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We give an elemenlary proof of the Paley-Wiener theorem in several complex variables using
Clifford itlgcbra. Thanks to the extension of the exponential function <•'*'•!', where
.X is extended to R"'"̂ ' — R'", and ^ is extended to C". the proof of the theorem in one complex
variable based on analytic continuation is closely followed to give a proof for several complex
variables. This shows ihal with the help of ClilTord algebras multi-variable cases may be treated
similarly as the single variable case.
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1. Introduction

The classical Palcy Wiener theorem (sec [1]) states that a necessary and sufficient
condition for a square-integrable function / t o be extendable to an entire function in
the complex plane with an exponential type bound

is that s u p p / c [—AM]. Due to the fundamental role of the theorem in harmonic
analysis and in complex analysis, people have been seeking for generalizations of the
results to higher dimensional cases, including several complex variables [1 3] and
several real variables [4,5]. The Clifford algebra setting of R'", dealt with in [4], could
be said to be the precise analogue of the classical case. The latter is further
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generalized to the case of co-dimension p in [5]. The present work, however, will con-
centrate on several complex variables.

We introduce some notations. Denote by K any symmetric body in R"' and let

K* ^yy^Vi"" \ for all x G K,x-y < I)

then K* is called the polar set of K. Further, let

= f 1 f is an entire function in C". and for every e > 0,

3 a constant C, such that \F{Q\ <

The Paley-Wiener theorem in C" (see [1]) is stated as follows.

THEOREM 1.1 Suppose that F^ /,-(R"'). Then F is the Fourier transform of a function
vanishing outside a symmetric body K if and only if F is the restriction to R'" of a function
in E{K).

Note that, if we take K to be the ball with radius A centered at the origin, denoted
by B{Q,A), then K* = K, and the inequality in the definition of e(K) reduces to

\Fi()\ < Ce"-^"'l^i, where |Cl = ^J\i^\~ + •• •+ \^,\~- ' " that case, we further have

for any C e C".i
JB{O,A)

This particular case turns out to be essential in applications.
In [2] a theorem of the same spirit is proved in tensor form. The inequality in the

class s{K) is replaced by

\Fiz)\ < Qexp[(fti + e)\=i | + • • - + (b,,, + e)\z,^\]

and the ball B{0, A), in which the Fourier transform of F is supported, is replaced by
the box Gi, = {\z\\ < b\,...,\Zn,\ < b,,,}, where bi > 0, i = \,.. .,m.

The proofs of the classical Palcy-Wiener theorem may be classified into two cate-
gories. The first type uses a Phragmen-Lindelof type result (see [1]), while the other
is based on holomorphic continuation of the Laplace transforms of the entire function
in the assumption of the theorem (see [6,7]). The Laplace transforms are defined for all
directions in the complex plane whose existences are guaranteed by the exponential-
type inequality assumed in the theorem. To the author's knowledge none of those
proofs have direct generalizations to several complex variables. For several complex
variables the existence of any Phragmen-Lindelof type result is in question. The
usual proofs of the Paley-Wiener theorem for several complex variables are based on
the case of one complex variable [1,2]. The present study intends to show that the
second type of proof [6.7], based on holomorphic continuation, may be adapted
to the case of several complex variables, where holomorphic continuation should
be replaced by monogenic eontinuation in the Clifford analysis setting. This new
proof, as a direct generalization of the case of one complex variable, strengthens the
philosophy that Clifford algebra enables one to treat multi-variables similarly as a
single variable.
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It is to be mentioned that, recently, Masanori Suwa and Kunio Yoshino proved
a new type of Paley-Wiener theorem for several complex variables, involving hyper-
functions supported by convex compact sets in C" [8]. The hyperfunctions, as a special
type of linear forms on entire functions in C ' . form the replacement of the Fourier
transforms with compact support of square-integrable functions in R'", and the
Fourier Laplace transforms of the representations of the linear forms on dilated
heat kernels arc the replacement of the entire functions. The proof uses heat kernel
estimates (see [3]).

More precisely, let A: be a convex and compact set in C". Denote by A the
space of entire functions in C ' and by ^ ' ( A ; ) the space of linear forms ^ on ^ carried
by K, that is, for every neighborhood a> of K.

l, (pe A.

The elements of _4'(/0 are called hyperfunctions supported by K. The Fourier
Laplace transform of/xe_4'(/0 is denoted by

where

M.., - {n.,E{x - z, /)}, E{z, t) = {A7tt)-^"l'^'^e-\'\''^', z e C

Then the Paley-Wiener theorem for hyperfunctions reads

THEOREM 1.2 Let K be a convex compact set in R'" and let ti&A!(K). Then jUt;) is
an entire function and for every e > 0 there exists a constant C^ > 0 such that

where hfdri) = sup^^f^{x, i)}. Conversely, if F{0 is an entire function satisfying the above
inequality, then there exists a unique fi e ^{K) such that F{i;) =

2. Preliminaries

For more details on the basic concepts and notations recalled in this section,
we refer to [9,10].

Let ei e,H be basis elements satisfying e,ej + e,«, = -25,y, where ,̂/ = 1 if / = /
and Sij = 0 if / ^ J. ij = 1,2,..., m. Let

be identified with the usual Euclidean space R"', and denote
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Let

So, if C 6 C", then f = Y4=\ <J^h where Cy = ?j + '>?/• The space C" is identified with the
space of m complex variables in the usual setting. It follows that

where
m

\i\l = T.^j =\l\' -\!l\' + ^'ii^!l)- (1)

Elements in R*," are called vectors, and those in R™ are called pure vectors. The real
(or complex) Clifford algebra generated by ei,e2,. . .,e,,,, and denoted by R'"'*
(orC*"''), is the associative algebra generated by ei, 62 , . . . , em over the real (or complex)
field R (or C). A general element in R*'"', therefore, is of the form .v = Zl̂ -V.ve.v, where
eo = eo, and es = e/,e;j,... .e,,, where S — ^ or S runs over all the ordered subsets of
{\,2,...,m}, namely

The natural inner product between A- = X)s-^s*s ^"^ y ~ Zl5>'s*5 ' " C^'^K denoted by
{x,>), is the complex number X^s-'̂ 's.ys- The norm of jc e R*™* associated with this inner
product is

5^
The Clifford conjugate of .YO + A; is x = xo — x. For any non-zero vector ..Y we have

-I
X = r.

1

The unit sphere [x e R',": kl = 1} is denoted by S™. We use Bix,r) for the open ball in
R̂ " centered at A- with radius r.

In what follows we study functions defined in R"' or R," and taking values in
C". Therefore, they are of the tormf(x)= Y^sfsi^^^s, where /v are complex-valued
functions. We involve the Cauchy-Riemann operator

where DQ = d/dxo and D_ ~ {d/dxi)e] H h (d/dxm)e,,, denotes the Dirac operator. For
the sake of symmetry, we write />o = {d/dx^) = (d/dxQ)eQ. We define the "left" and
"right" roles of the operator D by

i=Q S
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and

(=0 .5 " ' ^ '

\{ Df=Q ox fD = 0, then we say t h a i / i s left-monogenic or right-monogenic in the
corresponding domain (open and connected). I f / i s both left- and right-monogenic,
then we say that / is monogenic. We recall the existence of Cauchy's theorem and
Cauchy's formula for left- and right-monogenic functions.

The Fourier transform in R'" is defined by

m = f
and the inverse Fourier transform is

In order to extend x in (2) to .v € R"' so that g(x) becomes monogenie of a eertain
lype we first need to extend the exponential function f''--*. Denote, for A- = .voCo + x.

where

It is easy to verify that x± satisfies the properties of a projection operator

X-X+ = X+X~ = 0 , xi= X±, X+ + X- = 1.

The function e(x,^ is an extension of e(x,^) = e'^-'^ onto R^ x R*". It is easy to
verify that for any fixed | , the function e(.v,|) is monogenic in x € R"'. Extensions of
this kind can be first found in Sommen's work [3]. Mclntosh further extended
I € R"' to I + ill 6 C": for .v = .VQ + x, C - | + %

e{x, C) = e+(A-, 0

where
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and |£|^ is the square root of the complex number \^\l in (1) with Re|f|^ > 0
(see [11,12]). Note that |^|^ is a complex number.

It is easy to verify thai with the extended domain of x± there still holds

The function e(-V.O is an extension of c(jc,^) = f'̂ --' onto R'," x C". It is easy to verify
that e+(.v, 0 . t'_(.v,£) and K-v, C) are monogenic in .v G R',", and holomorphic in C e C"'.
As a piece of art they have been proved to be crucial to harmonic analysis in R"'.

It is easy to verify that e{x, f) = e'*-'̂ * and

(3)

where <; = | +
It is useful to introduce the quantity \^\* = JRe^\^\^ + \TI\^. Then there holds

|fr = |||if5 = 0and|cr = Mif|-0.

Li-MMA 2.1 The non-negative function | • |*: C" ->• [0, oo) satisfies the relation |<|* < |f |,
where the equality holds if and only if t) = t^, t G R.

Proof The inequality is equivalent to

Let | = E 7 - ^ ' ' e ^ ^ = E7>''*/• Denote ^ = R e | £ U , y=lm\;\^. Through simple
computations we are reduced to showing

^^<E4 (4)
I

under the conditions

X'-y' = '^xl-J2yl and Xy = J^x,y,. (5)
I 1 1

Using Cauchy-Schwarz's inequality the second condition of (5) implies that

m m

If X^ = YA xl, then the first condition in (5) implies y^ = E 7 > i and (6) will hold
as an equality. This concludes that | and 5 are proportional, and the second equality
in (5) also holds. Conversely, if | and ^ are proportional, then the conditions in
(5) hold, iind X'^ = Y!"xl. Now consider a positive increment X^ = Y^"xl+8,
3 > 0. In that case the first condition of (5) implies that Y- has the same increment
and thus the inequality (6) cannot hold. The proof is complete. •
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In the particular case m = 1 we have ^ = (̂  -f ii))t\. Note that |f U = sgn($)(^ +
By taking ei = —/, we have

(.Y,C) = e-'(-*̂ ''+̂ '«i><(H"'>*i> (the Clifford multiple form)

usual complex variable form)

_>

\2 2ia

For the case m = 1 we have jfl* = |£| = 1ICU|.

3. The Paley-Wiener theorem in C"

The following result may be found in [I I],

LEMMA 3.1 Let ^ = ^ + />; e C", and assume that \^\ ^ 0. Let

Then

For the case m=\ the norm lx±(C)l = I/V2-

Our Paley-Wiener theorem in C" is stated as follows.

THEOREM 3.2 Suppose that Fe L^(R'") and let A he a positive real number. Then the
following two conditions are equivalent:

(i) F(^) can be extended to a holomorphic function f(^) and

re-̂ '̂ '* for any^ = ^ + iru (7)

(ii)

Moreover, if one of the above conditions holds, then

^^ for any ^eC". (8)
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Proof (ii) =^ (i): If supp(f) c 5(0, A), then

Put

Clearly,/is an entire function in C" extending F, and, due to estimate (3),

1/(01 < ce"*^- < ce'*^-' for any C = | + h-

(i) =;• (ii): Put fV(̂ ) =z F(|)e"^'^', where s > 0, | 6 R"'. We will show that

lim / FJiy^^-i'd^ = 0, \x\>A. (9)

Now, assume temporarily that (9) holds. Since \\Fg — F\\2 -> 0 as £ -> 0^,
the Plancherel theorem implies that \\Fe - F\\2 -»• 0 as g -> 0+. By taking a suitable sub-
sequence €k -*• 0"*" we have pointwise convergence, and therefore (9) implies F{^) = 0
for \x\ > A, that is, F vanishes outside 5(0,/I).

Hence, we are reduced to proving (9). For each n — no + H G S'", let Aa be the half-
space in R^ defined by

and let n(C"') be the associated surface in C", defined by

C", 1,^0, \no\ri =
= 0, n -

Note that the surfaces stretch to infinity. Since < G n(C"') implies ti; e n(C"') for / > 0,
they are, in fact, cones in C". For m= 1 the surfaces n{C"') reduce to the boundary
of the cone with axis ei and opening angle 26, where 9 = tan"'|«o|/|«|. The definition
of n(C'") shows that opposite values of WQ correspond to the same surface. On
a surface n(C'") the quantities Re]^|, and |f?| are proportional and the vector H indicates
the direction (or axis) of the cone. no = 0 is a limit case; for m= 1 it is a ray.

For n G S'", put

U^J Jn(C")

where

I, no > 0
0, no < 0.

We now show that <i>o(x) is right-monogenic in
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In fact, when n = «o + ^ € S"', «o > 0> we have

(27r) Jn,c«)
(10)

For any x € An, C = | + ' ^ e n(C"'), we have |^(/Re|^L = lrt|/rto. Since |x+(f)l <
V ^ (from Lemma 2.1), we have

where ^ > 0, (•„„ = 1/v^'io- Due to assumption (7) the integrand in (10) decays expo-
nentially, which aiiows us to differentiate under the integral sign. The monogeneity
of e+ then implies the one of <t>,,. This concludes that *n(-v) is right-monogenic in A^
when n e S'". HO ^ 0. The proof of OnC-v) being right-monogenic in /!„ for n e S"' and
Ho < 0 is proved similarly.

= «GR'", \n\ = 1,

>^, C) - eXx,

For c e «(C"), Re|CU = 0, .v e /!„, it follows that

for some S > 0. This implies that *n(-v) is right-monogenic in An when a — ne R"',
\D] = 1-

For the particular cases n = eo and n = —eo, we have

_ 1 /•

and

I r
A-o < 0 .
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ct>eo(ji:) and <t'-eu(-v) are right-monogenic in the extended regions, the respective half
planes, because F e L^(R"').

It is easy to verify that

f + X) - (t_e^(-£ + X). (11)

We thus have to show that the right-hand side of (11) tends to 0 as e -*• 0"̂  for |^| > A.
We show that there is a unique right-monogenic function <t> for |.YI > A which coin-

cides with all the functions <!>„ for An. Temporarily accepting this, we have, for \x\ > A,

lim *I*eo(£ + 20= lini •!'(£ + x )

lim *_Pnl

and hence

Hm ^{s + x) — lim <!>(—£ + x) — <t>(x) — ^(x) = 0.

Thus

We now prove the existence of the unique right-monogenic continuation by
showing that any two of the functions "!>„ agree in an open set of the intersection
of their domains. If n',n- e S'", and /(n',n-) < 7r/2, then the set of the inner points
of /!„! n Aj^^ is non-empty. Let .v be such an inner point. Consider

/ /(f

where Vr is the part of the sphere {|£| = r|£ e C") in C"' joining the two surfaces
n'(C'") and n^{C'")> and n is any point on the geodesies of S*" joining n' and n".
As r -* OO, the integrand decays exponentially, while the surface area of V^ grows at
most polynomially. We therefore conclude that the integral tends to zero as r ^ - o o .
Using Cauchy's theorem for the surfaces in C" we conclude that (l>ni(:ii:) = (I>n2(x).
This shows that all ^^ extend right-monogenically to each other, to become a unique
right-monogenic function in the union of their domains. The union contains the set
|x| > A. The proof is complete. •

An immediate consequence of this theorem is

COROLLARY 3.3. Assume that F e Z-'̂ (R"') and let A be a positive real number. Then
the following two conditions are equivalent.

(i) F(|) can be extended to an entire function f{0 and \f(0\ < fe'^'^', for any

(ii) supp(/O C B(0, A).
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Moreover, if one of the above conditions holds, we have

= f
JB{

c-ix, Oh-l)dx for any < e C".

Proof In the part (ii) ^ (i) ofthe proof of Theorem I.I, we have obtained that the
condition (ii) implies the stronger inequality |/(C)I < ce'^'^'. •

By combining the particular case K — BiO,A) of Theorem 1.1 (see remark after the
statement of the theorem), we further have:

COROLLARY 3.4 Assume that F e L^(R'") and let A be a positive real number.
The following conditions are equivalent:

(i) /^ | ) can be extended to an entire function /(£), and |/(C)I < ce '-, for any

(ii) 7̂ (1) can he extended to an entire function /(£), and |/(C)[ < a*'̂ '̂ '*, for any

(iii) l^i^) can he extended to an entire function f{l;), and \f(0\ < cf^-L for any

(iv) supp"(/) c 5(0, A).
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