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Schwarz lemma in Euclidean spaces
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In this note a Schwarz lemma for general Euclidean spaces is established. We show that
the two-dimensional version of the lemma is equivalent to the Schwarz lemma in the
complex plane.
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1. Introduction

Higher-dimensional version of Schwarz lemma has been sought. Schwarz lemma was
studied in the several complex variables context (see [3]). A natural question arises:
‘Does there exist a Schwarz lemma in higher dimensional Euclidean spaces?” This
note gives an answer to this question. With the Clifford analysis setting we show that
a Schwarz lemma exists that is equivalent to the Schwarz lemma in the complex plane.

We first give some basic knowledge in relation to Clifford algebra [1,2]. Let ey, ..., e,
be the basic elements satisfying e;e; + eje; = —28;, where §; =1 if i=j; and §; =0
otherwise, i,j =1,2,...,m. Let

R"={x=xe,+ - +xpen:x,€R, j=12,...,m}
be identical with the usual Euclidean space R, and

R = {x = x0e9p + x: xo € R, x € R"}, where ey = 1.
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An element in R}’ is called a vector. The real (or complex) Clifford algebra generated
by er,es,....e, denoted by R™ (or C™), is the associative algebra generated

by ej,es,...,e,, over the real (or complex) field R (or C). A general element in R,
therefore, is of the form x =) ¢xses, where es=e;e;, ---¢, xsc€R, and S
runs over all the ordered subsets of {1,2,...,m}, namely

S={l<ii<b<---<i<m}, 1=<IlI<m

We define the conjugation of es to be € = €; - - - €;1, € = —e;. This induces the Clifford
conjugate of a vector x =xp+x to be X=x9—x. It is easy to verify that for
0 # x € R{" we have

X
Ix|*”

The ball with centre x and radius r in R} is denoted by B(x; r) and the closure of B(x;r) is
denoted by B(x;r). The natural inner product between x and y in C", denoted
by (x,»), is the complex number ) ¢xs¥s, where x =) ¢xses and y =) ¢yses.
The norm associated with this inner product is

1/2
x| = (x, 012 = (Z IXS|2> :

S

For x:ZSxSeSeC(’"), denoted [x], = xo. It is called the scalar part of x.
It then follows

|x| = /[xX]p-

In the following we shall study functions defined in R} taking values in Cc™. So,
they are of the form f(x) =) ¢fs(x)es, where the fg are complex-valued functions.
We shall use the generalized Cauchy—Riemann operator D = (3/0xy)ey + D, where
D = (0/dx1)e;+ - - - +(3/0x,,)e,,.  Define the “left” and “‘right” roles of the
operator D by

m 8f
Df = ZO: Xs:a—;eies

and

NN,
1 _;;ax[ege,.

If Df =0 in a domain (open and connected) 2, then we say that f'is left-monogenic
function in ; and, if /D =0 in Q, we say that f is right-monogenic function in Q.
If fis both left- and right-monogenic function, then we say that fis monogenic.

In R™, we use the operator D to replace D, which is called the Dirac operator.
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As a natural generalization of analytic functions to higher-dimensional spaces,
left- or right-monogenic functions are the main objects in Clifford analysis. In such
framework, there exist a Cauchy theorem and a Cauchy integral formula. Theory of
Taylor and Laurent expansions can also be established (see [1,2]).

We call

X
E(x)=—
|x|m+1

the Cauchy kernel in R}'. It is easy to verify that E(x) is a monogenic function in
R} —{0}.

Call M*(k,RY") the space of homogeneous left-monogenic polynomials of degree k
in R}, and M~ (k,RY") the space of homogeneous left-monogenic polynomials of degree
—(k +m) in R\ {0}. Using the Kelvin’s inversion formula /f{x) = E(x)f(x""), there
is a corresponding relation between MT(k,R]) and M (k,R]). That Iis,
if Pe(x) € MT(k,R}"), then IPy(x) = Qx(x) € M~ (k,R}); and if Qx(x) € M~ (k,R]),
then 1Qx(x) = Pr(x) € M (k,RY"). Both M*(k,R]") and M~ (k,R]") are right-Clifford
modules with the same linear dimension the combinatorial number
CZ”’"‘I =(m+k—1)!/[(m—1)k]. Note that if f(x) is left-monogenic function, then
If(x) is also left-monogenic function (see [1], or from the intertwine results in [4]).
In the sequel Ny denotes the set of non-negative integers.

2. The Schwarz lemma in RY'

In this section, we extend Schwarz lemma in C to higher-dimensional Euclidean spaces.
We first obtain a result in RY", then show that when m =1 it is equivalent to the Schwarz
lemma in the complex plane. We have (see [2])

LemMma | (Laurent expansion) Let n = (n1,n2,...,1y,) € Ny, [n| =ni +ny + -+ + iy,
and x" = x| ---xlim. Assume that f(x) is left-monogenic function in the annular domain
r <|x|<ry (0<ry<r). Then f can be expanded in a unique way into a Laurent series

A=) Va(an+ D Wa(x)b, (M)

[n[=0 In|=0

where the series converge normally in B(0;ry) and in R\ B(0;ry), respectively. Where

1
Va(x) = PR D Znt) i) Znt)s
7 € perm(n)
perm(n) denotes the set of all distinguishable permutations of the sequence (ny,n,, ..., ny)

and z; = xjeg — xpe;, fori=1,2,...,m. Wy(x)=@"/x™Wy(x), Wy(x)= E(x)=
(&/|x|™Y). The coefficients ay and by are determined by

=" [ W),
Wm JyB(0,r)

b= [ o))
m JoB(o, r)

where r € (r1,12) and w,, is the area of the m-dimensional unit sphere in RY'.
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For purely negative powers we precisely have (see 12.1.3, [1]).

Lemma 2 (Laurent expansion outside a ball) Let f(x) be left-monogenic function in the
domain |x| > R such that

‘ }lim fix)=0.
Then

o0
fx) =" Wa(x)by.
In|=0
We normally have |xy| # |x||y| for x and y in C"”. However, there holds:
LemmA 3 If)\l [S Rm, and \, € C(m), then [Aida] = |Arl|X2].
Proof

Aol = 2 2l = 0%z Ahiraly = I PRaAdy = Il Baraly = Palizl. -

THEOREM 1 Suppose that f(x) is left-monogenic function and satisfies |f(x)| < 1 in the
domain |x| > 1. If, furthermore,

I l‘im fix)=0,
then there follows
X" A0l = 1(1 < x| < 00),
and

lim |[x"||f(x)| exists, and lim [x"||f(x)] < 1.
|x|—>00 |x|—00

If, in particular,

‘Ylliinoolxmllf(X)l =1,

or if there exists xg, 1<|xg| < oo, such that |xo|"|f(x0)l =1, then f[f(x)=
E(X)Cy (Ix] > 1), where Cy € C™ is a constant and |Cy| = 1.

Proof  Since f(x) is left-monogenic function in |x|> 1 and satisfies

| 1‘im Sx) =0,
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by Lemma 2, it has a Laurent expansion outside the ball, and

‘li‘mo EQ)fix™") = by.

We have that its Kelvin inversion If is left-monogenic function in |x|<].
For any xo € R?”, |xo| > 1, if |xo| > r > 1, then |xo~'| < (1/r) < 1. By the maximum
modulus principle ([1]) and Lemma 3, we have

|E(xo ™ MIIAxo)] = [E(xo~ " )f(x0)]

< T, max [EGfx)
<lim,_ /" = 1.
Therefore,
lbo| < 1.

Consequently,

ol [fxo)l < 1(1 < xol < 00) and  lim_|x|" |f0x)] = Ibol < 1.

In particular, when

Jim A1 = 1,

or if there exists xg, 1 < |xg| < co, such that |xo|"[f(xo)| =1, then the maximum
modulus principle implies

E)f(x~") = Co(lx] < 1) and |Cy| = 1.

So f(x) = E(x)Cy when |x|>1. [ |

Remark 1 The statement of the lemma and its proof may be adapted word by word
to the context R™.

Let m=1 in the theorem, we obtain.

CoRrROLLARY |  Suppose that f(z) is holomorphic and satisfies | f(z)| <1 in the domain
lz| > 1. If

lim fiz) =0,

then limpoo |2f(2)| <1 and |f(2)| <(1/lz]) (1 < |z| <o0). If, in particular,
lim ;| |2f(z)| = 1 or there exists 1 < |z9| < oo such that | f(zo)| = (1/|20l), then

fi)= 2 (21 > 1,

where 6 € R.
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The corollary may be proved to be equivalent to:

LemMma 4 (Schwarz lemma) Suppose that f(z) is holomorphic in |z| <1 and
If2)] <1 when |z| < 1. If f(0) =0, then |f'(0)| <1 and|f(2)| < |z| (Iz| < 1). If, in partic-
ular, when | f'(0)] = 1 or there exists 0 < |zg| < 1 such that |f(zy)| = |z0|, then

fz) =€z (2| < 1),

where 6 € R.

The equivalence may be verified through the mapping z — 1/z. Setting fi(z) = f(1/z),
we obtain that f{z) is holomorphic and |f(z)| <1 in |z] <] if and only if fi(z) is
holomorphic and | fi(z)] < 1 in |z| > 1. Therefore, we have

fO)=ay+az+amz +- a2+, 2
1 1 1

fil)=a+a-+a—5+-+a—+--. 3)
z yA Z

So f(0) = 0 if and only if lim|;|« f1(z) = 0. We accordingly have

.f(Z):Cllz+a222+~~-+anz”+...’ 4)

1 1 1
fl(2)201*+a2—2++a — 4 (5)
z z

" on
Obviously, f(z) < |z| (Jz] < 1) if and only if fi(z) < 1/|z| (|z| > 1). From (4) and (5),
we get |f7(0)] = |ai] =lim -« |2fi(z)], and, therefore, [f'(0)]=1 if and only
it lime e i@ =1 IF 0<l|zl <1, [zl =zl then for =z = (1/z),

1 < |z1| < oo, |fi(z1)] = (1/]z1]). The converse also holds. Finally, f(z) = ¢?z (|z| < 1)
if and only if fi(2) = e?(1/2)(|z| > 1).

Remark 2 For m>1 the Schwarz lemma inside the unit ball does not hold at least
in the original form. For example, the functions

fi(x) =xe0 — x0e;, j=12,....m
are left-monogenic function in |x| <1, and satisfy | fj(x)| <1 when |x| < 1. However, for
x = xpeop(|x|] < 1) and non-constant functions f; there hold | f(x)| = |x|, j=1,...,m.

Remark 3 In the complex plane, if f{(z) is analytic in the annular domain r; <|z| <7,
then the Laurent expansion of f(z) is

o0 o0
flz) = Z a,z" + ap + Z b,z7".
n=1 n=1

For every zFe P(k,C) and z7% € Q(k, C), the corresponding relation between P(k,C)
and Q(k,C) is through the inversion mapping z — 1/z, but rather than Kelvin
inversion with the conformal weight E(z), and, for any k, the dimension of P(k, C)
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or Q(k,C) is 1. So Schwarz lemma for inside and outside of the unit disk are
equivalent. While in higher-dimensional spaces, just because M~(0,R}") = {E(x)b}
has dimension 1, we are able to have Schwarz lemma for outside of the unit ball.
The space M7*(k,R]") is transformed to M (k,R]) by Kelvin inversion
Ifix) = E(x)fix7"), and I(Wobo) = by € M*(0,R}"). In particular, both spaces
M=*(k,R7") for k > 0 are multi-dimensional. This explains why Schwarz lemma inside
the unit ball does not hold for higher-dimensional spaces. It, however, further hints
that Schwarz lemma is equivalent to the maximum modulus principle. As a matter of
fact, in the proof of Theorem 1 we use the maximum modulus principle as a key
step. Now we show that the latter is an immediate consequence of the former, as in
the proof of

CoroLLARY 2 (Maximum Modulus Principle) Assume that f is left-monogenic function
in the open and connected set Q. If there exists a point a € Q2 such that

/)l < fla)l,  y e,

then f must be a constant function in 2.

Proof We may assume |f(a)| >0, for otherwise the assertion is trivial. We show that
the set 4 = {x € Q| |f(x)| = | f(@)|} is non-empty, and is an open and closed set. Since
Q is open and connected, this will conclude 4 = Q. The fact that 4 being non-empty
follows from a € A. If y € A, then there exists an open ball B(y;r) C Q. Construct
function g(x) = (1/|(a)))/(y — rx). The function g is left-monogenic function and
satisfies |g(x)] <1 in |x|<1, with |g(0)] = 1. The Kelvin inversion of g, that is
Ig(x) = E(x)g(x~"), is left-monogenically defined in |x|>1 satisfying |Ig(x)|<1
in |x|> 1. Since

lim |x"[|E(x)g(x"")| = lim |g(x)] = 1,
|x|—00 |x|—0

Theorem 1 may be applied to conclude g(x~!) = Cy, |Co| = 1, for |x|> 1, or g(x) = C
for |x| < 1. This shows that B(y;r) C 4. The closeness of 4 follows from the continuity
of f. So, we have 4 = Q. In the above argument the usage of Theorem 1, in fact, shows
that, not only the norm, but also the function value itself, is equal to a constant.
The proof is complete. u
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