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Abstract

We prove that a sufficient and necessary conditionHaf® () = —;¢1®) whereH is Hilbert
transformation@ is a continuous and strictly increasing function With(R)| = 27, is thatd ® (s) is
a harmonic measure on the line. The counterpart result for the periodic case is also established. The
study is motivated by, and has significant impact to time—frequency analysis, especially to aspects of
analytic signals inducing instantaneous amplitude and frequency. As a by-product we introduce the
theory of Hardy-space-preserving weighted trigonometric series and Fourier transformations induced
by harmonic measures in the respective contexts.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In time—frequency analysis the concept of analytic signals is introduced (see [6]). For
a square integrable signdl in the whole time range, the functiof + i Hf, where H
is Hilbert transformation on the line, is the boundary value of an analytic function in the
upper-half complex plane. This may be easily verified from Cauchy’s integral on the upper-
half complex plane with the boundary dataDefine A(f) = f + i Hf to be theanalytic
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signal associated witly. For periodic functions there is an analogous theory. On the space
of square integrable signals ¢B 27 ] one definesircular Hilbert transformation, H (see
Section 2), and defined f = f + i H f to be the associated analytic signal, that is the
boundary value of an analytic function inside the unit disc. Analytic signals in the two
contexts can be further written in the complex-valued amplitude—frequency modulation
form p(1)e!??, wherep(r) > 0 is theinstantaneous amplitude, 6(r) is theinstantaneous
phase, andd’(¢) is theinstantaneous frequency of the original real-valued signgl In such
a way Hilbert transformations in the two contexts play important roles in time—frequency
analysis. We note that the operatbrmay also be defined for complex-valued signals in
the same way. Now what is interesting is the following question: For what functigns
andé(r) is the functionp (1)e'?") analytic? This paper gives an answer to the question for
the particular casg = 1.

It may be easily verified, using the propetfi? = —I (modulo constants), wherede-
notes the identity operator, thatfifis a real-valued signal, thet? f = 2A f. The following
more general result is helpful.

Theorem 1.1. A complex-valued signal f is an analytic signal if and only if A f = 2f
(modulo constants).

Proof. If f is analytic andf = g +iHg, then
Af=(¢g+iHg)+iH(g+iHg) =g— H?¢+2iHg=2(g+iHg)=2f.
On the other hand, il f =2f and f = g + ik, then
(g+ih)+iH(g+ih) =2(g +ih).
This reduces to
—Hh+iHg=g+ih.
By comparing the imaginary parts of the two sides of the last relation we haveél g,

and sof = g +iHg, being analytic. The proof is complete

The periodic version of Bedrosian's theorem [1,9] asserts thatif is real-valued
of low frequencies and®® of high frequencies, as generally expected in practice, then
A(p()e? Dy = p(r)Ae'?™ . The question thus reduces to finding conditions that guaran-
tee '™ to be analytic, or, according to Theorem 149" = 2" Should this be
true, we consequently hav@(p(1)e!?®) = 2p(1)e!?® . Invoking Theorem 1.1 again we
obtain that the complex signalr)e® is analytic. This observation shows that the cases
corresponding t@ = 1 are, in fact, of particular importance.

On the unit circle (the periodic case) the relatidei? ) = 209" is equivalent to

HcosH(r) =sinf(r) and HsinH(r) = —cosd(r).
On the real line the counterpart relation is equivalent to

Hcost(r) =sind(r) and Hsinf(t) = —cosH(z).
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In virtue of the Cayley transformation, theories on the upper-half complex plane and on
the unit disc may be transferred to each other. Some observations and examples along this
line were first made in [9]. This paper devotes to the theoretical aspect that is independent
of [9]. In below we first give an answer to the question in the unit circle context. We show
that a sufficient and necessary condition for functié(g to have the desired property is
thatdd(¢) is a harmonic measure on the unit circle. With the Cayley transformation this
induces the analogous result on the real line. These results lead to the theory of Hardy-
space-preserving weighted trigonometric series and weighted Fourier transformations in
the respective contexts.

The author wishes to express his sincere thanks to Qiuhui Chen who, with his great
intensity to the subject, introduced to the author the interesting question. The author also
wishes to thank Sheng Gong for his helpful discussions on the subject.

2. Harmonic measure on the unit circle

We will be working on the complex plan@. Denote byD the unit disc centered at the
origin, and byaD its boundary. The circl@D has its canonical parametrization via the
mappingz = ¢!/, 0< ¢ < 2r. For a functionf € L2([0, 2r]) we have

f@)= Z cxe'™,

k=—o00

wherecy’s are the Fourier coefficients of and the convergence is in both thé-sense
and the a.e. pointwise sense (Carleson’s theorem). Since the coeffigisratee bounded,
the related serie3 ;> cxz* andY ;2 cxz* converge to analytic functions, denoted by
fTandf~,inDandinC\ D, respectively. Detailed analysis shows that itfelimit or
pointwise limit functionsy ">, cxe'* and Y, cre*” are respectively the boundary
values of £ and f~. Without ambiguity those boundary values are still denoted’ by
and f~. The boundary functiong and f~ are HardyH?-space components of, in-
sideD and outsidé, respectively. Defineircular Hilbert transform of square integrable
functions on the circle by

o
Hfw=~i ) sgnk)cre™, (1)
k=—o00
where sgn is the signum function taking values-1, or O fork > 0, k <0 ork =0,
respectively. From this definition, and the relation kos= 1/2(e "k + ¢ik"), we have
H coskt = sinkz, and similarly H sinkr = — coskz. The same relations hold for the pair
cogto + kt) and sirtp + k7). In general, there holds

o
f—}—i[—NIf:co—l—Zcheik’=2f+—co, 2)
k=1
the latter being the boundary value of the analytic functigit 2- ¢ in D. From (1), we
have

H?f=—f+co. (3)
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Circular Hilbert transformation has a singular integral representation:

Hf@t) = %p.v. / cot(%)f(s)ds, a.e. (4)

Some basic knowledge of the Hardy spaces in the unit dist,0 < p < oo, and of
inner functions will be used for which we refer the reader to [10] or [2]. In below the
notation|E| for a given measurable sgtstands for the Lebesgue measure of theFset

Theorem 2.1. Assume that 6 is a continuous and strictly increasing function on [0, 2]
with |6 ([0, 27])| = 27. Then the following two conditions are equivalent.

(i) dO(r) isaharmonic measure on the unit circle.

(ii) Hcosd(r) =sinf(r) and Hsind(t) = —cosh(r) —a (5)
for somea € D.

Proof. (i) — (ii) A harmonic measure is associated with a Mobius transfegifa) =
(z —a)/(1 — az), a € D, and we may writed(¢t) = 6,(r), wheref, is defined through
7, (') = ¢!%® |t may be easily computed (or see [2]) that

1do,(0) 1 1—|al?
2r dt 2w 1—2la|cods —1,) + |al?

wherea = |ale’«, andp, is the Poisson kernel for the poiate D.
Note thatz, is an analytic function in a neighborhooddf By invoking the relation (2)
for f = f+ =1,, we have

iHt, =1, — 7,4(0).
Due to the fact,(0) = —a, the last relation reads

i Hel%® = oifa) 4 g

=pa(t) >0, (6)

or

H cost, (1) =sinb, (1) and H sinb,(t) = — cost, (1) — a.

(i) — (i) The assumptions ofr imply thate!?® e L2(3D) and

iﬁeie(t) — ei@(t) +a.
So,

00 4 iHe?® =260 4 g @)
The left-hand side of (7), due to (2), is equal to

2(e" )T — co, (8)

where we denote bg'?))* the Hardy space projection ef’ ), andco the constant term
of the Fourier expansion @f?®. On the other hand, the right-hand side of (7) is equal to

2T + (2" +a. 9)
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Comparing (8) and (9), we have
—co= (29N 4 4.
Therefore,
co=—-a and (2:90)" =o0.

The last two relations show thelf ) itself is the boundary value of an analytic functigh,
in D, with (0) = —a.

Next we showf (D) c D. First, f € H?2 and f|3p(t) = €!?® e L™ imply f € H® [2].
Since f|yp is unimodular, we obtain thaf is an inner function. From the factorization
theorem of inner functions we have= cBS, wherec is a constant withc| =1, B is a
Blaschke product and a singular function [2]. The fact that Mébius transforms nfap
into D implies B(D) c D. As for any singular functior§ we have

log|S(2)| = — / P,(0)du(6) <0,

whered is a nonnegative Borel measure. Theref§(®) c D, and thusf (D) c D.

Now we show thatf is bijective fromD to D. Since f is an inner function, it is the
Poisson integral of its boundary vale&® [2, Chapter 3, Corollary 3.2]. This, together
with the fact that the boundary value is continuous, implies thiatcontinuously extended
to the closure of the unit didd U aD. From this we obtain that only has at most finitely
many zeros irD, for if there were infinitely many zeros then there should exist cluster
points which were either insid@ or on the boundaryD. Both, however, are impossible
due to the unimodularity. The assumptions of the theorem then imply that the aiivéte
the continuous and injective image of itself with the same orientation. The Argument Prin-
ciple may be extended to conclude that the analytic mappirig — D is bijective, and so
f € Aut(D), the analytic automorphic group &f, and thusf is a Mébius transform [3].
Sincef(0) = —a, for somer; € R, it is of the form

f@)=eé"7,, i (2),

and therefore
00 — a0, —ing (1))

Consequently,
do(t) =do,,-in (1),

being a harmonic measure. The proof is complete.

The functionsd, may be continuously extended to the real line modulo the condition
0,(t + 2m) = 6,(t) + 2. The extended functions have continuous@eriodic derivatives
Pa(t). Corresponding t@,, the period functiong’*’, o > 0, except for the trivial case
a = 0 corresponding te®, are not included in the general form of Picinbono [7], of
which the derivatives of the phase functions are not periodic. The single component case
of Picinbono’s phase functions coincides with what is studied in Section 4, of which the
derivatives of the phases are the Poisson kernels of the real line.
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Theorem 2.2. Wth the periodic extensions of cosf, (¢) and sing,(¢) to the real line, we
have

H cosd,(t) =sind,(t) and H sind,(t) = —cosh,(1). (20)

Proof. First we note that in the principal value integral sense the Hilbert transforms are
well defined for the oscillatory functions cég(r) and sirg, (r). Using the identity (see [8])

N
1 1 x—t
lim —— X = —cot ,
Neook;Nx—t—}-Zkﬂ 2 ( 2 )

we have

o0 2 00
% 1 / ! cosf,(t)dt =p.v 1/ E - cosf,(t)dt
- ‘7 x—t a =P ‘7 x —t+2km a
—00 g k=-—o0

27
1 x—t -
=p.v.— [ cotl —— | cosh,(t)dt = H coSH,(t).
21 2
0

The desired relation for c@s(r) then follows from Theorem 2.1. The assertion for
sind, (t) may be proved similarly. O

3. Analytic weighted trigonometric systems
As shown in Section 2, every complex numbet D is associated with a Mobius trans-

form 7, and correspondingly a Poisson kerpglr). The fungtionea defined from the
relationei® ") = 7, (') satisfied), (t) = pq(t). Writing a = |ale’, it is easy to deduce

74(2) = ety (ze ), 04(t) =14+ 6)q(t —1,) and
Pa(t) = pla|(t — ta). (11)
Set
2 1/2
L2(3D) = {f:aD—> C| </|f(t)|2pa(t)dt> < oo}, (12)
0

and denotd| f |, = (foz” | £(£)12pa(t) dt)*/2, the norm of f € L2(3D). We call L2(3D)
the weightedZ2-space associated with L§(8D) is a Hilbert space equipped with the
inner product

2
(f,g>a=/f(t)mpu(t)dz.
0

Note that ifa = 0, then all just introduced reduce to the standard cas#on
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We have the following

Theorem 3.1. Let a € D and F, = {ﬁe"”g“(’)}ﬁi
trigonometric system. Then

the corresponding weighted

—00!

(i) F, isanorthonormal systemin L2(3D).
(i) The Plancherel theorem holds for the system. In particular, the systemis complete in
L2(3D).
(iii) Carleson’s theorem holds with respect to the system F,.
(iv) The mapping 6, (¢) preserves the Hardy spaces inside and outside the unit circle.

Proof. The assertion (iv) follows from the conformal mapping property of Mébius trans-
form. The assertions (i) to (iii) are proved via change of varialied, (r), as shown in the
following.

(i) Settinge? (1) = \/%e"”ea(”, we have

1 2 1 2
(627 e%)a = Z / ei(n_m)gu(t)pa(t) dt = Z / ei(n—m)s ds =6bum,
0 0

the Kronecker delta function.
(i) For any functionf e Lﬁ(aD), denote by ( f) thenth Fourier coefficient off with
respect to the weighted trigopnometric system:
() =(fen),:
Through the change of variable it is easy to verify
ca(f) = ca(F),

WherecS(F)’s are the standard Fourier coefficients of the functio@) = f(@;l(s)) €
L2(3D). Since||Fllo= || f |l«, the classical Plancherel theorem foimplies

112 =Yl

(iii) Carleson’s theorem asserts that

N
lim Z O(F)e™ = F(s), a.e.

N—o0
n=—N

SincecB(F) =c%(f), s =0,(t) andF (s) = f(r), we obtain
N

im > ci(He O =fw), ae.

N
n=—N
The proof is complete. O

For differenta the shapes of ca@g () (also those of sif, (7)) are different (see exam-
ples in [9]). It is observed that the closk gets to 1, the sharper the graph of 698)
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is. The weighted trigonometric systems are expected to be better suitable and adaptable,
along with different choices af, to nonlinear and nonstationary time—frequency analysis.

4. Counterpart resultson thereal line

Hilbert transformation on the real line will be taken to be of the distributional sense
[4,5]: If F(z) =u(x,y)+iv(x,y)is an analytic function in the upper-half complex plane,
andu andv are respectively théarmonic representations of distributionsS and 7' on
the real line, then we say thdt is a Hilbert transform ofS, denoted byH S = T. This
definition, in particular, implies that itHS = T, then HS = T + ¢ for any constant.

There will be no ambiguity arising out of this: When we ha¥&§ = T, it means that

is a representative among all the Hilbert transforms$ oBased on this definition, it can

be proved that any distribution has a Hilbert transform, and, in particular, any bounded
measurable function has a Hilbert transform. Note that the above definition coincides with
the standard definition of Hilbert transformation for functions in good function classes,

such asinL?(R).

The Cayley transformation

i—z

w@ =
conformally maps the upper-half complex plane to the @isét maps the real line to the

unit circle through

1—s2+, 2s
1452 ll+52'

Settingr = 2tarr s, the above readsu(s) = cost + isint, wheret € (—n, ), s €
(—00, 00). Now, if f(¢) =cosh(r)+i sind(¢) is the boundary value of an analytic function
insideD, then

F(s) =cosd(2tan ts) +ising(2tar 1)

is the boundary value of the image analytic function in the upper-half plane under the
inverse Cayley transformation. By the distributional definition of Hilbert transformation,
we have

H cosf(2tants) =sing(2tan1s).
Owing to the relatiorH? = —I (modulo constants), the above implies
Hsinf(2tants) = —cosd(2tanLs).
Theorem 4.1. Assume that @ is a continuous and strictly increasing function on R with
|®(R)| = 2x. Then the following two conditions are equivalent.
(i) d®(s)isaharmonic measure ontheline.
(i) HcosO(s) =sin@(s) and HsIiNE(s)=—CcosO(s). (13)
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Moreover, if (i) and (i) hold, then ©(s) = A + 6, (2tarr 1 5) for some A e Rand a € D.

Proof. It may be shown that witl® (s) = A + 6, (2tarr 1s), 0, (1) is a Poisson kernel on

the circle if and only if®’(s) is a Poisson kernel on the line. It is, in fact, a bijective
mapping between all Poisson kernels on the circle and all those on the line. The precise
correspondence reads

1 h

— =P S —3S8aq),
T (s—sa)2—|—ha2 ha( a)

1d
——0,(2tan”
2w ds a(

_ 1—|al? _ 2la| sint, _ ity
whereha = 1o rcog P S0 = Tz cosrar 2Nda = lale’™.

Next we point out that, from the distributional definition of the Hilbert transform and the
properties of the Cayley transformation, the assertion (ii) of the theorem is equivalent to the
assertion (ii) of Theorem 2.1. The proof is thus complete when invoking Theorem 2.1.

It is a property of the harmonic measures that the mappih@3 in Theorem 4.1 map
the Hardy HP-spaces on the unit circle to the weight HarHy -spaces on the real line
with the weights®’(s)Y7, 0 < p < oo. We refer the reader to [2].

5. Weighted Fourier transformation on theline

Parallel to Section 3 we can formulate a weighted Fourier transformation theory.
Fora € D, define

00 1/2
Lﬁ(R):{f:R—>C|</|f(t)|2ﬁa(t)dt> <oo}, (14)

wherep, is the 2r-periodization of the Poisson kerngj on the circle.
Denote by

o0 1/2
I flla = ( /|f(t)|2ﬁa(t)dt)

the norm off € L2(R).
The spaceL(%(R) forms a Hilbert space under the inner product

(f,8)a= / F()gt)pa(t)dt.

Note that ifa = 0, then all just defined reduce to the standard cade.on
Define the associated weighted Fourier transformation by

Fa(f)(€) = L e 8% £ (1) pa(r) dt.
JE_OO
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Similarly to the series case studied in Section 3, we have the Plancherel theorem and the
corresponding Fourier inversion theorem that all reduce to the standard case through the
change of variable. We omit the details. We shall, however, cite below the corresponding
Poisson summation formula.

For f € L2(R) set

fy= " f+2%km).

k=—00
Thenf e Lf,(aD). In both theL2-convergence and the pointwise convergence sense,
f@) = ZcZeike"(t).
We shall show that
Fu(f)(k)=c{, kisanyinteger (15)
Taking the relation (15) for granted for the moment, we have
FO =" Fa(f)(R)et®.
If, in particular, takingr = g such thaii’o = ﬂ—z and thug), (1) = 0, we obtain

3" flio+2km) = Fa( (k).

the expected Poisson summation formula. Now we show (15). Proceeding as in the stan-
dard case, we have

Fo(f)(k) = k0a(0) £ (1) pa (1) dt

oo
7|
— e

2
—o0
1 21
— ik (1)
=—=>_ [ O +2nm)pat) d
=]
T, 9
Lz
=—— [ *ON" f(t+ 2nm)pa (1) dt
e TT)Pa
=/
v/ o n

2
1 , ~
= / MO £(1) pa (1) dt = f.
0
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