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In this note a Schwarz lemma for general Euclidean spaces is established. We show that
the two-dimensional version of the lemma is equivalent to the Schwarz lemma in the
complex plane.
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1. Introduction

Higher-dimensional version of Schwarz lemma has been sought. Schwarz lemma was
studied in the several complex variables context (see [3]). A natural question arises:
‘Does there exist a Schwarz lemma in higher dimensional Euclidean spaces?’ This
note gives an answer to this question. With the Clifford analysis setting we show that
a Schwarz lemma exists that is equivalent to the Schwarz lemma in the complex plane.

We first give some basic knowledge in relation to Clifford algebra [1,2]. Let e1, . . . , em
be the basic elements satisfying eiej þ ejei ¼ �2�ij, where �ij ¼ 1 if i ¼ j; and �ij ¼ 0
otherwise, i, j ¼ 1, 2, . . . ,m: Let

Rm ¼ fx ¼ x1e1 þ � � � þ xmem : xj 2 R, j ¼ 1, 2, . . . ,mg

be identical with the usual Euclidean space Rm, and

Rm
1 ¼ fx ¼ x0e0 þ x : x0 2 R, x 2 Rmg, where e0 ¼ 1:
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An element in Rm
1 is called a vector. The real (or complex) Clifford algebra generated

by e1, e2, . . . , em, denoted by RðmÞ (or CðmÞ), is the associative algebra generated
by e1, e2, . . . , em, over the real (or complex) field R (or C). A general element in RðmÞ,
therefore, is of the form x ¼

P
S xSeS, where eS ¼ ei1ei2 � � � eil , xS 2 R, and S

runs over all the ordered subsets of f1, 2, . . . ,mg, namely

S ¼ 1 � i1< i2 < � � � < il � mf g, 1 � l � m:

We define the conjugation of eS to be eS ¼ eil � � � ei1, ej ¼ �ej: This induces the Clifford
conjugate of a vector x ¼ x0 þ x to be x ¼ x0 � x: It is easy to verify that for
0 6¼ x 2 Rm

1 we have

x�1 ¼
x

jxj2
:

The ball with centre x and radius r in Rm
1 is denoted by Bðx; rÞ and the closure of Bðx; rÞ is

denoted by Bðx; rÞ: The natural inner product between x and y in CðmÞ, denoted
by hx, yi, is the complex number

P
S xSyS, where x ¼

P
S xSeS and y ¼

P
S ySeS:

The norm associated with this inner product is

jxj ¼ hx, xi1=2 ¼
X
S

jxSj
2

 !1=2

:

For x ¼
P

S xSeS 2 CðmÞ, denoted ½x�0 ¼ x0. It is called the scalar part of x.
It then follows

jxj ¼
ffiffiffiffiffiffiffiffiffiffi
½xx�0

p
:

In the following we shall study functions defined in Rm
1 taking values in CðmÞ. So,

they are of the form fðxÞ ¼
P

S fSðxÞeS, where the fS are complex-valued functions.
We shall use the generalized Cauchy–Riemann operator D ¼ ð@=@x0Þe0 þD, where
D ¼ ð@=@x1Þe1þ � � � þð@=@xmÞem: Define the ‘‘left’’ and ‘‘right’’ roles of the
operator D by

Df ¼
Xm
i¼0

X
S

@fS
@xi

eieS

and

fD ¼
Xm
i¼0

X
S

@fS
@xi

eSei:

If Df ¼ 0 in a domain (open and connected) �, then we say that f is left-monogenic
function in �; and, if fD ¼ 0 in �, we say that f is right-monogenic function in �.
If f is both left- and right-monogenic function, then we say that f is monogenic.

In Rm, we use the operator D to replace D, which is called the Dirac operator.

654 Y. Yang and T. Qian
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As a natural generalization of analytic functions to higher-dimensional spaces,
left- or right-monogenic functions are the main objects in Clifford analysis. In such
framework, there exist a Cauchy theorem and a Cauchy integral formula. Theory of
Taylor and Laurent expansions can also be established (see [1,2]).

We call

EðxÞ ¼
x

jxjmþ1

the Cauchy kernel in Rm
1 . It is easy to verify that E(x) is a monogenic function in

Rm
1 � f0g:
Call Mþðk,Rm

1 Þ the space of homogeneous left-monogenic polynomials of degree k
in Rm

1 , and M�ðk,Rm
1 Þ the space of homogeneous left-monogenic polynomials of degree

�ðkþmÞ in Rm
1 n f0g. Using the Kelvin’s inversion formula IfðxÞ ¼ EðxÞfðx�1Þ, there

is a corresponding relation between Mþðk,Rm
1 Þ and M�ðk,Rm

1 Þ. That is,
if PkðxÞ 2 Mþðk,Rm

1 Þ, then IPkðxÞ ¼ QkðxÞ 2 M�ðk,Rm
1 Þ; and if QkðxÞ 2 M�ðk,Rm

1 Þ,
then IQkðxÞ ¼ PkðxÞ 2 Mþðk,Rm

1 Þ: Both Mþðk,Rm
1 Þ and M�ðk,Rm

1 Þ are right-Clifford
modules with the same linear dimension the combinatorial number
Cmþk�1

k ¼ ðmþ k� 1Þ!=½ðm� 1Þ!k!�: Note that if f(x) is left-monogenic function, then
If(x) is also left-monogenic function (see [1], or from the intertwine results in [4]).
In the sequel N0 denotes the set of non-negative integers.

2. The Schwarz lemma in Rm
1

In this section, we extend Schwarz lemma in C to higher-dimensional Euclidean spaces.
We first obtain a result in Rm

1 , then show that when m¼ 1 it is equivalent to the Schwarz
lemma in the complex plane. We have (see [2])

LEMMA 1 (Laurent expansion) Let n ¼ ðn1, n2, . . . , nmÞ 2 Nm
0 , jnj ¼ n1 þ n2 þ � � � þ nm,

and xn ¼ xn11 � � � xnmm . Assume that f(x) is left-monogenic function in the annular domain
r1< jxj<r2 ð0<r1<r2Þ. Then f can be expanded in a unique way into a Laurent series

fðxÞ ¼
X1
jnj¼0

VnðxÞan þ
X1
jnj¼0

WnðxÞbn, ð1Þ

where the series converge normally in Bð0; r2Þ and in Rm
1 n Bð0; r1Þ, respectively. Where

VnðxÞ ¼
1

n1! � � � nm!

X
�2permðnÞ

z�ðn1Þz�ðn2Þ � � � z�ðnmÞ,

perm(n) denotes the set of all distinguishable permutations of the sequence ðn1, n2, . . . , nmÞ
and zi ¼ xie0 � x0ei, for i ¼ 1, 2, . . . ,m: WnðxÞ ¼ ð@jnj=@xnÞW0ðxÞ, W0ðxÞ ¼ EðxÞ ¼
ð �x=jxjmþ1Þ: The coefficients an and bn are determined by

an ¼
1

!m

Z
@Bð0, rÞ

WnðyÞd�ðyÞfðyÞ,

bn ¼
1

!m

Z
@Bð0, rÞ

VnðyÞd�ðyÞfðyÞ,

where r 2 ðr1, r2Þ and !m is the area of the m-dimensional unit sphere in Rm
1 :

Schwarz lemma in Euclidean spaces 655
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For purely negative powers we precisely have (see 12.1.3, [1]).

LEMMA 2 (Laurent expansion outside a ball) Let f(x) be left-monogenic function in the
domain jxj > R such that

lim
jxj!1

fðxÞ ¼ 0:

Then

fðxÞ ¼
X1
jnj¼0

WnðxÞbn:

We normally have jxyj 6¼ jxjjyj for x and y in CðmÞ. However, there holds:

LEMMA 3 If �1 2 Rm
1 , and �2 2 CðmÞ, then j�1�2j ¼ j�1jj�2j.

Proof

j�1�2j ¼ j�2 �1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�2 �1�1�2�0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1j

2½�2�2�0

q
¼ j�1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�2�2�0

q
¼ j�1jj�2j: g

THEOREM 1 Suppose that f(x) is left-monogenic function and satisfies jfðxÞj � 1 in the
domain jxj > 1: If, furthermore,

lim
jxj!1

fðxÞ ¼ 0,

then there follows

jxjmj fðxÞj � 1 ð1 < jxj < 1Þ,

and

lim
jxj!1

jxmjjfðxÞj exists, and lim
jxj!1

jxmjjfðxÞj � 1:

If, in particular,

lim
jxj!1

jxmjj fðxÞj ¼ 1,

or if there exists x0, 1< jx0j < 1, such that jx0j
mjfðx0Þj ¼ 1, then f ðxÞ ¼

EðxÞC0 ðjxj > 1Þ, where C0 2 CðmÞ is a constant and jC0j ¼ 1.

Proof Since f(x) is left-monogenic function in jxj>1 and satisfies

lim
jxj!1

fðxÞ ¼ 0,

656 Y. Yang and T. Qian
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by Lemma 2, it has a Laurent expansion outside the ball, and

lim
jxj!0

EðxÞfðx�1Þ ¼ b0:

We have that its Kelvin inversion If is left-monogenic function in jxj<1:
For any x0 2 Rm

1 , jx0j > 1, if jx0j > r > 1, then jx0
�1j < ð1=rÞ < 1: By the maximum

modulus principle ([1]) and Lemma 3, we have

jEðx0
�1Þjjfðx0Þj ¼ jEðx0

�1Þfðx0Þj

� limr!1 max
jxj ¼ 1=r

jEðxÞfðx�1Þj

� limr!1r
n ¼ 1:

Therefore,

jb0j � 1:

Consequently,

jx0j
mjfðx0Þj � 1 ð1 < jx0j < 1Þ and lim

jxj!1
jxjm j fðxÞj ¼ jb0j � 1:

In particular, when

lim
jxj!1

jxmjj fðxÞj ¼ 1,

or if there exists x0, 1 < jx0j < 1, such that jx0j
mjfðx0Þj ¼ 1, then the maximum

modulus principle implies

EðxÞfðx�1Þ ¼ C0ðjxj < 1Þ and jC0j ¼ 1:

So fðxÞ ¼ EðxÞC0 when |x|>1. g

Remark 1 The statement of the lemma and its proof may be adapted word by word
to the context Rm:

Let m¼ 1 in the theorem, we obtain.

COROLLARY 1 Suppose that f(z) is holomorphic and satisfies j fðzÞj�1 in the domain
jzj>1: If

lim
jzj!1

fðzÞ ¼ 0,

then limjzj!1 jzfðzÞj � 1 and j f ðzÞj � ð1=jzjÞ ð1 < jzj < 1Þ: If, in particular,
limjzj!1 jzfðzÞj ¼ 1 or there exists 1 < jz0j < 1 such that j f ðz0Þj ¼ ð1=jz0jÞ, then

fðzÞ ¼ ei�
1

z
ðjzj > 1Þ,

where � 2 R:

Schwarz lemma in Euclidean spaces 657
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The corollary may be proved to be equivalent to:

LEMMA 4 (Schwarz lemma) Suppose that f(z) is holomorphic in jzj < 1 and
jfðzÞj � 1 when jzj < 1. If fð0Þ ¼ 0, then j f 0ð0Þj � 1 and j fðzÞj � jzj ðjzj < 1Þ: If, in partic-
ular, when j f 0ð0Þj ¼ 1 or there exists 0 < jz0j < 1 such that jfðz0Þj ¼ jz0j, then

fðzÞ ¼ ei�z ðjzj < 1Þ,

where � 2 R:

The equivalence may be verified through the mapping z ! 1=z: Setting f1ðzÞ ¼ fð1=zÞ,
we obtain that f(z) is holomorphic and jfðzÞj � 1 in jzj<1 if and only if f1ðzÞ is
holomorphic and j f1ðzÞj � 1 in jzj > 1. Therefore, we have

fðzÞ ¼ a0 þ a1zþ a2z
2 þ � � � þ anz

n þ � � � , ð2Þ

f1ðzÞ ¼ a0 þ a1
1

z
þ a2

1

z2
þ � � � þ an

1

zn
þ � � � : ð3Þ

So fð0Þ ¼ 0 if and only if limjzj!1 f1ðzÞ ¼ 0. We accordingly have

fðzÞ ¼ a1zþ a2z
2 þ � � � þ anz

n þ � � � , ð4Þ

f1ðzÞ ¼ a1
1

z
þ a2

1

z2
þ � � � þ an

1

zn
þ � � � : ð5Þ

Obviously, fðzÞ � jzj ðjzj < 1Þ if and only if f1ðzÞ � 1=jzj ðjzj > 1Þ: From (4) and (5),
we get j f 0ð0Þj ¼ ja1j ¼ limjzj!1 jzf1ðzÞj, and, therefore, j f 0ð0Þj ¼ 1 if and only
if limjzj!1 jzf1ðzÞj ¼ 1: If 0 < jz0j < 1, jfðz0Þj ¼ jz0j, then for z1 ¼ ð1=z0Þ,
1 < jz1j < 1, j f1ðz1Þj ¼ ð1=jz1jÞ: The converse also holds. Finally, fðzÞ ¼ ei�z ðjzj < 1Þ
if and only if f1ðzÞ ¼ ei�ð1=zÞðjzj > 1Þ:

Remark 2 For m>1 the Schwarz lemma inside the unit ball does not hold at least
in the original form. For example, the functions

fjðxÞ ¼ xje0 � x0ej, j ¼ 1, 2, . . . ,m

are left-monogenic function in jxj<1, and satisfy j fjðxÞj�1 when jxj<1: However, for
x ¼ x0e0ðjxj<1Þ and non-constant functions fj there hold j fjðxÞj ¼ jxj, j ¼ 1, . . . ,m:

Remark 3 In the complex plane, if f(z) is analytic in the annular domain r1< jzj<r2,
then the Laurent expansion of f(z) is

fðzÞ ¼
X1
n¼1

anz
n þ a0 þ

X1
n¼1

bnz
�n:

For every zk2Pðk,CÞ and z�k 2 Qðk,CÞ, the corresponding relation between Pðk,CÞ
and Qðk,CÞ is through the inversion mapping z ! 1=z, but rather than Kelvin
inversion with the conformal weight EðzÞ, and, for any k, the dimension of Pðk,CÞ
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or Qðk,CÞ is 1: So Schwarz lemma for inside and outside of the unit disk are
equivalent. While in higher-dimensional spaces, just because M�ð0,Rm

1 Þ ¼ fEðxÞb0g
has dimension 1, we are able to have Schwarz lemma for outside of the unit ball.
The space Mþðk,Rm

1 Þ is transformed to M�ðk,Rm
1 Þ by Kelvin inversion

IfðxÞ ¼ EðxÞfðx�1Þ, and IðW0b0Þ ¼ b0 2 Mþð0,Rm
1 Þ: In particular, both spaces

M�ðk,Rm
1 Þ for k>0 are multi-dimensional. This explains why Schwarz lemma inside

the unit ball does not hold for higher-dimensional spaces. It, however, further hints
that Schwarz lemma is equivalent to the maximum modulus principle. As a matter of
fact, in the proof of Theorem 1 we use the maximum modulus principle as a key
step. Now we show that the latter is an immediate consequence of the former, as in
the proof of

COROLLARY 2 (Maximum Modulus Principle) Assume that f is left-monogenic function
in the open and connected set �: If there exists a point a 2 � such that

j fðxÞj � jfðaÞj, y 2 �,

then f must be a constant function in �:

Proof We may assume jfðaÞj>0, for otherwise the assertion is trivial. We show that
the set A ¼ fx 2 �j j fðxÞj ¼ j fðaÞjg is non-empty, and is an open and closed set. Since
� is open and connected, this will conclude A ¼ �: The fact that A being non-empty
follows from a 2 A: If y 2 A, then there exists an open ball Bðy; rÞ � �: Construct
function gðxÞ ¼ ð1=jfðaÞjÞfðy� rxÞ: The function g is left-monogenic function and
satisfies jgðxÞj � 1 in jxj<1, with jgð0Þj ¼ 1: The Kelvin inversion of g, that is
IgðxÞ ¼ EðxÞgðx�1Þ, is left-monogenically defined in jxj>1 satisfying jIgðxÞj�1
in jxj>1: Since

lim
jxj!1

jxmjjEðxÞgðx�1Þj ¼ lim
jxj!0

jgðxÞj ¼ 1,

Theorem 1 may be applied to conclude gðx�1Þ ¼ C0, jC0j ¼ 1, for jxj>1, or gðxÞ ¼ C0

for jxj<1: This shows that Bðy; rÞ � A: The closeness of A follows from the continuity
of f. So, we have A ¼ �: In the above argument the usage of Theorem 1, in fact, shows
that, not only the norm, but also the function value itself, is equal to a constant.
The proof is complete. g
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