ∈ L2(R). Fix n, and observe that the function f · Tnḡ is supported
in In = {t + 2πn : t ∈ I}. It follows from condition A ≤ G(t) ≤ B, a.e., that g is
bounded, so f · Tnḡ ∈ L2(In). In view of Theorem 4.1, the collection of functions
{ea

m(t) : m ∈ Z} is an orthonormal basis for L2
pa

(In). Therefore,

∑
m∈Z

∣∣〈f · Tnḡ, ea
m

〉
pa

∣∣2 =
∫

R

|f(t)|2|g(t − 2πn)|2pa(t) dt.

We further deduce that∑
m,n∈Z

∣∣〈f, Ea
mTng

〉
pa

∣∣2 =
∑

m,n∈Z

∣∣〈f · Tng, ea
m

〉
pa

∣∣2

=
∑
n∈Z

∫
R

|f(t)|2|g(t − 2πn)|2pa(t) dt

=
∫

R

|f(t)|2G(t)pa(t) dt.

It follows from condition A ≤ G(t) ≤ B, a.e., that

A‖f‖2
pa

≤
∑

m,n∈Z

∣∣〈f, Ea
mTng

〉
pa

∣∣2 ≤ B‖f‖2
pa

.

Finally the relationship (4.3) of the norms yields

A‖f‖2 ≤
∑

m,n∈Z

∣∣〈f, Ea
mTng

〉∣∣2 ≤ B‖f‖2.
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