The Journal of Fourier Analysis and Applications

Volume 12, Issue 2, 2006

Direcet Sum Decomposition of
L*(R}) into Subspaces
Invariant under Fourier
Transformation

Ming-gang Fei and Tao Qian

Communicated by Hans G. Feichtinger

ABSTRACT.  Denote by RT the real-linear span of ep, ey, ..., ep, whereeg =1, e;ej +€;¢; =
—238i5,1 < i,j < n. Under the concept of left-monogeneity defined through the generalized
Cauchy-Riemann operator we obtain the direct sum decomposition of L? (R;’), n>1,

o0
PR)= Y B,
k=—00
where QX is the right-Clifford module of finite linear combinations of functions of the form
R(x)Yh(Ix|), where, for d = n + 1, the function R is a k- or —(d + |k| — 2)-homogeneous left-
monogenic function, fork > Qork < 0, respectively, and h is a function defined in [0, 00) satisfying
a certain integrability condition in relation to k, the spaces QK are invariant under Fourier trans-
formation. This extends the classical result for n = 1. We also deduce explicit Fourier transform
formulas for functions of the form R(x)h(r) refining Bochner’s formula for spherical k-harmonics.

1. Introduction

Fourier analysis in Euclidean spaces is intimately connected with the action of the group
of rotations, as well as that of the groups of translations and dilations. The related study
not only has fruitful results by itself, but also stimulates elegant generalizations to abstract
harmonic analysis on groups. This note will concentrate in the rotation aspect. Among
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the special features of the theory is the invariance of Fourier transformation on certain
subspaces of the square integrable functions, defined through radial functions, spherical
harmonics and Bessel functions. The latter is regarded as the symmetric property of Fourier
transformation [8, 3].

In the one-dimensional Euclidean space a function may be decomposed into a sum
of an even function and an odd function. It is easy to verify that the Fourier transform of an
even function is still an even function, and that of an odd function is still an odd function
(We suppress the words “square-integrable” in front of “function” when we discuss Fourier
transform of the function). In the two-dimensional space the same kind of decomposition
is induced by the Fourier series expansion of the function restricted on the unit circle. The
space of square-integrable functions has the direct sum decomposition (see Section 2 for
details)

o0

L’RY) = > P,

k=—00

where for each k, k € Z, the set for integers, the closed subspaces QF is the totality of the
square-integrable functions of the form g(r)e'*?, x = re’® € R2. It is proved that for any
k, the space Q¥ is invariant under Fourier transformation in R?. In the spaces R”, n > 2,
the kind of direct sum decomposition is achieved through the spherical harmonics decom-
position of square-integrable functions on the unit sphere, being reads as (see Section 2 for
details)

L*R) =) PN,
k=0

where Ny, k > 0, are closed subspaces consisting of the functions of the form Hy(x") fo(r),
x = rx’,r = |x|, and Hy a spherical harmonics of degree k. It is shown that Fourier
transformation in R” preserves the subspaces. Thatis, if f € M with f(x) = Hi(x') fo(r),
then f (x) = Hi(x")go(r). Itis further proved that g¢ is determined by fy and the index k
through a Bochner’s formula (see Section 2).

The described results for n = 2 and n > 2 are not quite the same. In fact, the result
for n = 2 is finer, while for n > 2 something is missing. What is missinginn > 2 is a
finer decomposition, like the decomposition of spherical harmonics into spherical analytic
functions, given by

1 - . 1 -
cosk6=§(zk+z 5, smk@:z(zk—z ",

wherez = €%, k=1,2,.... By virtue of Clifford algebras, analytic functions are general-
ized to left- (or right-) monogenic functions. The counterpart decompositions of spherical
harmonics on the sphere then has ground to be established [7, 5, 2]. The task of this note
is to fill in the obvious gap, extending the direct sum decomposition to k < 0 by involving
spherical monogenics. This presents exactly the same direct sum decomposition in R”
as in the R? case. In particular, through a generalized Bochner’s formula in the Clifford
monogenics context, we show that the Fourier transformation invariance property still holds
in the finer direct sum decomposition with an explicit formula representation. The results
contribute better understanding to the symmetric property of Fourier transformation in Eu-
clidean spaces, as well as to Bocnher’s formula. The kind of decomposition is of particular
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interests in practice, as functions are decomposed into components of different phases. In
some recent work useful sampling results in Bessel functions are established based on this
decomposition [4].

2. Preliminaries

We will be working with R7, the real-linear span of eg, e1, . . ., €,, Where eg is identical with
land e;e;j +eje; = —26;;. Thereal- (n+ 1)-dimensional linear space R} is embedded into
the real-Clifford algebra R™ and complex-Clifford algebra C™ generated by ey, ..., e,
over the real and complex number fields, respectively. A typical elementin R is denoted by
x =xo+x,wherexp e Randx = x1e1+---+x,¢, e R*, x;€R, j=1,2,...,n. We
usually write x = rx’, where r = |x|. A typical element in the complex-Clifford algebra

C™ s
X = Z xses ,
S=@ Oor (.. in

where 1 < ji <...ji<n,1<l<n,xs€C,es =ej ...e;, ey = e. Functions to be
studied in this note are assumed to be R} -variable and complex-Clifford algebra-valued. A
general function is of the form f(x) = ) ¢ fs(x)es, and the component functions fs are
complex-valued. Left- and right-monogenic functions are introduced via the generalized
Cauchy-Riemann operator D = a%Oeo + ;’Tlel + -+ %en: A function f with con-
tinuous first order derivatives is said to be left-monogenic or right-monogenic if Df = 0
or fD = 0 in its domain, respectively. In this note we only concern left-monogenic
functions. The theory for right-monogenic functions is parallel. The Cauchy kernel is
E(x) = Ainlxl—’,'fﬂ-, x € R} \ {0}, where A, is the surface area of the n-dimensional unit

27{,,_.{_1

sphere X, in R} and A, = =D The Cauchy kernel is both left- and right-monogenic.

Note that there exist Cauchy’s Theorem and Cauchy’s formula in this setting [1] or [2].
There exists also a Taylor and Laurent series theory for left-monogenic functions. For
n = 1 we write R% =R?2 =C = RWD, the space of complex numbers, where left- and
right- monogenic functions reduce to holomorphic functions. The symbols Z and N denote
the sets of all integers and natural numbers, respectively. We denote by d the dimension
n + 1 of the linear space RY.

The Fourier transform of any function in L! (RY) is defined by

f& = fR e dx

The inner product in L%(%,) is defined by
(For= [ 3 s s ax
n S

where dx denotes the n-dimensional Lebesgue area measure on =, and gs(x") the complex
conjugate of gs(x ).
The following function spaces are important to this study.

Definition 1. Letk € N. Denote by
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@) M,:r the space of left-monogenic homogeneous polynomials in R} of degree k. An
arbitrary element of it, denoted by F, is called a left-inner monogenics of degree k.

(ii) M, the space of left-monogenic homogeneous functions in R} \ {0} of degree —(d +
k — 1). An arbitrary element of it, denoted by Q, is called a left-outer monogenics of
degree k.

(iii) M,'c" and M, the spaces consisting of the restrictions to the unit sphere X, of, respec-

tively, the functions in M, ,:’ and M, . The elements of MZ’ and M are called spherical
monogenics, or surface spherical monogenics.

(iv) Hx the space of surface spherical harmonics of degree & in R7.

For the lowest dimension n = 1 we recall the following result [8].
Fork € Z, let

QF = {g € L*(R}) : g(z) = f(r)e™* for some measurable function £ (r)

satisfying fw If(r)|2r dr < oo} .
0

We have the following.

Proposition 1. The direct sum decomposition

L’R)= ) Pt @2.1)

k=—00

holds in the sense that:

(a) The subspaces Q* are closed.

(b) The subspaces S2* are mutually orthogonal, k € Z.

(c) Every function of L2(R{) is a limit of finite linear combinations of functions in

0 k
Uk:—()o Q M
(d) Fourier transformation maps each subspace QF into itself.

Furthermore, we have the following.
Proposition 2.  For any f € Qk of the form f(z) = fo(r)e*?, where z = re'?, then
f(w) = Fy(R)e'*®, where w = Re'?,
o0
Fo(R) = 2mi~k / fo(r)x@rRr)rdr ,
0

where Ji (1) = 2% fozﬂ eitsint o=kl 4o is the Bessel function of order k, k € Z.
For the spaces RY, n > 1, the result is not quite the same. There holds [8]

[o¢]

L*RD) =) PM, 2.2)

k=0

where N, k > 0, is the right-Clifford module of finite linear combinations of functions of
the form H(x)f(r), where f 1is a function, defined on [0, o), satisfying
f0°° | £ ()2rd+2 =1 gr < oo and H a solid harmonics of degree k. Moreover, for f € N}
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of the form f(x) = Hi(x)fo(r), where x = rx and Hy is a k-harmonics, there holds
Bochner’s formula in terms of spherical harmonics

fx) = Hy(x)go(r)

where
o0
go(r) = 2mi~hyT1@+2A-D/2 f fo6) a2 Qrrs)s @0 ds |
0

and

k 1
Je () = (t/2) 1 f eits(l _ sz)(2k—1)/2 s
ri@k+n/2r(3) /-

is a form of Bessel function of order &, k € N.
Thanks to Clifford algebra, for any k € N, there holds the decomposition

He = MF P M, - 2.3)

Note that M is a one-dimensional space generated by the Cauchy kernel function E.
The results (2.3) predates the reference [2]. It was established in four dimensions (the
quaternionic space) in the classical article of A. Sudbery [7], and independently extended
to all dimensions by F. Sommen in [6].

The space of solid harmonics of degree k, being isomorphic to the space of spherical
k-harmonics, Hy, has the finite dimension, say, y. Let {HD, H® ... H ()} be an
orthonormal basis of H, where the inner product is inherited from that of L2(X,). For any
feN,keEN,

Yk Yk
&)=Y BHO@ ;) =Y YO (x) fi(0r*,
j=1

i=1
where Y € H; and f; are functions defined on [0, 00), j = 1, 2,..., ¥ From (2.3),

Yk
f@ =Y (8T &) + g5 () ik,

j=l1

where g}' € Mf, gj_ € M,_,. Therefore,

Yk Yk
F@ =Y P fi)+ ) Qe @4)
j=1 j=1
where P; € M}, Q; € M_,and g;(r) = f;(r)rd+t3-2.

Definition 2. Define

(i) S, k > 0, to be the right-Clifford module of finite linear combinations of functions of
the form P(x)f(r), where f is a function, defined on [0, o0), satisfying
S 1f)Pra+®=1dr < 0o and P a left-inner monogenic function in R} homogeneous
of degree k.
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(i) 7%, k > 0, to be the right-Clifford module of finite linear combinations of functions of
the form Q(x)g(r), where g is a function, defined on [0, 00), satisfying
I3 1g(M)Pr~@+%=3 gr < oo and Q is a left-outer monogenic function in RY \ {0},
homogeneous of degree —(d + k| — 2).

In (2.4), since f;(r) satisfies f0°°|f(r)|2rd+2k"1dr < oo, with g;(r) =
Fi(rd+%-2, we have [° |gj (r)|2r~@+%=3) dr < oco. Therefore, we have
No = Q° R
Ne = @*@Pat ken.

We note that for k € N, the space Q¥ corresponds to the space M, —1

3. Main Results

The following two theorems extend the classical n = 1 case (Proposition 1) to any n € N.

Theorem 1. The direct sum decomposition

L’RH= Y P

k=—00

holds in the sense that:
(a) The subspaces QF are closed.
(b) The subspaces Q* are mutually orthogonal, k € L.
(c) Every function of LZ(R;') is a limit of finite linear combinations of functions in
U2 o0 2.

By the direct sum decompositions (2.2) and (2.3), this theorem can be easily checked.
Theorem 2. Fourier transformation maps each subspaces Qk, k € Z, into itself,

Proof. Fork > 0, since left-inner monogenic functions are harmonic, Bochner’s formula
on Fourier transform of functions in AV implies that the subspaces Q*, k > 0, are invariant
under Fourier transformation.

Now we consider %, k € N. Since LI(R{‘) N L2(R'1') is dense in L2(R’1"), without
loss of generality, we may assume f € Q*and f € Ll(R'l’) N L2(R'1'), of the form
F@) = Q) fo(p) = Y(u)p~ k=D fo(p) with ¥ € M;_, where p = u|andu = pu’.
Withr = |x| and x = rx , we have

fo = f e~ £ () di
R;
(s o] . o , ,
_ / [ f e=2miros oy () }fo(p>p-‘d+"”2)+°’—”dp
0 n

oo i 7o , ,
= f {/ g~ 2mirpx U Y(u )du ]fo(p)ﬁ_(k—l) dp .
0 Zh
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Since ¥ € M,_,, by (2.3), we have Y € H;. Recalling the proof of (2.2) (Lemma 2.18,
Chapter IV, [8]), there exists a function ¢, defined on [0, 00), such that

f(x) fm [/ e—27rrpx,.uly(u/) du/}fo(p)p—(k—l) dp
0 n

= fo " (o0 Y (X)) oo~ D dp
=7 (x'){ fo ” fo(p)p‘("‘”w(rp)dp}
= Q(x)[r”’*"‘2 [ " o0 V() dp] .
Let go(r) = ré** =2 [ fo(p)p~*De(rp)dp. Since f € L2(R}), by the Plancherel

Theorem, || fll2 < oo, where f = Q(x)go(r) and Q(x) € M_,. With |Q|s =
(fx, 1€(x)>dx") 72 and [|Q]ls < oo, we have

1712 = | leowrds
Rn
1
xX
= ( f lg(r)r‘(”’”"‘”ldr) 11 <oo.
0
So, [ 1g(r)Pr~@+%=3 dr < co. This shows f € @,k e N. 0

When k£ > 0, the space Qk, being isomorphic to M,j , has the dimension o =
ij ) [2]. Let {P(l), P(Z), . P("‘k)} be an orthonormal basis of the space. A general
function F(x) in F can be uniquely written in the form Z';": o PP @) f(r), and

[+7% 00
IFI3 = fR NF@Pdx =) /O (Pt dr 3.1)
1 j=1

Similarly, when k& € N, the space Qk being isomorphic to M, has the dimension
B = C";;i_3 [2]. Let {QD, 0@, ..., QP)} be an orthonormal basis of the space. Any
typical function G(x) in % can be uniquely written in the form Z’f"z 0 @Y (x)g;(r), and

ﬂk fo'e)
1653 = [ 16@Pdx =" [T lgoor @ D ar. (3.2)
R} =Yo
For f € L2(R"), from Theorem 2, there exists a unique sequence ( f ®))rez such that
1

o
=3 .
k=—00
where f*) € Qk, k € Z. By the orthogonality of 2, the Plancherel Theorem reads

1= 1r®);.

k=—00
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Using (3.1) and (3.2), we further write, for k > 0,

IF®1 = T, 5

P22 dr; and, for k< 0, [f®)3 =

Zfﬁl f(;’o |g§|k|)(r)|2r—(d+2|k|—3) dr.

In the proof of Theorems 1 and 2 we know little about the function ¢, so we did
not get the explicit representation of go(r) in terms of fp. In below we will concentrate
in obtaining such explicit formulae. When £ > O, Qr ¢ Nk, and hence any function
f in QF is also in V. Thus, Bochner’s formula on harmonic polynomials can be used:
Forf(x) = Hi(x)fo(r), where Hy is either a k-harmonics or k-monogenics, we have

F(x) = Hi(x)go(r), where

o0
go(r) = 2ﬂi_kr_[(d+2k_2)/2]/(; f()(s)J(d+2k_2)/2(27trs)s(d+2k)/2 ds . (3.3)

Next we consider the case Q% , k € N. We need more information on bases of Qk,

Definition 3. Let

wp(x) = E(x)
9 )
oy (%) = (—D"g g E)
1 k
where (I3, ..., k) € {1,2,...,n}5, k e N.

It is deduced in {2] that {ey, 4, : (1, ..., k) € {1,2,..., n}¥} is a basis of M.

For x € R} \ {0},

o5 (x) = SRV 3 X
Iy dk - A, Oxy 3x;, 7+
_ 1 (—DkH! 5 3 5 ) ]
= n—1 Ap 3x11 axlk |X|"_1
_ l_) Hk(ll...lk) (x)
= Y| T
= _l—;lrl-i‘Z—k‘H[lxlzl_)Hk(hmlk)(x) - (n + 2k — l)iHlillk (x)]

Hk(ll...lk)(x)

+1

where Hk(ll"'l") (x) and Hk(ff_'l"l")

|x|n+2k+1 ’

(x) are polynomials of homogeneity k and k+1, respectively.

We will show that both of them are harmonic.

Lemmal. LetG(x) = leﬁ%, x € R} \ {0}, where P(x) is a homogeneous polynomial

of degree k, then

AP(x)

AGW) = T -

where A is the Laplacian for n + 1 variables xg, x1, ..., Xp.
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Proof. Consecutively taking partial derivatives, we have, foranyi =0,1,...,n,

0 1 Xi
B_,G()—(azp( ))HHTT-FP(X)[ (n+2k — )]l—lnm,
a2 1
E;EG(x) = mP(x) T + ( P(x))[ (n+2k— 1)],,,,_,__2“_1
l 1
d X
+ (IP(x)) [—(n+2k— 1)]MT+2k+—l
1 x!
+ PX)[—(n+2k - 1)) W (n+2k+ 1)—I =
a2 1 1 a
P(x) (n+2k— 1)(n+2k+1) 42
-+ 2k~ )Ix,n+2k+l |x [P +2k+3 PP
Then
1 ’ 1 a d
AG(x) = [AP(x)]I;'lm —2(n+ 2k — )l—lm[xo P(x)+- bx_P(x))]

P(x) (n+2k—1)(n+2k+l)
—(m+Dn+2k-1) AT |x|n+2k+3

AP(x) 2(n+2k - 1) a a3
- |x|n+2k—1 - Jx|nt2k+1 [(xoal"(x) *o +xnmP(x)) h kP(x)] )

(x3 +- -+ x2)P(x)

Since P(x) is homogeneous of degree k, by Euler’s formula, we have that

Y u D ey,
= O

d d
ie., (xQ—P(x) + -+ x, P(x)) —kP(x) =
daxg 0x,

Therefore, we get that

AP(x)

Corollary 1. Functions H, (G4 (x) and Hk(l1 e )(x) are harmonic.
Proof. Set

(Uy...0y)
H (x)
k
8.y (x) = TeprR=T

Since wy,.. g, is left-monogenic in RY \ {0}, it follows from A = DD that
®@=Dg and Agy ;(x)=Dwy 4 (x) =0, x € R?\ {0} .

Therefore, gj, .., is harmonic in R? \ {0}. From Lemma 1 we conclude that H, - ) () is
harmonic. Since wy,.., is harmonic, the lemma implies that Hkl1 l")(x) is harmonic. []
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The corollary can also be established by noting that if P(x) is left monogenic then
x P(x) is harmonic and then applying Kelvin inversion. That x P(x) is harmonic was first
deduced by A. Sudbery in [7] for quaternionic case and was extended to higher-dimensional
cases by J. Ryan in [5].

The following extends the classical Bochner’s formula to homogeneous monogenic
functions of negative degrees.

Theorem 3. Let f € Q% of the form f(x) = Q(x) fo(lx]), Q(x) € M,_,. Then

F@x) = 0@)go(ix) .

where, withr = |x|,

o0
go(r) = 2mi~kp@A=2/2 fo Fo$)@arknp@urs)s 1@+ A g5 - (3.4)
where
(t/2)k 1 _
Ji(t) = f el (1 = 52D g
T[(2k + 1)/2T(3) J-1

is the Bessel function of order k.

Proof. From [2], the —(d + k — 2)-homogeneous functions wy;.. s (1, ..., k=1) €
{,2,..., n}k‘l, form a basis of M;_,. Asa function in M,_,, the function Q has the
form

Hi(x)
o) = =

where Hy, is a Clifford-valued k-homogeneous polynomial. Invoking the second assertion
of Corollary 1, with k being replaced by k — 1, we obtain that Hy is harmonic.
Consequently,

F0) = Q@) folr) = Hy () for)r"@+*=2 = Hy(x)Fo(r) € N .

Bochner’s formula on Fourier transform of functions in N (Theorem 3.10, Chapter IV, [8])
gives
F@) = Hi(0)Go(lx]) = Q@)Ix*T*2Go(lx]) = Qx)go(lx1) ,
and
go(r) = r**¥*2Go(r)

o o]
_ pd+2k—20 ik —[(d+2k=2)/2] /0 Fo(s)J@+24-2) /2(2ms)s(d+2k)/2 ds
oQ
_ ik @222 /0 o) Taasakony 2 Qurs)s G+ 2=D/2 g

where

k 1
Ji () = (t/2) 1 f eits(l _ s2)(2k—1)/2 ds
rik + H/2r(3) /-1
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is the Bessel function of order k. ]

The formulas (3.3) and (3.4) together provide a refinement of Bochner’s formula with
spherical harmonics replaced by spherical monogenics. The formulas (3.3) and (3.4) can
be unified into one formula by using the signum function.

Let f € Qk, k € Z,and f(x) = R(x)h(r), where if k > 0, then R(x) € M:; and, if
k < 0,then R(x) € M];l_l. Then we have

a

fx) =Rx)H(r),

and, with ¢ = (d +2Ik| —2)/2,k € Z,
oo
H(r) = 2mi~kr—sen®e / fo(s)Jo, @Qrrs)s' @ g
0

where sgn(k) is the signum function that takes the value +1, =1 orOfork > 0,k < Oor
k=0.
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