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SUMMARY

This note further carries on the study of the eigenfunction problem: Find f(t)=�(t)ei�(t) such that
Hf= − if, �(t)¿ 0 and �′(t)¿ 0, a.e. where H is Hilbert transform. Functions satisfying the above
conditions are called mono-components, that have been sought in time-frequency analysis. A systematic
study for the particular case �≡ 1 with demonstrative results in relation to M�obius transform and
Blaschke products has been pursued by a number of authors. In this note, as a key step, we characterize
a fundamental class of solutions of the eigenfunction problem for the general case �¿ 0. The class
of solutions is identical to a special class of starlike functions of one complex variable, called circular
H-atoms. They are building blocks of circular mono-components. We �rst study the unit circle context,
and then derive the counterpart results on the line. The parallel case of dual mono-components is also
studied. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: analytic signal; instantaneous frequency; Hilbert transform; M�obius transform; mono-
component; empirical mode decomposition; intrinsic mode functions; HHT (Hilbert–
Huang transform); starlike functions

1. INTRODUCTION

In signal analysis one has been trying to understand, for a given signal, what are its instan-
taneous amplitude, instantaneous phase, and instantaneous frequency. A signal, denoted by
f(t), stands for a real-valued locally (Lebesgue) integrable function. A common approach
to �nd the instantaneous objects is as follows. First, one introduces the associated analytic
signal, Af(t)=f(t) + iHf(t), where Hf is the Hilbert transform of f, being assumed to
exist. Hilbert transform is formally de�ned by the principal value singular integral

Hf(t)=p:v:
1
�

∫ ∞

−∞

f(s)
t − s ds
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1188 T. QIAN

which has the Fourier multiplier form

Hf(t)=
1
2�

∫ ∞

−∞
ei�t(−i sgn(�))f̂(�) d�

where Fourier transform is de�ned by

f̂(�)=
∫ ∞

−∞
e−i�tf(t) dt

and sgn is the signum function that takes value 1 if �¿0; and −1 if �¡0.
Af may be written in the form Af(t)=�(t)ei�(t), with �(t)¿ 0, a.e. Consequently,

f(t)=�(t) cos �(t) (1)

Note that Af satis�es the relation

H (Af)= − iAf (2)

Taking into account the relation H 2 = − I , where I stands for the identity operator, (2) is
equivalent to

H (�(·) cos �(·))(t)=�(t) sin �(t) (3)

With the uniquely determined modulation (1), one calls �(t) and �(t) the instantaneous
amplitude and instantaneous phase, respectively, provided �′(t)¿ 0, or �′(t)6 0, a.e. Should
the conditions be satis�ed, then function �′(t) is de�ned to be the quali�ed instantaneous
frequency. Unfortunately, the requirements �′¿ 0 or �′6 0 are hardly met, and the de�nitions
of instantaneous amplitude, phase and frequency via the associated analytic signal Af can be
erroneous.
In Reference [1] we explore connections between eigenfunctions of Hilbert transformation

and functions in Hardy Hp spaces. Denote by S for S=D or S=C+, the earlier being the
open unit disc and the latter being the upper-half complex plane. In this notation HS stands
for HC+ or HD, where HC+ is the standard Hilbert transformation, H , on the line, and HD
is the circular Hilbert transformation, H̃ , on the circle. The circular Hilbert transformation is
de�ned through

H̃f(t)=p:v:
1
2�

∫ �

−�
cot
(
t − s
2

)
f(s) ds

with the Fourier multiplier form based on the Fourier expansion of f(t):

H̃f(t)=
∞∑

k=−∞
− i sgn(k)ckeikt ; f(t)=

∞∑
k=−∞

ckeikt

The following result is proved in Reference [1, Theorems 3.2 and 4.3].

Theorem 1.1
The function f(t)=�(t)(c(t) + is(t)), with �¿ 0 and �∈Lp(S); 16p6∞, c2 + s2 = 1, is
the boundary value of a function in Hp(S) if and only if HS(�c)=�s modulo constants.

Note that when S=C+ and p=∞ the Hilbert transformation takes the distribution sense.
The theorem will be recalled in the proofs of our main results below.
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MONO-COMPONENTS FOR DECOMPOSITION OF SIGNALS 1189

In References [1–4] a systematic study on the unimodular case �≡ 1 is carried out. In
this paper we extend the study to the general non-unimodular case. We found that the well-
established theory of starlike functions in one complex variable best �ts to our need. Boundary
values of starlike functions provide easily accessible circular mono-components. We now
introduce the related notation and terminology.
Let f be an eigenfunction of the circular or non-circular Hilbert transformation HS. Then

HSf= kf; k ∈C. Since H 2
Sf= k

2f=−f, we obtain k=±i, where i is the complex imaginary
unit. In below a condition like g¿ 0, a.e. will be brie�y written as g¿ 0.

De�nition 1.1
A function f is said to be an HS-eigenfunction if HSf= − if; and a dual HS-eigenfunction if
HSf= if. An HS-eigenfunction f is called an S-mono-component if with the form f(t)=�(t)
ei�(t) it satis�es �(t)¿ 0 and �′(t)¿ 0; and, a dual HS-eigenfunction f is called a dual
S-mono-component if with the form f(t)=�(t)ei�(t) it satis�es �(t)¿ 0 and �′(t)6 0.

In the sequel, we simply call HC+-eigenfunctions, dual HC+-eigenfunctions, C+-mono-
components and dual C+-mono-components as H-eigenfunctions, dual H-eigenfunctions,
mono-components and dual mono-components, respectively; and, we call HD-eigenfunctions,
dual HD-eigenfunctions, D-mono-components and dual D-mono-components as circular
H-eigenfunctions, dual circular H-eigenfunctions, circular mono-components and dual
circular mono-components, respectively.
Very often, we investigate Ref instead of f, and, with the form f(t)=�(t)ei�(t), we have

Ref=�(t) cos �(t). In the case, we have, HSf=∓if if and only if HS(�(·) cos �(·))(t)=
±�(t) sin �(t). We correspondingly call the real part �(t) cos �(t) a real H-eigenfunction, or
a real mono-component, etc. If there will be no confusion, then we suppress ‘real’, and still
call it a H-eigenfunction, or a mono-component, etc. The same convention is valid for the
circular case.
If a signal is not S-mono-component or a dual S-mono-component, then it is called a

S-multi-component, or simply multi-component. Signals are usually multi-components. In [5]
Huang proposed a practical algorithm, called Empirical Mode Decomposition, to decompose
a signal into a sum

f(t)=
∑

�i(t) cos �i(t) (4)

where each entry of the sum is expected to be a mono-component or a dual mono-component.
He also obtained numerically rapid convergence. However, the algorithm su�ers for it does
not always result in the desired decomposition in terms of mono- and dual mono-components.
A mathematical theory providing exact mathematical concepts and approximation methods is
desired.
The task would be two fold. The �rst is to establish a bank of mono- and dual mono-

components. The second is to �nd rapid approximation to signals by linear combinations of
mono- and dual mono-components. The present paper addresses the �rst. Along with the re-
sults previously obtained in References [1–4], in this note we are to characterize a class of
easily accessible mono- and dual mono-components. They are the signals for which instanta-
neous amplitude, phase and frequency may be well de�ned, and, they are constructive units
of the decomposition (4). In below we �rst provide a survey on what have been achieved in
this direction.
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1190 T. QIAN

In References [3,4] we establish the theory of non-linear Fourier atoms ei�a(t), 06 t6 2�,
where a is any complex number in D, and �a is an absolutely continuous and strictly increasing
function with �a(2�)−�a(0)=2�, and �′

a(t) is the Poisson kernel for the unit disc at the point
a, and therefore positive. The function �a is de�ned through a typical M�obius transform �a
sending a to zero:

�a(z)=
z − a
1− �az

; ei�a(t) =
eit − a
1− aeit (5)

It was shown that ei�a is a circular H-eigenfunction that is equivalent to H̃ cos �a(t)= sin �a(t)
modulo constants. Note that when a=0, ei�a(t) = eit . The �nite product of k copies of eit

is eikt . A generalized Fourier series and weighted Fourier transform theory are studied in
Reference [4]. This simplest unimodular case, viz. �≡ 1, is further extended to �nite products
of non-linear Fourier atoms corresponding to �nite Blaschke products, as given in
Reference [1].
One can introduce two types of mono- and dual mono-components on the real line based on

�nite Blaschke products on the circle. One is periodic extensions of the functions on [0; 2�]
inherited from the �nite Blaschke products on the circle; and the other is images of those
functions under Cayley transformation (see Section 3). The latter type was previously studied
in Reference [2] based on a di�erent approach. Apart from the systematic study in References
[1,3,4], some related aspects in wavelet theory are developed in References [6,7]. We cite the
following spectrum results for the two types of mono-components [6]. They will be recalled
in Section 2.
Viewing ei�a(t) as a periodic function on the line, we have [6]

1√
2�

∫ ∞

−∞
ei�a(t)e−i�t dt= −

√
2�a�(�) +

√
2�(1− |a|2)

�a

∞∑
k=1

�ak�(�− k) (6)

On the other hand, denoting by ei�a(s) the image of the non-linear Fourier atom ei�a(t) under
Cayley transform, we have [6]

1√
2�

∫ ∞

−∞
ei�a(t)e−i�t dt= −

√
2��(�) +

2
√
2�(1− |a|)
(1 + |a|) e−(1−|a|)=(1+|a|)�H (�) (7)

where H (�) is the Heaviside function.
We note that in either of the two cases the spectrum contains non-trivial impulse at the

origin. This prevents from direct use of Bedrosian’s Theorem [8] in deducing mono- or dual
mono-components �(t)ei�a(t) or �(t)ei�a(t) with general �¿ 0.
In below we give some remarks on dual mono-components.
When expending f∈L2([0; 2�]) into its Fourier series

f(t)= a0 +
∞∑
k=1
ak cos kt + bk sin kt

or its complex Fourier series

f(t)=
∞∑

k=−∞
ckeikt
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MONO-COMPONENTS FOR DECOMPOSITION OF SIGNALS 1191

the entries sin kt= cos(�=2− kt) and e−ikt ; k¿0, are dual circular mono-components. These
can be veri�ed directly, or derived from Theorem 1.2 (see below). They are also dual mono-
components on the line if they are considered as periodic functions (see Section 3). The
following result allows us to merely concentrate to the non-dual case.

Theorem 1.2
�(t)ei�(t) is a (circular) mono-component if and only if �(t)e−i�(t) is a dual (circular) mono-
component.

Proof
Assume that f(t)=�(t)ei�(t) is a mono-component. We have

H (�(·) cos �(·))(t)=�(t) sin �(t)

and, since H 2 = − I ,

H (�(·) sin �(·))(t)= − �(t) cos �(t)

They can be re-written as

H (�(·) cos(−�(·)))(t)= − �(t) sin(−�(t)); H (�(·) sin(−�(·)))(t)=�(t) cos(−�(t))

The last two relations are equivalent to

H (�(·)e−i�(·))(t)= i�(t)e−i�(t)

Therefore, �(t)e−i�(t) is a dual H-eigenfunction. Since �¿ 0;−�′6 0, it is a dual mono-
component. The argument is reversible. For the circular case we replace H by H̃ . The proof
is complete.

We show that for k¿0, sin kt is a dual (circular) mono-component. In fact, Theorem 1.2
implies that ie−ikt is a dual (circular) mono-component. Therefore, sin kt=Re(ie−ikt) is a dual
(circular) mono-component. In general, f= u + iv is a dual (circular) eigenfunction if and
only if HSu= − v.
The writing plan of the paper is as follows. Section 2 is devoted to our main results in

relation to starlike functions. In Section 3 we deal with mono-components on the line.
The author wishes to acknowledge his sincere thanks to Sheng Gong who kindly recom-

mended comprehensive references on starlike functions in one and several complex variables.
I wish to take this opportunity to thank Jing-xin Yin and Gui-fang Xie for their very kind
and constant help in supplying me the necessary references.

2. BOUNDARY VALUES OF STARLIKE FUNCTIONS

This section deals with the circular case. In below, a connected and open set of the complex
plane C is called a domain. A function f is said to be univalent if it takes di�erent values at
di�erent points. Our de�nition for starlike domains, and therefore that for starlike functions,
takes a narrower sense, that is, starlike with respect to the pole z=0.

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1187–1198



1192 T. QIAN

De�nition 2.1
A domain � is said to be starlike if 0∈�, and tz ∈�; 0¡t¡1, whenever z ∈�. A univalent
and holomorphic function f : D → f(D) is said to be starlike if f(D) is starlike and f(0)=0.

Closely related are convex domains and convex functions.

De�nition 2.2
A domain � is said to be convex, if 0∈�, and tz1+(1−t)z2 ∈�, 0¡t¡1, whenever z1; z2 ∈�.
A univalent and holomorphic function f : D→f(D) is said to be convex, if f(D) is convex
and f(0)=0.

Clearly, a convex domain is a starlike domain, and a convex function is a starlike function.
The Taylor expansion of a starlike function is of the form

g(z)= a1z + a2z2 + · · ·+ anzn + · · · ; |z|¡1 (8)

We denote by S the class of univalent and holomorphic functions in D having the Taylor
expansion

g(z)= z + a2z2 + · · ·+ anzn + · · · ; |z|¡1 (9)

The totality of starlike functions in S is denoted by S∗, and the totality of convex functions
in S is denoted by C. It may be shown that C is a proper subclass of S∗, and S∗ is a
proper subclass of S. We call functions in S∗ normalized starlike functions; and those in C
normalized convex functions. There has been a deep study with fruitful results on the classes
C, S∗ and S. Among literature on starlike functions we refer to References [9–13]. The most
striking feature of the subtle analysis on the classes C, S∗ and S would be its connections
with Bieberbach conjecture (1916) whose �nal and celebrated proof was given by de Branges
in 1984 [9]. In this note we will specify some connections between the mentioned study and
the H-eigenfunction problem. We �rst introduce some concepts.

De�nition 2.3
Let �(t) and �(t), 06 t6 2�, be absolutely continuous, �¿ 0, and∫ 2�

0
�(t)ei�(t) dt=0 (10)

With the above properties, a function f(t)=�(t)ei�(t) is called a circular H-atom, if f is a
circular mono-component satisfying �(2�) − �(0)=2�; and, a dual circular H-atom, if f is
a dual circular mono-component satisfying �(2�)− �(0)= − 2�.
As a consequence of Theorem 1.2, the following result addresses the symmetry property

between circular and dual circular H-atoms.

Theorem 2.1
�(t)ei�(t) is a circular H-atom if and only if �(t)e−i�(t) is a dual circular H-atom.

The following results are contained in [10, Section 1, Chapter 10]. If f(z) is holomorphic,
and it univalently maps D into a simply connected region Q whose boundary is a bounded

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1187–1198



MONO-COMPONENTS FOR DECOMPOSITION OF SIGNALS 1193

recti�able closed Jordan curve, then f continuously extends to �D such that on @D it is
absolutely continuous with

df(eit)
dt

= ieitf′(eit); a:e:

where f′(eit) is the non-tangential boundary value of f′(z) in D. If, moreover, f(z) is starlike,
then both �(t) and �(t) are absolutely continuous.
For practical reasons we only concern such ideal starlike functions. The importance of

starlike functions lies on the following Theorem.

Theorem 2.2
�(t)ei�(t); 06 t6 2�, is a circular H-atom if and only if it is the boundary value f(eit) of a
starlike function f(z) whose boundary is a bounded recti�able closed Jordan curve.

Proof
We �rst assume that f(eit)=�(t)ei�(t) is a circular H-atom. Owing to Theorem 1.1, it is the
boundary value of a function, f(z), in H∞(D). Since f(eit) is absolutely continuous, and
�(t) is non-decreasing, moving from �(0) to �(0) + 2�, the argument principle implies that
f is univalent. The non-decreasing property of � implies that f(D) is starlike with the pole
zero. Through Cauchy’s formula, condition (10) implies that f(0)=0. We thus conclude that
f(z) is a starlike function with the required properties.
Now assume that f(eit)=�(t)ei�(t) is the boundary value of a starlike function f(z), where

f(D) is a starlike domain with the pole zero whose boundary is a bounded recti�able closed
Jordan curve. Obviously, f(z) is in H∞(D). Theorem 1.1 then asserts that its boundary
value is a circular H-eigenfunction. Owing to the results in Reference [10] recalled before
the statement of the theorem, both � and � are absolutely continuous. As the boundary of a
starlike domain, the quantity arg(f(eit))= �(t) is non-decreasing, and its derivative is non-
negative. This implies that the angle �(t) increasingly goes from �(0) to �(0) + 2� as t goes
increasingly from 0 to 2�. Condition (10) is a consequence of Cauchy’s formula and f(0)=0.
We thus conclude that f(eit) is a circular H-atom. The proof is complete.

It is noted that, since f(z)= a1z + a2z2 + · · ·, in the second part of the proof the fact that
f is a circular H-eigenfunction can also be derived from the Fourier multiplier expression of
the circular Hilbert transformation. That is,

H̃f(ei(·))(t)=
∞∑
k=1

− i sgn(k)aieikt = − if(eit)

We note that in complex analysis the normalized starlike functions with respect to the pole
∞ are of the form

f(z)= z + b0 +
b1
z
+
b2
z2
+ · · · (11)

This is mainly for a geometrically symmetric theory for starlike functions with respect to
the pole ∞. In particular, with form (11), when z=eit goes along the unit circle in the
anticlockwise direction, then f(eit) goes along the boundary of f(D) anticlockwise as well.
For the theory of dual mono-component we, however, adopt the following de�nition that is
analytically symmetric, and works well with Hilbert transform.

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1187–1198



1194 T. QIAN

De�nition 2.4
A function f(z) is said to be starlike with respect to the pole ∞ if f(1=z) is starlike (with
respect to the pole zero).

With this de�nition we have the counterpart result for dual circular H-atoms.

Theorem 2.3
�(t)ei�(t), 06 t6 2�, is a dual circular H-atom if and only if �(t)ei�(t), 06 t6 2�, is the
boundary value f(eit) of a starlike function f(z) with respect to the pole ∞, whose boundary
is a bounded recti�able closed Jordan curve.

Example 2.1 (The Circle Family)
The simplest example would be the circle family. Any fractional-linear transformation

w=f(z)=
az

cz + d

that maps D into a disc f(D)� 0, f(0)=0, with the consistent orientation as t rotates
from 0 to 2� under the parametrization z=eit, will give rise to a circular H-atom. We now
form this family in a systematic way using M�obius transform. The M�obius transform �a(z)=
(z − a)=(1− �az) has the power series expansion

�a(z)= − a+ b1z + b2z + · · ·
where b1 = 1− |a|2¿0. We construct

fa(z)=
1
b1
(�a(z) + a)=

z
1− az (12)

This function is in the class C. It maps discs in D into discs. The images fa(Dr); Dr = rD;
0¡r¡1, are discs not centred at z=0 if a �= 0. Indeed,

fa(reit)=
r√

1− 2r|a| cos(t − ta) + |a|2r2 e
i(t−arg(1−r|a|ei(t−ta)))

where a= |a|eita . It follows from Theorem 2.2 that for every �xed r : 0¡r¡1, the function
fa(reit) is a circular H -atom. The mapping can be extended to r : 16 r¡1=|a|, and the
diameter of the disc f(D) passing through 0 is divided by 0 into two parts with lengths,
respectively, r=(1− r|a|) and r=(1 + r|a|). So, the closer the number r|a| to 1, the closer the
pole zero to the boundary of the image circle.

One can similarly formulate the ellipse family and the Casimire curve family.
As a consequence of the argument principle �nite products of circular and dual circular

H-atoms are multi-valent functions. We have the following

Theorem 2.4
Finite products of circular and dual circular H-atoms are, respectively, circular mono-
components and dual circular mono-components.

Proof
Products of �nite many starlike functions is a function in H∞. Therefore, their boundary
values are circular H-eigenfunctions (Theorem 1.1). The argument of the boundary value of

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1187–1198



MONO-COMPONENTS FOR DECOMPOSITION OF SIGNALS 1195

such a product is the sum of the arguments of the boundary values of the factor starlike
functions, and therefore is non-decreasing and absolutely continuous. Hence, �nite products
of circular H-atoms are circular mono-components. For dual circular H-atoms the proof is
similar.

The established theory on the classes S, S∗ and C provides a source of starlike functions
with a great variety. The basic references are [9–13]. Reference [13], in particular, provides
many working examples. We brie�y recall, without proof, some results in the literature that
may have signi�cant impacts to our study.

(i) It may be shown that if f(D) is starlike, then f(Dr) is starlike for all r ∈ (0; 1). In
Example 2.1 on the circle family we assert this fact from the property of fractional-
linear transformations. It, however, holds in general. This implies that when z= reit

traces out the circle |z|= r anticlockwise, then the complex number f(z)=�ei� must
also traces out a complete circle anticlockwise. It follows that

@
@t
arg{f(z)}= @�

@t
¿ 0

This latter condition implies

Re
{
zf′(z)
f(z)

}
¿ 0; z ∈ D

This turns to be a su�cient condition for starlike domains as well.
(ii) It may be shown that a function is convex in D if and only if 1 + z(f′′(z))=(f(z))

has a positive real part in D. As a consequence, f(Dr); 0¡r¡1, is also convex.
Based on this it may be shown that f(z) is convex if and only if F(z)= zf′(z) is
starlike. Therefore, a convex function f(z) has the formula

f(z)=
∫ z

0

F(�)
�

d�

where F(z) is a starlike function. The last relation also gives rise to a representation
formula for all convex functions (see (iv) below).

(iii) If f and g are in class S∗, then their weighted product f	g
; 	+
=1, 06 	, 
6 1,
is in S∗.
If f and g are in the class C with the expansions

f(z)=
∞∑
n=1
anzn; g(z)=

∞∑
n=1
bnzn

then their Hadamard product (also called Hadamard convolution)

(f ∗ g)(z)=
∞∑
n=1
aabnzn

is in C.
If f and g are in the class S∗, then the modi�ed Hadamard product

(f ⊗ g)(z)=
∞∑
n=1

aabn
n
zn

is in S∗.

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1187–1198



1196 T. QIAN

(iv) If P(z) is holomorphic with positive real part then there holds Herglotz’s formula:

P(z)=
∫ 2�

0

eit + z
eit − z d	(t)

where 	(t) is a non-decreasing function satisfying∫ 2�

0
d	(t)=1 and 	(t)= 1

2 [	(t + 0) + 	(t − 0)] (13)

There is a one-to-one relationship between the functions P(z) and 	(t).

Based on Herglotz’s formula one has the representation formula for starlike func-
tions: a function f is starlike in D if and only if

f(z)= z exp

(
2
∫ 2�

0
log

1
1− e−itz d	(t)

)

where 	 is a non-decreasing function satisfying (13). Theoretically, the formula pro-
vides all starlike functions with the pole zero.

(v) It is an interesting fact that if f(z) is in S, then for small enough r¿0 the image
f(rD) is starlike, and therefore f(rz) is in S∗. One can show that there exists a
positive number, RST = (e�=2 − 1)=(e�=2 + 1)≈ 0:65579, called radius of starlikeness,
such that whenever r6RST the image f(rD) is starlike for all f ∈ S. The number
RST is sharp in the sense that if r¿RST, then there exists a function f ∈ S such that
f(rD) is not starlike.

For the class S there is also a sharp constant, RCV =2 − √
3≈ 0:26 · · ·, called radius of

convexity, such that whenever r6RCV the set f(rD) is convex for all f ∈ S.

3. MONO-COMPONENTS ON THE LINE

It is the identical relationship given in Theorem 2.2 between circular H-atoms and certain star-
like functions that motivates the de�nition of circular H-atoms. There is no counterpart con-
cepts on the line. In this section we will induce mono-components and dual mono-components
on the line based on those obtained on the circle.

Theorem 3.1
Assume that f̃(t)=�(t)ei�(t); 06 t¡2�, where �∈Lp([0; 2�)); 16p6∞. Then,

(i) for 16p6∞, f̃(t) is a (dual) circular mono-component if and only if f(t)=�(t)
ei�(t);−∞¡t¡∞, is a (dual) mono-component on the line, where � and � are extended
to satisfy �(t + 2�)=�(t) and �(t + 2�)= �(t) + 2�.

(ii) for 16p¡∞, the function
1

(s2 + 1)1=p
�(2 arctan s)∈Lp(R)
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and, if f̃(t) is a (dual) circular mono-component, then

F(s)=
1

(s2 + 1)1=p
�(2 arctan s)ei(�(2 arctan s)+(2=p) arccos(−s=

√
s2+1)−(2�=p)); −∞¡s¡∞

is a (dual) mono-component on the line.
(iii) for p=∞, f̃(t) is a (dual) circular mono-component if and only if

F(s)=�(2 arctan s)ei�(2 arctan s); −∞¡s¡∞
is a (dual) mono-component on the line.

The proof of (i) of the theorem is based on the following lemma.

Lemma 3.1
Let f̃∈Lp([−�; �)), 16p6∞, and f be the 2�-periodic extension of f̃ to the real line.
Then Hf is 2�-periodic, and, restricted in [−�; �), Hf= H̃ f̃, where Hf is de�ned by

Hf(t)= lim
j→0; N→∞

1
�

∫
j¡|t−s|¡(2N+1)�

f(s)
t − s ds

Proof
It may be easily shown (also see Reference [4] or [1] or [6])

Hf(t) =
1
�

lim
j→0; N→∞

∫
(−�;�)∩{|x−t|¿j}

(
N∑

k=−N

1
t − x − 2k�

)
f(x) dx

=
1
2�
lim
j→0

∫
(−�;�)∩{|x−t|¿j}

cot
(
t − x
2

)
f(x) dx

= H̃ f̃(t); a:e:

Proof of Theorem 3.1
We only prove the mono-component case. The dual case is similar.

(i) Assume that f̃ is a circular mono-component. Then Lemma 3.1 implies that the peri-
odically extended f(t) is an H-eigenfunction. Since the extended � is non-decreasing,
f(t) is a mono-component. The argument is reversible. We thus complete the proof
of (i).

(ii) and (iii) The Lp([−�; �]) condition and the circular mono-component condition together
guarantee that the function �(t)ei�(t) is the boundary value of a function in Hp(D)
(Theorem 1.1). Under the Cayley transformation � : C+ →D,

z=�(w)=
i− w
i + w

and the corresponding boundary relation

eit =
i− s
i + s

; s= tan
t
2
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the function F(w)= (1=(w+i)2=p)f(�(w))∈Hp(C+) (see Reference [14] or [1]), and
therefore its boundary value is an H-eigenfunction (Theorem 1.1). The boundary value
of the induced weight factor 1=(w + i)2=p is

1
(s+ i)2=p

=
1

(s2 + 1)1=p
ei[(2=p) arccos(−s=

√
s2+1)−(2�=p)]

with the frequency

d
ds

(
2
p
arccos

( −s√
s2 + 1

)
− 2�
p

)
=
2
p

1
1 + s2

¿ 0

The frequency of the f(�(s)) part is

d
ds
(�(2 arctan s))= �′(2 arctan s)

2
1 + s2

¿ 0

Putting them together, the frequency of F(s) is non-negative. Hence, F(s) is a mono-
component. For p=∞ the argument is reversible. The proof is complete.
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