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A b s t r a c t - - I n  many cases, a real-valued signal x(t) may be associated with a complex-valued signal 
a(t)e ~°(t) , the analytic signal associated with x'(t) with the characteristic properties x(t) = a(t) cos O(t) 
and "H(a(.)cos0(-))(t) = a(t)sin0(t). Using such obtained amplitude-frequency modulation the in- 
stantaneous frequency of x(t) at the time to may be defined to be 0'(t0), provided O'(to) >_ O. The 
pro'pose of this note is to characterize, in terms of analytic functions, the unimodular functions 
F(t) = C( t )+  iS ( t ) ,C2( t )÷  S2(t) = 1, a.e., that satisfy ~C(t )  = S(t). This corresponds to the 
case a(t) - 1 in the above formulation. We show that a unimodular function satisfies the required 
condition if and only if it is the boundary value of a so called inner function in the upper-half complex 
plane. We also give, through an explicit formula, a large class of functions of which the parametriza- 
tion C(t) = cos0(t) is available and the extra condition O'(t) >_ 0, a.e. is enjoyed. This class of 
functions contains Blaschke products in the upper-half complex plane as a proper subclass studied 
by Picinbono in [1]. @ 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - P h a s e  signal, Analytic signal, Intrinsic mode function, Instautaneous frequency, 
Blaschke product, hmer function. 

1. I N T R O D U C T I O N  

T h e  core t a sk  of t ime- f requency  analysis  is to  f ind a b iva r i a t e  r e p r e s e n t a t i o n  for a s ignal ,  cal led 

t i m e - f r e q u e n c y  d i s t r i bu t i on ,  t h a t  desc r ibes  t h e  ene rgy  d en s i t y  of  t h e  s ignal  s i m u l t a n e o u s l y  in t h e  

t ime  and  t h e  f r equency  domains .  Based  on such  r e p r e s e n t a t i o n ,  we get  to  know how f requency  

of a s ignal  changes  w i t h  t ime.  

T h e  f u n d a m e n t a l  tool  of t ime- f l ' equency  analys is  is Fourier  spec trum analysis .  T h e  basic  view 

is t h a t  a genera l  signal is a ce r ta in  s u p e r p o s i t i o n  of h a r m o n i c  waves,  of wh ich  each  has  a c o n s t a n t  

fl 'equency. Four ie r  analys is  plays a f u n d a m e n t a l  role in p roces s ing  l inear  and  s t a t i o n a r y  da ta .  

The work was supported by research grant of the University of Macau No. RG092/04-05S/C118/QT/PST and 
Macao Sci. and Tech. Develop. Fund 051/2005/A. 
Supported in part by NSFC under grants 10201034 and the Project-sponsored by SRF for ROCS, SEM. 
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doi: 10.1016/j.camwa.2006.01.007 
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However, most signals, either natural or man-made, are nonlinear and nonstationary. Fourier 
analysis cannot expose the time-varying property of frequency of nonstat ionary signals as Fourier 
transform is a univariate representation in the time domain or in the frequency domain separately, 

and thus does not posses the time-frequency localization property. This leads to the development 
of windowed Fourier transform and wavelet transform, which are bivariate representations of 
signals in time-frequency domain simultaneously, and offer limited time-frequency localization [2]. 

In the atoms view, the common idea of the traditional methods,  including Fourier transform, 
windowed Fourier transform and wavelet transform, are to use some fixed time-frequency atoms to 
match a large variety of signals. It would be often the case that  those fixed time-frequency atoms 
are not the intrinsic components of the signal under study, and thus, often leads to misleading 

results. 
The ideal method of time-frequency analysis for nonlinear and nonsta t ionary signals would 

be to adaptively decompose a signal into certain basic intrinsic components (atoms) which are 
called monocomponents [3,4], and, for those components, one can define meaningful instantaneous 
frequency and furthermore construct the time-frequency distribution. 

The newly developed HHT programme by Huang [5-7] provides a practical approach to the 
above mentioned decomposition. It contains two steps. The first is the algorithm called empirical 
mode decomposition (EMD), which is a certain adaptive decomposition. Applying this algorithm, 
a mult icomponent can be decomposed into a finite sum of intrinsic mode functions (IMFs). 
The next step is an application of Hilbert transformation to the obtained IMFs. Experiments 
showed that  the IMFs behave nicely with Hilbert t ransformation and can be used to define 
meaningful instantaneous frequency. In such a way, a new kind of time-frequency distributions 
called HiIbert amplitude spectrum may be constructed, through representing the instantaneous 
amplitude and frequency as functions of time in three-dimensional plots, and thus, the amplitude 
can be contoured in the time-frequency plane [5]. 

The notion of IMFs used by Huang plays a crucial role in the HHT practice. An IMF does not 
have a precise mathematical  definition but is only an engineering description. The occurrences 
of the local maximums and minimums take turn, and, between a pair of adjacent local extremes, 
the signal is monotone and passes through the zero once, and is of the local symmetry:  the means 
over the adjacent upper and lower envelopes are all of the zero value. 

The notion of intrinsic mode functions (IMFs) is closely related to monocomponents ,  and to 
instantaneous frequency and amplitude, see, for instance, [1,3,4,8]. Now, we recall some studies 
on instantaneous frequency. It is well accepted that  instantaneous frequency a~(t) of a complex 
signal x(t) = a(t)e ~°(t) is defined to be the derivative of the phase O(t), tha t  is, 

w(t) = O'(t), provided O'(t) > O, t • IR. (1.1) 

The mean frequency <a} = fe  ~1~(~)1 ~ d~ of such a complex signal can be reduced to 

(w} = j / O ' ( t ) I x  (t)l 2 dt. (1.2) 

Based on this observation, Cohen [4] suggested that  the derivative 0 ~ of phase 0 be treated as 

instantaneous frequency cJ. 
For a real-valued signal x(t), there are infinitely many ways to write x(t) into an amplitude- 

frequency modulat ion a(t)cos O(t). There, however, would exist at most one such modulat ion 
that  gives rise to a qualified instantaneous amplitude and frequency. Hilbert t ransformation 

defined through the singular integral, 

1 £ • (s) ds, 
~ (t) = ~.p.-; t -  s (1.3) 
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may be used to construct  the analytic signal associated with x(t) ,  denoted  by x~(t), defined by 

X a ( t )  = X ( t )  ~- i ~ x  ( t ) .  (L4) 

The analyt ic  signal may  be further wr i t ten  as Za(t) = a(t)e i°(t), and in t ha t  case this con- 
s t ruct ion singles out  a special ampl i tude-frequency modula t ion  cc(t) = R e z a ( t )  = a( t )cos0( t ) ,  
called the  canonical modulation of x(t).  The associated function pair  (a(t),O(t)),  character-  

ized by ~(a( . )eosO( . ) ) ( t )  = a(t) sinO(t) and x(t)  = a(t) cosO(t), is called the canonical pair 
associated with x(t) .  W i t h  a canonical  modula t ion ,  if O'(t) _> 0, then 0' is defined to be the 

instantaneous frequency of the  complex signal x~(t), as well as of the  original  real signal x(t).  
In general,  through the canonical  modula t ion  one cannot  get the  ins tantaneous  frequency, as 

a signal is often of mult ieomponents .  For instance, the  " instantaneous frequency" of the sig- 
nal x(t)  = cos t + cos 2t obta ined  through its analyt ic  signal has negat ive values. This  suggests to 
decompose mul t i -components  into a sum of monocomponents  of which each has a meaningful in- 

s tan taneous  frequency. A large number  of l i te ra ture  adress this  problem,  see [1,3,4,8,9]. For an ar- 
b i t r a ry  modula t ion  z( t )  = a( t )cos0( t ) ,  the associated complex-valued function Zq(t) = a(t)e i°(t) 
is called the quadrature associated with the modulation pair (a(t), O(t)). The key problem is: for a 

modula t ion  x(t)  = a(t) cos O(t), under  what  condit ions the associated quadra tu re  Xq (t) coincides 

with the associated analyt ic  signal x~(t)?  The relat ion xq(t) = x~(t) is equivalent to  

~ ( a ( . )  cos O(.) )(t) = a(t) sin O(t). 

Some relat ions of this  question with  Bedrosian 's  and Nut ta l l ' s  theorems are observed. 

PROPOSITION 1.1. BEDROSIAN'S PRODUCT THEOREM. (See [8].) Assume  that f ( t )  and g(t) 
are complex-valued signals of finite energy. I f  

(i) f (w )  = 0 for Iwl > ~ and ~(w) = 0 for Iwl < ~, where ~ > a > 0, or 

(ii) ] ( ~ )  = 0 for ~ < - ~  and ~(~) = 0 for ~ > 9, where ~ > ~ > 0, then 

7-l(fg)(t) = - i f ( t ) g ( t )  = f(t)7-lg(t). (1.5) 

Asser t ion (i) has an impor t an t  appl icat ion to our question. I t  implies tha t  if the  spec t rums of 

the ampl i tude  a(t) and tha t  of cos O(t) are, respectively, of low-pass and high-pass and disjoint,  

i.e., 

suppa( ,~)  C (-w0,w0)  and suppcos0( . ) (w)  C R \ ( -w0,w0) ,  w0 > 0, 

then 

(a(.) cos 0(.)) (t) = a(t)7-[ cos O(t). (1.6) 

Under  the  assumpt ions  on the spectrums,  we are reduced to assert ing condit ions on O such tha t  

cos O(t) = sin 0(t), (1.7) 

and, as consequence, Xq(t) = xa(t).  
Nut ta l l ' s  theorem [9] es t imates  the energy error when the quadra tu re  signal is replaced by the 

analyt ic  signal. 

PROPOSITION 1.2. NUTTALL THEOREM. 

Ilxa - x~ll~2 ~< 2 I~q (~)12 d~. (1.8) 

In 1978, Vakman and Vainshtein [10] offered a point-wise es t imate  of the  error. 
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PROPOSITION 1.3. 

Iz.  (t) - :% (t)l < ~ I~q (~)1 d~. 
oo 

The rest of this note is devoted to characterize the class of signals, 

(I .9) 

{f(t)  : if(t)[ = 1, a.e., and 7{(Re f )  = I m f } .  (1.10) 

Following [1], complex signals e ~°(t) in (1.10) are called phase signals. We sometimes call them 
analytic phase signals as well. A phase signal with the property or(t) >_ 0 is called an admissible 
phase signal. In [1], it is asserted that  signals of the form, 

f i t  - zk eiO(t) = ei(O°+aJt) t ~ £ '  (1.11) 
i= l  

are phase signals. Apart  from the constant factor and the factor of linear phase, they are boundary  
values of Blaschke products of the upper-half complex plane (see Section 2). This note further 
pursues this topic. We give a characterization of the signal class (1.10) and obtain a class of 
admissible phase signals larger than the class (1.11) given in [1]. 

The studies cited in below are related but not necessary to understand the present article. 
In [11,12], we approach this question through M6bius transform on the unit disc. We started 
with functions of the form e ~°"(t) = Ta(eit), t C (--(x~, oo), a E C, [a[ < 1, tha t  are boundary  
values of Mhbius transforms T~(z), 

z - - a  
 o(z) - 1 - 

In [11], Qian shows that  a strictly increasing function O(t), t c [0, 27r] with the Lebesgue measure 
m(0([0, 27@) = 27c gives rise to an admissible phase signal e ~°(t) if and only if dO(t) is a harmonic 
measure on the circle, or, equivalently, O(t) = Oa(t) for some a E C with I a] < 1. We call the 
corresponding admissible phase functions nonlinear Fourier" atoms. This result has a nonperiodic 
counterpart  for strictly increasing functions O(s), s E R, with m(O(R))  = 2~r. In [13], we studied 
some wavelet and time-frequency aspects of the periodic nonlinear Fourier atoms and proved that  
for a fixed a the nonlinear Fourier system {e i~°°(t) : n C Z} constitutes a Riesz basis in the space 
L2([0, 27r]). We obtained the explicit decomposition, 

O ~ ( t ) = t + 2 a r c t a n  [a I s i n ( t - t a )  
1 - la[ cos(t - t~) '  (1.12) 

where the first term of the right-hand-side is linear and the second is nonlinear and periodic. 
Such a decomposition is unique. In the theoretical paper, [14] Qian included detailed proofs and 
related results. 

The writing plan is as follows. In Section 2, we construct concrete examples of admissible 
phase signals. Section 3 deals with the general theory. Section 4 presents visual examples. In 
Section 5, we draw the conclusion of this study. 

2 .  C O N S T R U C T I V E  E X A M P L E S  

Denote by C + the upper-half complex plane and II3 the unit disc both without  boundary. 

DEFINITION 1. I f  f ( t )  is a Lebesgue measurable function with the properties, 

1 °. If[ = 1, a.e. on IR (i.e., a unimodular function on R); and 
2 °. in writing f ( t )  = c(t) +is( t ) ,  there holds He(t) = s(t), where c(t) and s(t) are real-valued, 

then we say that f is an analytic phase signal (or phase signal, or phase function). If, in 
addition, f may be written as f ( t )  = e iO(t), where 0 is differentiable almost everywhere 
and O'(t) > O, a.e., then f is said to be an admissible phase signal or admissible phase 
function. 
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Note tha t  the terminology phase signal should not  be mixed up with  the  te rminology phase: a 

phase signal may  have the form e iO(t), while O(t) is the  phase of the  signal. 

The invest igat ion s tar ts  from a recall of Plemelj theorem. The  theorem says t ha t  if f ( t )  is a 

function in LP(R), 1 < p < ec, then the Cauehy integral,  

1 ~ f ( t )  dt 
F ( z )  = ~ t - z 

is a well defined analyt ic  function in C +, and 

lim F ( t o + i s ) =  1 ( t o ) + i T - l ( ~ ) ( t o )  a.e. 
s--,O+ -2 f ' 

Based on this observation,  we look for phase functions with nontangent ia l  bounda ry  values from 

analyt ic  functions in C +. 

DEFINITION 2. Let  f ( z )  be an analytic function in C + with a.e., nontangential  boundary l imits  

on IR. I f  the boundary value function is a phase signal, then f ( z )  is said to be a grand analytic 

funct ion.  

Note tha t  not  all analyt ic  functions in C + are grand analytic .  For instance,  the  function e -~:  

is analyt ic  in the  whole complex plane with the bounda ry  value e -~2 on R, t ha t  is, not  a phase 
signal, and thus e - ~  is not  grand analytic.  In view of the maximal  modulus  theorem, we would 

look for grand analyt ic  functions from those tha t  map  C + to D, and  ]R to cOD. In the  rest of 

the section, we give some fundamenta l  conformal mappings  tha t  give rise to admissible phase 

functions. 

(i) Cayley transform 
i - z  ~(~) - 
i + z '  

or, more generally, all the  conformal mappings  from (2 + to D of the  form, 

~(z) _ z - z 0  __, Imz0 > O. 
z z 0 

and 

The  b o u n d a r y  value of Cayley t ransform ~ is 

eiO(t) _ i -- t 1 -- t 2 . 2t 
i + t  -- l + t  ~ + z ~ 5 +  1 

-- cos(2 a rc tan  t) -t- i sin(2 a rc tan  t) 

P1 (t) > o, 
1 1 

O(t) = 2 a r c t a n t ,  O'(t) - ~ 1 + t 2 

the Poisson kernel of R at  y = 1. Theorem 3.1 in Section 3 guarantees  tha t  e 2 i a r c t a n t  iS an 

admissible phase function. 
Owing to the mul t ip l icat ion rule proved in Section 3 any finite p roduc ts  of functions of the  

form v, or infinite products  with cer tain conditions,  give rise to admissible  phase functions. They 

are Blaschke products  in C + s tudied in [1]. 

(ii) Periodized MSbius transform 

For any a C D , a  ¢ 0, a M6bius t ransform v~(z) ,va(a)  = 0, is of the  form, 

Ta(z) = e  ~ z - a  a E N .  
1 - ~ z '  

The  corresponding bounda ry  value function is 

e i t  - -  a 
e i o ~ ( t )  ~ T a ( e  i t )  ~ -  e i a _  

1 - -  a e  i t  ' 
t ~ [ - ~ ,  ~]. 



1476 T. QlAN AND Q. CHEN 

Denote L(z) = e i~. The composed mappings TaoL, in C +, are called per'iodized Mdbius  t rans forms.  

It  is easy to compute [11] that  

1 1 1 - - la l  N = p~( t )  > o, 
O~a(t) --- 2---~ 1 - 21a [ cos(t - a)  + lal 2 

called the per'iodized Poisson  kernel .  The functions Ta o ~ are grand analytic, and the boundary 
values e i°~(t) are admissible phase signals. 

In general, we may form 2L-periodized MSbius transforms e i°o(~z/L) which are admissible phase 
functions, if a = 0, then the corresponding M6bius transform is of the form 70(z) = e i a z ,  and 
the corresponding phase function reduces to e i(O°+wt), Oo C ]~, cd > O. 

(iii) Pseudo-periodized MSbius  t rans form 

By composing the one to one and onto eonformal mappings C + --+ C + 

bz + c  
- b , c , d ,  e E R ,  b e - c d > O ,  ~b,c,e,~(z) dz + e' 

with M6bius transforms ~-a we obtain pseudo-periodized MSbius  transfor~ns ~-a o #b.c,d,~(z) = 
7-a(ei((bz+c)/(dz+e))). Note that  the 2L-periodized M6bius transform is the particular case with 

p(z )  = 7rz/L.  A direct computat ion shows that,  with 

eiO(t) = ei((bt+c)/(dt+e)), 

we have 
be - cd 

O ' ( t ) - - -  > 0 ,  if d t + e 7 ~ O .  (dt + e) N 

Hence, the boundary  value is an admissible phase function. 
In particular, this class includes those of the form e iO(t) = e i ( ( b t+c ) / (d t+e ) )  tha t  do not fall into 

the scopes of (i) and (ii). 
Besides composition one can also use multiplication, as already mentioned, to construct phase 

signals (see Section 3). The rule asserts tha t  products of any finite many  or countably infinite 
many of phase functions or admissible phase functions are still phase functions or admissible 
phase functions, respectively, provided that  the involved infinite products  converge. 

Constructed fl'om the elementary phase signals in (i), (ii), and (iii), using composition and 
multiplication, functions of the following type are admissible phase signals. 

e ~°° z a - Z e x p  i ~ o w k  (bkz+ek  
k=l z - ~k k=l \ dkz  + ek / ' 

where 00 is a real constant, zk, k = 1, 2 , . . . ,  are complex numbers in the upper-half complex 
plane, wk, k = 1, 2 , . . . ,  are complex numbers in the unit disc, and bk, ck, dk, ek are real numbers 
satisfying bkek -- ckdk > 0 for each k. 

Note tha t  the phase signals identified in [1] form a proper subclass of the class defined by the 
above form. Indeed, the periodic and pseudo-periodic factors are from the so called singular 

f unc t ions  in complex analysis [14]. 

3. G E N E R A L  T H E O R Y  

The constructions given in Section 2 are based on a general theory. The basic references of this 
section are [15 18]. The Nevanlina class is the class of analytic functions, f ,  in C +, and log Ifl 
has the least harmonic majorant  the Poisson integral of a Radon measure on R. Since functions 
in the Nevanlina class have harmonic majorants,  Fatou 's  theorem on nontangential  boundary 
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limits of harmonic functions asserts that  they have nontangential boundary  limits, a.e. These 
observations suggest to look for grand analytic functions from the Nevanlina class. 

Functions in the Nevanlina class have the following characteristic property. 
If F belongs to the Nevanlina class, then 

F(z)  = B(z)G(z)S~(z)  
S (z) ' 

where B is a Blaschke product,  G(z) is an outer function, S1 and $2 are singular functions (see 
the definitions below). 

Inner functions are defined to be bounded analytic functions in C + with unimodular boundary 
values on JR. A function F is an inner function if and only if it has the factorization F = BS,  
where B is a Blaschke product  and S is a singular function. 

An outer function, G, in C +, can be expressed as 

G(z) = e ~(~)+i~(~) 

and (3.1) 

= • ( log  h ) ( x ) ,  

where h >_ O, f~(l logh(t)l /(1 +t2) )d t  < oc, Py is the Poisson kernel, and v is a harmonic 
conjugate function of u. A singular function S in C + has the representation, 

S(z) = ei(~°z+fR (1/(~-~)-x/(~2+1)) din(X)) (3.2) 

where a30 > 0, drn(;~) is a positive Borel measure such that  (1/(,~ 2 + 1)) drn()~) is finite. 
In below we present two theorems. Their proofs are outlined. For details see [14]. 

THEOREM 3.1. Let F = C + iS be an inner function, where C and S are real-valued. Then, its 
nontangentiM boundary value is an analytic phase function, that i s / - /C = S in the distribution 
sense on the real line. 

PROOF. By using Cayley transform the bounded analytic function F in C + is transformed to the 
corresponding bounded analytic function, f ,  in II3. The boundary  value of F on R is accordingly 
transformed to the boundary  value of f on OD. Below, we will make no difference in notation 
between analytic functions in C + and their boundary values on R. Since f belongs to the Hardy 
H°°(D) space, it is the Cauchy integral of its boundary  value function f .  The Plemelj fornmla 
can be applied to the Cauchy integral, to result 

or  

f ( e" )  - (e"), 

where ~ is the circular Hilbert transform on the unit circle. Substi tut ing f ( e  it) with c(t) + is(t), 
we obtain 

~e( t )  = s(t), ~ ( t )  = - c ( t ) .  

Now through Cayley transform again these relations are transformed back to R. Therefore, we 
have 7-/C = S, ~/S = - C .  Note tha t  for bounded functions Hilbert t ransformation is taken to 
be of the distribution sense, through harmonic representations of distributions (see [19]). 

The converse to the above theorem also holds. 
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THEOREM 3.2. Let  F = C + i S be unimodular, where C and S are real-valued, satisfying ~ C : S 
in the distribution sense. F is then the nontangential boundary value of an inner function in C +. 

PROOF. The  Poisson integral  U of the  bounded function C is a harmonic  representa t ion  of C 

which is bounded  in C +. Let V be any harmonic conjugate of U. Due to the  theory  of distri-  

but ional  Hi lber t  t ransform [19] and the assumpt ion of the theorem,  the  function V, modula  a 

constant ,  is a harmonic  representa t ion of S. To conclude the theorem it suffices to show tha t  V is 

bounded.  The functions U, V are t ransformed,  by Cayley t ransform,  to u, v, in the  unit  disc D, 

so tha t  u + iv is analyt ic  in II}. The d is t r ibut ional  bounda ry  values C, S are t rans formed to c, s 

t ha t  are the d is t r ibut ional  bounda ry  values of u, v respectively. The  advantage  of the  disc is tha t  

on the disc the  analyt ic  function u + iv1 obta ined  by in tegrat ing the b o u n d a r y  function e against  
the Schwarz kernel is in the Hardy  H2(II}) space. A d is t r ibu t iona l  a rgument  asserts  t ha t  the  
bounda ry  value vl and s defer at  most  by a constant  and thus  the  b o u n d a r y  value v] is bounded.  
As a function in H 2 with a bounded boundary  value, the function u + ivz is fur ther  asserted to 

be a bounded analyt ic  function in ]}, and, since v and Vl defer at  most  by a constant ,  u + iv is a 
bounded analyt ic  function in D, too. Using Cayley t ransform again, U + iV  is bounded  analyt ic  

in C +. 

4.  V I S U A L  E X A M P L E S  

In this section, we show some concrete examples.  

(i) The case of Blaschke products  in C + 

Choosing z0 to be i, 3 + 3i and 1/2 + i/2 in the conformal mapping,  

.(z) - z - zo  

Z --~0 ~ 

and multiplying the three obtained analytic functions, we get the admissible phase signal e ie(t) 

with 

O ( t ) = 2 a r c t a n t + 2 a r c t a n ( 3 - 1  ) + 2 are tan  (2t - 1). 

Figure 1 illustrates the plots of the signal, 

x(t)=cos(2arctant+2arctan(3-1 ) + 2 arc tan  (2t - 1))  , 

its phasc and its instantaneous frequency. 

(ii) The case of Periodic Mbbius t ransform 

Let 
1 1 

a : -- and a : -- 
2 3 

in the M6bius transform, 
z - - a  

T a ( Z )  - -  1 -'gz' 

I 1o 

0.5 5 

o 
- 0 . 5  

-150 0 50 -5  50 
time t time t 

100 

x 107 
4 

3 

1 . I 

0 . i  . , 
2 0  

time t 

Figure 1. Left: the plot of x(t) = cos(2 arctan t + 2 arctan(t/3 - 1) + 2 arctan(2t - 1)). 
Middle: the phase of the signal x(t). Right: the instantaneous frequency of the 
signal x(t). 

4 0  
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and multiply the obtained analytic functions. By using the decomposition (1.12), we get the 
following signal, 

x(t) = cos (2 t  + 2 arctan - -  

O. 

O. 

O, 

-0. 

-0, 

-0. 

-0. 

o 

sin t 

2 - cost  
-t-2 a r c t a n - -  

s i n  t 
! 

3 - c o s t ]  
l 

the signal x(t)=cos(2t+2arctan(sint/(2-cost))+2arctan(sint/(3-cost))) 

20 40 60 80 100 120 140 
time t 

10 20 30 40 50 60 70 80 90 100 
time t 

(b). The  phase of the  signal x( t ) .  

Figure 2. 

phase of the signal x(t)=cos(2t+2arctan(sint](2-cost))+2arctan(sint/(3-cost))) 

160 

140 

120 

~100 

8O 

6O 

40 

20 

0 
0 

200 

180 

(a). T he  plot of the  signal x( t )  = cos(2t + 2 a r c t a n ( s i n t / ( 2 - - c o s t ) )  + 2a rc t an  
(sin t / ( 3  - cos t))). 
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Figure 2 is the plots of the signal, 

x(t)=cos(2t+2arctan2Sint s int  ) 
-- cos t + 2 arc tan 3 - eos------~ ' 

its phase and its instantaneous frequency. 

(iii) The  case of Pseudo-periodized MSbius t ransform 

We s tudy the admissible phase signal x(t) = cos((2t + 1) / ( t  + 1)). Figure 3 is the plots of the 
signal x(t), its phase and its instantaneous frequency. 

~3 .5  

2.5 

r~ 
._~ 2 

1.5 

0.5 
0 

i 
10 

4.5 

instantaneous fre( uency ~o(t) of x(t)=cos(2t+2arctan(sint/(2-cost))+2arctan(sint/(3-cost))) 
J 

;o 3O 40 
time t 

(c). The instantaneous frequency of the signal x(t). 

60 

Figure 2. (cont.) 

0 2O 
time t 

f ~30.5 

0 
1 O0 0 

2 . - 

1 

t ime t 
40 0 50 50 

time t 
100 

Figure 3. Left: the plot of the admissible phase signal x(t) = cos((2t + 1)/(t + 1)). 
Middle: the phase of the signal x(t). Right: the instantaneous frequency of the signal 
=(t). 

1 4ot  0.5 ~ 30 

-~ o ~2o 

-0.5 l O ~ ' f  , 

-1 0 
0 50 1 O0 0 20 

time t time t 

3 

52 

40 0 20 
t ime t 

Figure 4. Left: the plot of the signal x(t) = cos(t + 2arctan(sint/(2-cost)) + 
((2t + 1)/(t + 1))). Middle: the phase of the signal x(t). Right: the instantaneous 
frequency of the signal x(t). 

40 
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(iv) M i x e d  case  

T h e  p r o d u c t  of  t h e  a d m i s s i b l e  p h a s e  s igna l s  e i ( t+2arctan(s int / (2  . . . .  t))) a n d  e i ( (2 t+l ) / ( t+ l ) )  is a 

new a d m i s s i b l e  p h a s e  s ignal ,  

eiO(t) = ei(t+2 arctan(sin t / (2-cos t ) )+((2 t+l ) / ( t+l ) ) )  

Figure 4 illustrates the plots of the signal, 

z(t) = cos ( t  + 2 arctan - -  

its phase and its instantaneous frequency. 

sin t 2t + 1 "~ 

2 - c o s t  + t + l ] '  

5. C O N C L U S I O N  

We proved that a necessary and sufficient condition for unimodular functions f( t)  to satisfy 

~ (Ref )  = Imf  

in the distribution sense is that f is the boundary value of an inner function in the upper-halL 
complex plane. The class of such functions includes a subclass with the parametrization, 

f(t)  = cos O(t) + i sin O(t), 

satisfying 
o'(t) >_ o. 

For signals in the mentioned subclass meaningful instantaneous frequencies can be defined. Some 
examples of such parameterized functions are constructed that contains the class studied in [1] 
as a proper subclass. Based on Bedrosian's theorem nonunimodular solutions of the singular 
integral equation, 

H(Ref)  - Imf,  

may be deduced that are closely related to adaptive decomposition of nonstationary and nonlinear 
signals in time-frequency analysis. 
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