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An alternative proof of Fueter’s theorem§
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In this article we establish an alternative proof of the generalized Fueter method presented
in a former paper [Qian, T. and Sommen, F., 2003, Deriving harmonic functions in higher
dimensional spaces. Zeitschrift fur Analysis und ihre Anwendungen, 22(2), 275-288] leading to
the construction of special harmonic and monogenic functions in higher dimensions. At the
same time, we also obtain a generalization of this result.

Keywords: Dirac operators; Monogenic functions; Vekua systems

AMS Subject Classifications: 30G35; 32A25; 42B20

1. Introduction

It is a remarkable fact that the Cauchy—Riemann system in the plane generates
monogenic functions. This was first observed by Fueter in [1] in the setting of
quaternionic analysis.

Assume f to be holomorphic in an open set of the upper-half complex plane and
substitute f(z) = u(x,y) + iv(x,y) (z=x+iy) where as usual u=Re f, v=1Im f.
Then, Fueter’s theorem asserts that in the corresponding region the following relation
holds:

g _
DA (s lgh + v 4) =0
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with

q4=qii+qaj +qsk

D= 3410 +i8111 +jaqz +k8!13
_ 2 2 2 2

A_BQO+8 +8q2+ati3

q1

and 7, ], k are the basic elements of the Hamilton quaternionic space.

Let e;, j=1,2,...,m be the generating basic elements of the 2”'-dimensional real
linear associative but non-commutative Clifford algebra Ry ,,, with the multiplication
rules

eiej+ejel- = —28[/‘, l,]Z 1,2,...,]’}/1.

Any element a € Ry ,, may be written as

a:E agey, a4 €R,
A

where ey = e e, e, A={i1, i, ..., 0} C{1,2,....,m}, iy <--- < i} and for 4 = §,
eg = 1 is the identity element of Ry .
For k=0,1,...,m fixed, we call

k
Rg’zﬂ = {a € Ry, Z aAeA},

|Al=k

the subspace of k-vectors and thus we have that
- k
IRO,m = Z @ [Rg)’aﬂ
k=0

For a € Ry ,,;, thus we may write

where [a], is the projection of @ on [Rgf)m.
The subspace Y /..., ® [Rgf)m, called ‘even subalgebra’ is denoted by Ry .

k even
The Euclidean space R" is embedded in the Clifford algebra R, , by identifying
(x1,Xx2,...,Xx,) with the vector variable x given by

m
X = E Xj€;.
=1

The first-order linear differential operator

By + 0y = 0y + D _ 0y,
=1
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called the Cauchy—Riemann operator, splits the Laplace operator in R”*!:

m

A=+ D0 = (B + )0y, — ).
j=1

A continuously differentiable Ry ,-valued function g defined in some open set of
R™*! solution of the equation (dx, + 0x)g = 0 is called a left monogenic function (see

e.g. [2,3]).

The operator 3, is called the Dirac operator in R”. For a differentiable k-vector-
valued function Fj = Zl A=k €4Fk 4 and a differentiable Ry ,-valued function g,
we have that (see e.g. [4])

m

0x(Frg) = (0 Fg +2 ) _[ejFilie 1058 + (1) Fi(dyg).
j=1

This Leibniz rule, in the particular case of a differentiable scalar-valued function ¢
reads as:

3£(¢g) = (3£¢)g + ¢(8£g), (1)

and for a vector-valued function /= "7 ¢;fj:

m

0s(f9) = (0:/)g =2 _ fidyg — [(3:9). )
j=1

In [5], Sce extended the Fueter’s theorem to Ry , for m odd, i.e. under the same
assumptions on f, the function f

ATV (u(xo, 1) + wv(xo, 1) (r = |x], re = ),

is left monogenic.
In [6], Sommen generalized the Sce’s result: If m is an odd positive integer, then

AFHO=DR(u(x0, 1) + @ W(x0, 1) Pr()]

is also left monogenic function, where Pi(x) is a homogeneous left-monogenic
polynomial of degree k in R”.

The Fueter’s theorem has also been considered for m even (see [7,8]) and also for
non-integer powers (see [7]).

The Fueter’s theorem provides us with the so-called axial monogenic functions of
degree k (see [9,10]), i.e. monogenic functions of the form

(A(X(), V) +w B(X(), V))Pk(&),
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A and B being R-valued and satisfying the Vekua-type system

2k -1
+171 B

e A — 0,B =
T

b}

3y B+ 0,4 = 0.

We split up R as R” = Zle @ R, Z_Zl:l ps = m. Therefore, the vector variable x
may be written as

d Ds
j=1

d Ps
8._x = Z 3&”, 8£(x) = 21: ej(-j)ax;;).
J=

Let

(5)

X

’Q)s:;, S:1,2,...,d.
rS

ry = [x®

Next, we consider the following harmonic multivector field
g(xo,rl, e ,i’d) = (g()(X(),Vl, ce ,}’d), gl(X(), riy... ,rd), . ,gd(X(),i’l, - ,}’d))

i.e. g satisfies the Riesz system

d
3x0g0 - Z al',\gs - 09
s=1

axogs + al{\gO = 09
arfgj - 8)‘,gs = 0»

s, j=1,2,....d, s #].

Looking for a version of Fueter’s theorem in the poly-axial case, Qian and Sommen
proved in [11] the following result: If p; (s = 1,2,...,d) are odd, then the function

d
Aln=D/2 (go(xo, Flyooootg) + ZQJ- gi(x0. 71, -, Vd)) (3)
Jj=1

is left monogenic With respect to dy, + 8:_\-, where A = 8:%0 + Zle Ao, A;},(.\-) = Zf;l 8i§.y).
The present article, extends the previous result as given in the following. !
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THeOREM 1 Let g, py (s =1,2,...,d) as above. Then

d
AlFHm=d)/2) |:(go(xoa Py ba) + Z w; g{(X0, 115 - - - Vd)) Pk(ﬁ)j| ,
Jj=1

is also left monogenic with respect to dy, + dy, where P(x) = ]_[]‘l=1 P (xV)), k = Zj‘": Lk
and Pk/.(g(j )Y is a homogeneous left-monogenic polynomial of degree k; in RP" with values
in Ry, o

In [11], the authors gave an elegant proof of the Fueter’s theorem based on the

fact that the function

d
go(xo, 11, ..., 1rq) + ZQ,-gj(Xo, FlyeosTd),
Jj=1

may be written locally as (dy, — 0.)/(x0, r1, ..., rg) for some scalar harmonic function in
the d+ 1 variables xg,r1, ..., ry. Therefore, function (3) is left monogenic if

AP, 11, rg) = 0,
see [11], Theorem 3.
The present article is not just an extension of the mentioned result in [11], but also

proves it in a different way.
The sketch of the proof of Theorem 1 is as follows: First to prove that

d
AfF(n=d)/2) |:(go(x0, Flyooosta) + Z w; g/(X0, 715 - - - Vd)) Pk(z)} .
Jj=1

has the form

d
(AO(X()y L PRI rd) + ZQ] Af(x()s Flyenns rd)) Pk(l)y
=1
and then verify that 4; (j=0,1,...,d) satisfy the corresponding Vekua system for
poly-axial monogenic functions of degree k.

2. Proof of Theorem 1

The proof of Theorem 1 is divided into several steps:

LemmMA 1 Let Ai(xo,r1,...,1q9) (j=0,1,...,d) R-valued, then the function

d
(A()(X(),Vl, cee 7"(1) + ZQ]A_/(X()arly cee ,Vd))Pk(ﬁ),
J=1
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is left monogenic if the A; (j=0,1,...,d) are solutions of the system

d d
2k;+p;— 1
v Ao — Z a"/A./ = Z% Aj,
j=1 j=1 J

dx, A1 + 9,40 = 0,
0 Aj — 9,4, =0,
Lj=1,2,....d, [ #].
Proof Applying (1) and (2) yields

d
dx(Ao Pr(x)) = (Z w, 8,-,Ao> Pi(x)
=1

4. P
03(4; 0, Pr(x)) = (@ Ap)eg; + 40 @) Pux) = 22 30,0 Py(x)
J =1

d
—1 ko
=1 J /

Therefore,
d d 2kj+p;— 1
(8xo + 8,_\') Ao + ZQ/ Aj Pk(ﬁ) = 8on0 - Z(ar,-Aj + r— Aj) Pk(l)
=1 =1 J
d
+ (Z(aon_,A + ar,Ao)@,-) Pi()
=1
d d
+ (Z > (@4 — 0, A, w_,) P (),
=1 j=I+1
which gives the desired result. |

LemMA 2 Let h(xg,11,...,rq) be a scalar function. Then

(i) 3 [Dr,(w){h}] = Dy (u)(0; h} — 2D, (1 + 1){h},
(11) ar,v[Dm(M - 1){/’1/7?}] =D" (M){h}a
(iii) D" ({3, h) = 8, [D,,(w){h)],
(iv) Dy (){dy, 1} — 3, D" (w){h}y = pu/rs) D™ (w){h}.

where Dy ()th} = ((1/r)8,)"(h} and

D)) =
D (i =3, ().
(20—t

S

Dr(ihy =,
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Proof To prove (i), we use mathematical induction. When =1, we have

ag h 8,2, h 0, h
& (D ()] = == =2 +27
s s $

= D, ({3} h} — 2D, (2){h},

as desired.
Now, we proceed to show that when the case (i) holds for a positive integer p, then (i)
also holds for pu+ 1. Indeed,

21D, (1 + D] = D, (D (D, ()} — 2D, D, (i)
= D, ()| D00 1) = 2 D (1w + DU} = 2D, + D)
= D, (1 + V{2 ) = 2+ 1) Dy (1 + DA},

where, we have used the mathematical induction hypothesis on pu.
(i1) comes easily from the definition of D"s(u){h}. Next, using (ii), we get

3. h

N

D" (u){0,,h} = 9y, |:Dr.\ (1 — 1){ ” = 0,,[Dr,(){}].

Finally to obtain (iv) we use (i) and (ii), respectively. In fact,
. h
DJ{S-(M){arvh} - 8r‘-D"‘(/L){h} = Drv(ﬂ){arvh} - 8,2-_Y [D,}(M - 1){7}i|

= D, ({9, h} — D, (1 — 1){8,2-,{h ” +2(n—1) Dn(“‘){rﬁ}

I, s

h 2 .
=2u Dr\,(u){r} = TM D" (w){h,

S N
and this completes the proof. |

LemMma 3 Let h(xo,r1,...,rq) be a scalar function harmonic in the d+1 variables
X0y 155y Then

d d d d d
@) 0 [T Pnuthy + Y [ Drludthy = =23 iy [] DD + DAL,
s=1 Jj=1 s=1 J=1 s=1, s#j
d d d
Q) &, [ Du(uaDuothy+Y 3 ] DnludD(uoih}
s=1, s#c j=1 s=1, s#c

d d
==2 > [] Drn(udD(1e)Dr i+ D)

j=1. j#c  s=L. s#c,j

d
e [] Dr(udD (e + 1)i).
s=1, s#c
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Proof Using Lemma 2 and the assumption on /, we can prove that
d d d
&, H Dy ()i} + Y & ] Dr(wo)ih} = 1‘[ D, ()03 )
s= Jj=1 s=1

d
+> H Do) | D) (@21 = 20D,y + 1))

J=1 =1, 54

d d d d
= [12. @ my + Y [ ] Drw)td; i} — 22% [T Pn)Ds i+ Din)

s=1 Jj=1 s=1 Jj=1 s=1, s#j
d
=—2Zu,- [T Dr.(udDy(; + D).
j=1

s=1, s#j
Similarly (ii) can be proved in the same way. In fact,

d d

[] Dn(uoDs (uc>{h}+Zaz [ Dr(u)D(uoin)
s=1, s#c j=1 s=1, s#c¢

d d d

= [ D@ m+ > [ D) (uo)d;n
s=1, s#c J=1, j#c s=1, s#c
d
-2 4 ]_[ Dy () D" (11e) Dy (14 + 1){h}
J=Llj#Fe  s=1, s#e,j

+ {1 pafalo {2

As,
83‘ |:Dr('(ﬂc - 1){:_1}:| =0, I:Dr((,uc - 1){8i {’{_1} }:| —2(ne — 1) 3r(Dr<(MC){rﬁ}
= D"(u){3; hY = 2ueD" (e + Dih},
we get that
d d d
2 [ 2D )ty +3 "3 [ D) D (uo)ih}
s=1, s#c¢ Jj=1 s=1, s;ﬁc
d
= [] Dn)D (oo hy + Z H D (1) D" (1), b}
s=1, s#c¢ J=1 s=1, s#c
d d

=2 > [ Drw)D (oD + D)

J=1j#e s=1s#e ]
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d
—2e [] Drnu)D(e + Dih)

d
=23 w [] Pu(udD (D + i)

J=1, j#c s=1, s#c,j

and we have our result. [ |

LemMA 4 Let h(xo,ry,...,rq) be a scalar function harmonic in the d+1 variables
X0,71,...,Fq. Then

d d
A P(x)] = (ZM]‘[ p, 1, (1ts) HD,}(M‘V){h}) Pi(x)
: Cs=1 s=1

| d d
A hPL(0)] = (Z ﬁ [Tdps) T] Dol D" (M,-){h}> Pi(x),
: ts=1 s j

=1, s#/

where the summation runs over all possible 1, ..., s € Ny such that

d
Z Mg = Uy
s=1
and

dp\.,k,\-(ﬂs) = (2ks +ps — l)(zks + ps — 3) te (st +ps — (2MJ - 1))
dp, 1, (0) = 1.

Proof The proof follows by induction using Lemma 3, and the following identities
BN I IUR oF IR ok ihy Sl P
APy = (2, N Dot 1) Pi(x)

2 < 2 4 2k‘\' +px —1 h
Al hPr@] = R0+ 2h+ Y T O k= DA P,
s=1 ) J

s=1, sj s

which are valid for any scalar function /. |

Remark 1If, in addition to the assumption in Lemma 4, we assume that py, ps, ..., ps
are odd, then

Ak+((m_d+2)/2)[h Pk(x)] — Ak+(("’l—d+2)/2)[wj th(x)] —0.

Indeed, in that case, all the terms in the expansions of Lemma 4 are zero. In fact,
if there is a non-zero term in those expansions, then we have 2k; + p; — Qus, — 1) > 2
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for s=1,2,...,d. Since Zleps =m, Zle ks=k and fozl s = b =
k+ ((m—d+2)/2), adding up the previous inequality together produces the false
relation 2 < 0.

Proof of Theorem I From Lemma 4 we have

d d
AR (g 13 g | Pe) | = Ao+ Yy 4, | Prt), 4)
j=1 J=1
with
d ps — 1
_ _ " ) s
Ay = Rk +m—d)! ﬂDh(k& +75 >{go}
d ps— 1 - pPj— 1
Aj=Ck4m=d [T Dk +55—)0" (K + teil
v_l - i 2 2
s=1, 5
j=12,....d

Now, taking into account Lemma 2 and the fact that g satisfy the Riesz system,
it is easy to check that (4) satisfy the Vekua system for poly-axial monogenic functions
of degree k. |
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