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ABSTRACT. Based on a mathematical model involving Radon measure explicit
computations on convolution integrals defining continuous (integral) wavelet
transformations are carried out. The study shows that the truncated Morlet
wavelet significantly depends on a rotation parameter and thus lay a foundation
of edge detection in pattern recognition and image processing using rotational
(directional) wavelets. Experiments and algorithms are developed based on
the theory. The theory is further generalized to the n-dimensional cases and
to a large class of rotational wavelets.

1. Introduction. Two main categories within wavelet theory are the continuous wavelet trans-
form (CWT) on the one hand, and discrete orthogonal wavelet transform (DWT) developed
through multi-resolution analysis on the other hand. They enjoy more or less opposite properties
and both have their specific fields of applications. The DWT has proven to be a successful tech-
nique for, e.g., data compression, whereas the CW'T is especially appropriate for signal analysis
[1].

The one dimensional (1D) discrete wavelet transform and the simplest 2D discrete wavelet
transform [2] are obtained by analyzing the original signal with dilated and translated versions of
the wavelet function. The 2D continuous wavelet uses also rotated versions of the wavelet function
for such analysis. The higher dimensional discrete wavelets in general also have the capacity to
detect directional properties of images, but they are not through introducing a variable rotation as
continuous wavelet [3]. The continuous wavelet with rotational effect is easier to use in practice.
The rotation effect enables the 2D continuous wavelets to analyze the directional features of image
signals.

The WT used in computer vision is a relatively new concept — about 10 years old — but
yet there are quite a number of articles published involving use of this technique. Most of the
papers are in the area of image compression and reconstruction. Continuous wavelets with a
rotation parameter are proposed in pattern recognition in the literature [3-7]. What has been
done along the direction may be roughly classified into three categories: (i) Certain characteristic
properties, in non-quantitative terms in relation to the rotational Morlet wavelet function. Its
Fourier transform and the corresponding wavelet transform were observed. One may predict from
those observations the effectiveness of the rotational wavelets [3-5] in pattern recognition. (ii)
Simple analysis based on some characteristic quantities of those analyzing wavelets, their Fourier
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transforms (spatial frequency), and their reproducing kernels etc. were carried out. One deduces
in those computations scale-resolving power, angle-resolving power and minimum grid to discretize
the integrals related to the continuous wavelet transformations (CWT) and the inversion formulas
[3]. (iii) Experiments and tests [3-5] were carried out. Comprehensive introductory knowledge
and applications of rotational wavelets may be found in a series papers of J.-P. Antoine et al
([3,4,8,9]). On one side is the observations on the integrals defining wavelet transforms, and on
the other side is the effectiveness in experiments of the use of the rotational wavelets. It seems to
the authors, however, there exists a gap, for there is no mathematical proof for the effectiveness.
This paper proposes a mathematical theory to fill in the gap. The theory also suggests how to
use the method in practice.

Note that in this work only continuous (integral) wavelet transformations are concerned. Dis-
crete wavelets are only for the comparison purpose. The terminology “rotational” in some litera-
ture is called “directional”. The writing plan of the paper is as follows. Section 2 gives the basic
mathematical notation and terminology adopted in the whole paper. They are standard and the
reader may skip over the section and directly go to Section 3. Section 3 contains a methodology
discussion on how one would possibly define the concept edge. Section 4 introduces the Radon
measure analysis for edge detection. The section concentrates in the 2D case and the main result
Theorem 4.1 is the foundation of the method. The proof of Theorem Th.4.1 is postponed to
Section 6 where it is given for the general nD cases. Section 5 contains applications of the theory
to edge detection. Section 6 extends the theory to the higher dimensional cases (nD cases). The
section provides rigorous proofs that can be treated as an appendix for the readers who not only
concern about applications but also mathematical reasoning. There we prefer to write the theory
in the general nD setting. That is because, on one side, there is essentially no difference between
2D and nD cases and writing in the nD cases makes the mathematical idea clearer. On the
other hand, applications for higher-than-two dimensional wavelets incorporated with rotational
variables have been concerned in practice. Indeed, some physical phenomena are of a multi-scale
nature. Higher dimensional (3D) pattern recognition using rotational wavelets may be found in
image processing and fluid dynamics , 3D modelling of faces, the appearance of coherent structure
in turbulent flows, or the disentangling of wave train in acoustics (See, for example, [3,4,8,9] and
other relevant articles by Antoine et al) etc.

2. Preliminaries. Throughout the paper Z will denote the set of positive integers; R the set
of real numbers; C the set of complex numbers. The nD FEuclidean space will be denoted by
R" n € Z. We will use bold-faced letters, x,y, k, for instance, to denote vectors or points in R™.
The zero vector is denoted by 0. We do not distinguish the point x with the vector starting from
the origin and ending at the point x. The norm of a vector x is denoted by |x|, standing for the
quantity (z3+---+ x2)1/2_ that is induced from the inner product < x,y >= z1y1 + - - + Tnyn.
We will use, in the standard sense, LP(R"™) spaces, 1 < p < oo, and Llloc(R"). By B(xo,r) we
denote the open ball in R™ centered at x¢ with radius . For any set A we denote by |A| its
Lebesgue measure. In this notation, |B(xq,r)| stands for the volume of the ball B(xg,r). The
notation x g denotes the characteristic function of E that takes value 1 if x € E; and 0 if x ¢ E.

The concept Lebesgue points is needed in order to understand the theorems in §2. A point x
is said to be a Lebesgue point of f € LT | if

loc?

1
lim ————— — f(x)|dy = 0.
A B Lo 1f(y) = F(x)ldy

1

It is easy to see that all continuous points of a function in L; are Lebesgue points. It is a
1

striking fact that for any function in L;_., and therefore any in LP,1 < p < oo, almost all points
are Lebesgue points of the function (see [12]).
For f € L', the Fourier transform of f, denoted by F(f) or f, is defined by

FUE©) = f&) = /R TR .

For f € L' N L2, there holds the Plancherel relation:
I£ll2 = 2m) =2 f]l2.

This enables us to extend Fourier transform, from its definition on the dense subspace L! N L2
of L2, to the whole space L2, in which the Plancherel relation remains to hold. The Plancherel
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relation implies that the Fourier transform in L? is invertible. The inverse is defined to be the
inverse Fourier transform denoted by F 1.
The following simple properties of Fourier transformation will be used:
For f € L', we have
(i) f is bounded and absolutely continuous in the whole space R™.
(i) limg oo f(&) =0 (known as “Riemann-Lebesgue Theorem”).

(iii)
[ o0ix = fo). M

(iv)
F(e 2> f())(€) = f(€ — k). 2)

(v) Rotation on R™ is commutative with Fourier transformation, i.e.

F(F (&) = f(pg), (3)

where p€ is the image of £ under the rotation p. If we use the notation f?(x) = f(px), the above
relation may be written

F(fP) = (FH".

(vi) F(e= /D112 (€) = (2m)n/2e= (/2112

(vii) Fourier transform of a radial function (see the definition below) is radial ([12]).

A function ¢ € L? is said to be a wavelet function, or a wavelet, if
1 (&)
Cy = / d§ < oo, 4
¢ Wn—1 n |§-|n ( )

where wp_1 is the area of the (n — 1)-dimensional unit sphere in R™. The relation (4) is called
the admissibility condition. If ¢ also belongs to L', then the admissibility condition (4) implies

/ 660dx = 0. )

A function satisfying (5) is said to have wvanishing moment or zero momentum. The Fourier
transformation relation (3) implies that the vanishing moment condition is equivalent to $(0) = 0.
Note that zero momentum is a necessary condition of the admissibility condition of a wavelet.
The latter is a stronger condition that plays a crucial role for reconstructing the signal from its
wavelet transform ([4,8]).

For a wavelet function ¢ we introduce the dilated translation

¢a,b(x) = ain(b((l/a)(x_ b))7
$a(x) = dao(x)=0a""¢((1/a)(x)), a >0, (6)
is the L'-normalization factor. Indeed,
[ o= [ ot
R” R”

The continuous wavelet transform (CWT) of f € L? associated with ¢ is defined by

(W) (a.B) =< G f >= — [ 6(1/a(x— b)) [x)ax ™

where a™"

where f denotes the complex conjugate of f. Recall that the convolution between two functions
f and g is defined to be

fra®) = [ g —xg@ix= [ s -
In this notation, the CWT may be rewritten
(We f)(a,b) = (da,0 * f)(b), (®)
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where we used f(x) = f(—x), which is called the reflection of f. In below we will only concern
real-valued signal functions f and hence f(x) = f(—x).
The inversion formula reads
1 o da
1) =< 1. >= o= [T [ Wof(ab)oun(x) Sab.

C¢, 0 R” a
In comparison with the Fourier series terminology, the CWT values Wy f may be called the
coefficients of f. The inversion formula amounts to reconstruct the original signal function f
from its coefficients. Crucial to this study are those incorporated with a rotation effect in the
transformation. Set

ba,p,b(X) = a""d(a" p(x — b)), 9)

where p is a rotation of R™. The dilation is L'-normalized:

[ bupmx= [ oo

We accordingly form the associated CWT

(W¢f)(a7p7 b) = < fv ¢a,p,b > (10)
= o [ fx)éla” p(x — b))dx.
R’IL
In the convolution notation, it is
(W¢f)(a7 P b) = f*(ga,p,o(b)' (11)

In this case the inversion formula is

1 °° da
e A Wi £(a,p, ), () by
s Jo Jsom) Jrn a

(12)

In applications we deal with the 2D case where the integration fSO(n) -+~ dpreduces to 1/(2m) 02” -

Some commonly used wavelet functions are radial functions. In contrast, however, the 2D isotropy
Morlet wavelet, or simply 2D Morlet wavelet is given by

B(x) = i <X = (/2 _ o=(1/2) ] = (1/2)Ix]? (13)

where k is a fixed vector, is not radial, but sensitive to rotation. The rotation only has effect on
the factor e?<k:x>,
It is easy to show that the Fourier transform of the Morlet wavelet is

B(€) = 2m(e=W/DNE—KI? _ o=(1/2)IK|? = (1/2)[€]7) (14)

We sometimes call the 2D Morlet wavelet rotational Morlet wavelet to emphasis the fact that it
is incorporated with a “rotationally”-sensitive factor e*<¥*>_ We also use the terminology rotated
wavelet that means that instead of ¢(x), it is the function ¢ (x) = ¢(px) that is concerned. For
example, the rotational Morlet wavelet is the Morlet wavelet itself, but the rotated Morlet wavelet
by p stands for

PP(x) = ei<l,px> ,—(1/2)|px|? _ ,—(1/2)|k|? ,—(1/2)|px|?
ei<k,px> ,—(1/2)|x|% _ ,—(1/2)[k[* ,—(1/2)Ix]*
(15)
It is often convenient to shift the rotation from x to k, as

ei<k,px> _ ei<,f1k,,f1,ox> i<pTlk,x>

=e
The following section is devoted to establishment of a mathematical model for the rotational
Morlet wavelet in extracting edge singularities.

To end this section we note that there are different ways to normalize the dilation of ¢. For
instance,

_ . —n (2) _ . —n/2
ba(x) = a”"d(x/a), ¢a (x) = a” "7 p(x/a).

The first (without a superscript, the same for the associated CWT) preserves the L!-norm, while
the second preserves the L2-norm of the dilated ¢.

By incorporating the rotation effect, in the L2-normalization case, for instance, we have

6 (%) = a""2(a" p(x — b)),

--de.
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(Wf)f)(av p,b) =< f, ¢El2,2;,b >
=q /2 R fx)p(a"tp(x —b))dx = f * ¢f(12’270(b)'

The inversion formula correspondingly becomes
LI (@) @) da
X) = — w a,p,b X dbdp.
509 =g [ L o W @000 00 ba
There is, in fact, no essential difference between different normalizations, as we have, for instance,

1

W f(a,p,b).

3. A Discussion On Mathematical Formulation of Edge Extraction. This section is re-
stricted to the 2D case and deals with only the 2D Morlet wavelet. Wavelet analysis involves
two basic steps: One is wavelet transformation (WT), and the other is “adding up” the WTs
to recover the original signal, known as inversion formula. We are to explore a method for edge
detection in which only the CWT part will be used while the inversion formula for reconstruction
of the original image signal will not be concerned.

To solve a practical problem one first formulates mathematical concepts and thus a theory
as well based on anesthetics and metaphysics. The validity of the theory will be justified by
its applicability. To formulate a mathematical theory for edge detection we first encounter the
question: What is edge? The very naive answer would be: Edge is a piece of line segment or a
piece of curve, and, in terms of a signal function, the function values on the piece of line segment
or curve are significantly different from those elsewhere. Such a descriptive definition of edge
immediately runs into difficulty due to the following two observations. First, lines and curves as
edge are Lebesgue null sets. Lebesgue integral values, on the other hand, are not sensitive with
function values on null sets: Even if we change the function values in a null set to be all co, the
evaluation of the integral will still remain the same. So, edge information cannot be reflected by
the CWT values. The second observation is based on Theorem 3.1 and 3.2 in below. They say
that the CWT values at almost all points, not necessarily away from the edge points, will exhibit
the same small magnitude if the parameter a is close to zero. So the edge will not be detected.

In below we split the 2D Morlet wavelet (13) into

B(x) = on (%) + ¢p(%),

where

bu(x) = e<lx>em (/2

bp(x) = —e— WD —(/DxP .
Their Fourier transforms are

$r(e) = 2mem(1/2leKP?

b)) = —2me= (/DI (/28 (17)

respectively. We shall call ¢, the rotational part, and ¢g the radial part. In (10), with ¢ and
¢ in place of ¢, we will still call the obtained, with a little abuse of the terminology CW'T, the
CWT associated with ¢ and ¢ g, respectively.

Theorem 3.1. Let f € LP(R?),1 < p < oco. Then for any rotation p € SO(2) and almost all
b € R2, we have
a—s

Theorem 3.2. Let f € LP(R?),1 < p < co. Then for every rotation p € SO(2) and almost all
b € R2, we have
) i )
ul‘llg)(wd)Mf)(avp?b) g%(quEf)(a?pvb)
2me~ (/2K £(p). (18)

Theorem 3.1 and 3.2 are immediate consequences of the general result: If there exists a radial
function ¥ in L' dominating ® : |®(x)| < ¥(x), then, for any function f € LP,1 < p < oo, we
have

lim ®q x f(b) = &(0)f(b)
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at least at all Lebesgue points b of f (Theorem 1.25, Chapter 1, [12]). Since almost all points of
R™ are Lebesgue points of f, the above holds for almost all b.

We will adopt the notation ¢(a, p, x) = (¢°)a(x), where ¢*(x) = ¢p(px) is the rotated wavelet,
and Wy f(a,p,b) = (f * ¢5)(b). When $(0) = 1, then the sequence (®)q,a — 0, is called an
approximation to the identity whose role is the same as the Dirac §-distribution. In below we
will refer this result several times. For convenience, no matter whether it is with the condition
‘f(O) = 1, we will call it an approxzimation net. The theorems are proved by invoking the above
mentioned general result in [12] to (¢°)7,(¢4,)” and (¢%;)". Note that the functions (¢°), (¢4,)
and (¢%) are identical with their reflections.

Therefore, on Lebesgue points and for large k all CWT values exhibit small magnitudes in the
procedure a — 0 and neither ¢, nor ¢, nor ¢ are useful to detect edge singularities represented
by null sets in the process a — 0.

These observations are not disappointing. They suggest that to give a mathematical formula-
tion for edge detection one would proceed with one of the following two strategies.

One is to give up the assumption that the edge information is carried by a null set, but by a
region. In a photo at the places where the grey scale level changes rapidly is considered to be the
edge. Theorem 3.1 and 3.2 also tell that in edge detection, when using CWT the parameter, a
should not be chosen too small.

Alternatively, one may choose to stick on the intuition that “edge” is a piece of line or curve
segment of Lebesgue measure zero. This very naive starting point will be regarded as the “ideal
situation” in the sequel. The rest of the paper will be devoted to a theory for this case based on
a particular application of the Dirac §-distribution belonging to the category of Radon measures.
The formulation will clearly indicate why rotational wavelets work well in edge detection and how
to imply it in relation to selection of the parameters.

4. The Radon Measure Formulation: The Ideal Situation. In order to pursue a study of
edge extraction under the assumption that the point set of edge is contained in a Lebesgue null
set, the concept of Radon measure would be unavoidable. The point is that on Lebesgue null sets
integrals (representing Radon measure as functionals) are not necessarily zero. In the language
of measure theory, this amounts to say that measures we use should not be absolutely continuous
with respect to the Lebesgue measure.

We briefly introduce Radon measures in R™. A Radon measure is a Borel measure with finite
values on compact sets. By C. we denote the set of complex-value continuous functions with
compact support, and by CZ the functions in C. that only take non-negative values. Functions
in C, are called test functions.

Definition 4.1. A complez-valued function I defined on C. is said to be a non-negative linear
functional, or stmply functional, if for all f,g € Cc and a € C

o I(f+9g)=1I(f)+I(g) (additive);
o [(af) =al(f) (homogeneous); and

o I(f) >0, if f € CF. (non-negative).
It can be shown that every non-negative functional I on C. induces a Radon measure such
that

I(f):/Rn fdpr, e Ce

On the other hand, every Radon measure induces a non-negative linear functional on C.. The
functional introduced by a Radon measure du is given by

<fu>= [ fdnt).

We say that a functional is supported in a closed set B, if it vanishes on all test functions whose
compact support has an empty intersection with B. In the theory of generalized functions a Radon
measure is a tempered distribution on the class of infinitely differentiable functions with compact
support.

What is in mind with use of Radon measures is functionals with mass evenly distributed on
closed curves or surfaces. Let ¢ be the standard Dirac distribution with the characteristic property

[ rite=yyay = 100, fece.
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Now let G(x) = 0 represent a curve in R? or a surface in R™. We claim, without giving a proof,
that the measure du(x) = §(G(x))dx is the Radon measure for the functional supported and
evenly distributed on the curve or surface G = G(x) =0:

< frdp>= /G F(x)ds(x),

where ds(x) denotes the arc length or surface area measure on G. Distributions of this kind are
used in obtaining a fundamental solution of the standard wave equation in R™ in which the
surfaces are spheres corresponding to G(x) = |[x —a] —r = 0.

The rest of the section will be restricted to R?, and the measure §(G(x))dx represents the
signal function. In our model G is the edge to be detected on which the signal (the grey scale
level) is 0o, and, away from the edge, zero. We will be working on the Radon measure du(z1,z2) =
5((1/+/2)(x1 — x2))dx1dro as a sample that represents the straight line L = {(x1,22) | ©1 = x2}.
In the spirit of the following computation the proofs in Section 7 are proceeded. For any f in
C¢, by performing the rotation 1 = (1/v/2)(y1 +y2),z2 = (1/v/2)(y1 — y2), followed by iterated
integration, we have

1
<fu>=[ s
[ #0492, =00 = )30 o
= /Rf(%yh%yl)dyl

\@/R fy1,y1)dy

(1 — x2))dz1dz2

= /lf(:rl,:pg)ds,

where ds is the arc-length measure on L. This shows that the functional reduces to the line integral
along the line L. As consequence, if the support of f is away from the line {z; = z2}, then the
value of the functional on f is identical with zero. Thus the functional is supported on the line.
We can proceed with a general line {az1 + bz1 + ¢ = 0} and obtain the same conclusion. With
these preparations we now state our main theorem that, for simplicity, is for the particular line
L. The conclusion, however, can be adapted to general cases.

Theorem 4.1. Denote I(x) = §((1/v2)(x1 — x2)). Then

In the functional sense,
(}I_%(WéMl)(avpv b) = {}LTYIO(W¢EI)(Q, Ps b)
- Qﬂe*(1/2)|kl21(b)
For any a > 0 and b € R2, in the pointwise sense,
(WE20)(a, p,b) = Ve (/I = /e,

where d is the distance of b to the line L = {x1 = z2}.
For any a > 0 and b € R?, in the pointwise sense,

WD D)(a, p,b) =
— /2reilcos H)kd/ae—dz/(Qaz)e—(l/Q)(sin 9|k|)27
where as in (ii), d is the distance from b to L, and 0 is the angle between the argument p~ 'k and
that of the normal of the line: 6 = arg p~ 'k — 37 /4.
The proof is postponed to §7 where we prove the nD analogy of the theorem for a class of
wavelets generalizing the Morlet wavelet. We now give an explanation of the theorem.
Owing to the characteristic property of [, for the points b not on the line L the assertion (i)

and those in (ii) and (iii) corresponding to d > 0 show that neither the CWTs of sz(f\;l’ nor that
(

of W ¢2E>l exhibit significant values in the procedure a — 0. In fact, whenever d > 0 the values tend
to zero for any fixed k and p. If a point b is on the line, corresponding to d = 0 in (ii) and (iii),
then the L2-normalized CWT values are not sensitive to the parameter a. As a matter of fact, the
norm of the CWTs are independent of a. The CWT values for ¢ are independent of the rotation
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parameter, while in contrast, the CWT values for ¢ significantly depend on the rotation: when
p~ 'k is orthogonal to the line L, that is § = 0, the norms of the corresponding CWT values take
the maximal value v/27, and in general, the norm of the CWT value for ¢, is the greater the
closer from arg p~'k to 37 /4.

When the edge is a general line {az1 + bz1 + ¢ = 0}, we can reduce it to the case considered
in the theorem and obtain the same conclusions. Now assume that the edge consists of several
lines each corresponding to a Radon measure d(agx1 + bgx2)dx,k = 1,2,...,m. Then the signal
function is the summation of the Radon measures. From the above analysis we see that when the
direction of p~1k is orthogonal, or nearly orthogonal with one of the lines, then CWT values on
that particular line will exhibit greater magnitudes, and on the other lines and other places away
from the lines the CWT values are comparatively smaller. This suggests how one should do edge
detection by making use of the rotational Morlet wavelet ¢ps. Suppose now we want to detect a
face boundary (edge) in a photo that is not a straight line but a closed oval-shaped curve. For
an arbitrary chosen rotation p, as above observed, in the procedure a — 0 we extract out from
the maximal magnitudes of the CWTs (ng[ 1)(a, p, b) the boundary portions that are orthogonal

or nearly orthogonal with the rotated vector p—lk. Then by altering the rotation p, for instance
choosing six or eight evenly distributed directions of the whole cycle, we obtain boundary portions
in almost all directions. By connecting them we obtain the whole face boundary.

Suppose now we deal with a photo consisting of locally only two grey scale levels and the edge
is the dividing curve of the two regions of different grey scale levels, then the above method should
be modified. In this model one uses h(x) = H(< a,x >) in place of I(x) = §(< a,x >) in the
CWT formula, where H is the Heaviside function: H(z) = 1,2 > 0; and H(z) = 0,2 <0, and a
the unit normal of the edge. Then we take the directional derivative to the CWT of h along the
unit vector p = (p1,p2) orthogonal to p~1k. The derivative will be passed on to H(< a,x >).
Invoking the result dH/dz = § in the generalized function theory, we have

(0/0p)H(< a,x >) =< a,p > (< a,x >).
This introduces the relation

(0/0P) (W52 h)(a, p,b)] =< a,p > (W2 )(a, p, b).

The norm of the directional derivative takes the maximal value when a = +p, that is when a is
orthogonal with p~'k, consistent with the conclusion of Theorem 4.1. In practice, when detecting
edges in a photo with locally two grey scale levels, for the selected k, and then p, by finding the
maximal magnitudes of the norm of the directional derivatives along p of the CWT of the signal
function we extract the edge pieces orthogonal with the direction p~1k. Detailed analysis will show
that the above is an analogy to Canny’s gradient method but combined with the rotation factor.
In practice we use other variations according to different natures of problems. Note that we are
now dealing with the ideal situation and the condition a — 0 corresponds to the assumption that
the width of the edge is zero. In the real life situation the parameter a should not tend to zero
but be restricted to a certain band comparable to the width of the edge. The real life situation
and the variations of the method will be discussed in a separate paper. Applications of rotational
wavelets in edge detection may also be found in [11-13].

5. Examples of Implementation of the Theory. When applying the method established
through Theorem 4.1, discretization of the integral defining the CWTs will be involved.

5.1. Implementation of wavelet transform on images. Application of rotational wavelets
includes three steps:

5.1.1. Discretization of the integral CWTs. Assume f(z,y) is an image of size M1 in width and
My in height. Direct discretization of CWT of f(z,y) is like this:
ba+N/2 b1+N/2

de2>(f)(a,pi,b) =a? Z Z G(u1,u2)
w1 =bs—N/2 us=by —N/2

where

Gur,u2) i= f(u1,uz)dn (@™ pi(ur — br,uz — b2)),
N is the range of convolution, p; is rotation of degrees 0; = 0,7/4,7/2,3w/4.The parameters
N, a, (k1k2) are chosen as below: the value of N is as small as possible and insures the restoration
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(a) Original wheel image (b) Edges extracted by (c) Edges extracted by

Morlet wavelet Canny operator

FI1GURE 1. Original image and edges extracted by rotational Mor-
let wavelet and Canny operator

N \\ j/ \\ 0

(a) Edges of 0 de- (b) Edges of 45 de- (c) Edges of 90 de- (d) Edges of 135
gree gree gree degree

FI1GURE 2. Edges of four directions

of wavelet functions. By Theorem 4.1, when the width of the edge is zero, only when a — 0
can edges be efficiently extracted. In practice, the width of the edges are not zero, and the
values of a are chosen by experience or through experiments. Here we adopt the parameters
a = 0.125, (k1, k2) = (6.9,0).

5.1.2. Compute directional derivative of wavelet transform. In practice, Images usually contain
step edges, so by the explanation of Theorem 4.1, directional derivative should be applied on
images first.

5.1.3. Through threshold transformation to get edges.

5.2. Results of experiments. We have tested three kinds of images: regular pattern image,
portrait, and remote sensing image. They cover typical examples we usually come across. Because
the Canny operator was considered to be the optimal, below we list some results derived from
both the rotational Morlet wavelet and form the Canny operator for comparison. Fig.2 presents
edges of four directions extracted from typical pattern image by rotational wavelet, which shows
that rotational wavelet can efficiently extract edges of different direction and rotational wavelet
is sensitive to direction. The comparisons in Fig.4 and Fig. 3 show that the edges extracted by
the Morlet wavelet is not so fine in connectivity but more precise in location.
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(a) Original Lenna im- (b) Edges extracted by (c) Edges extracted by
age Morlet wavelet Canny operator

FI1GURE 3. Original image and edges extracted by rotational Mor-
let wavelet and Canny operator

(a) Original remote sens- (b) Edges extracted by (c) Edges extracted by
ing image Morlet wavelet Canny operator

FIGURE 4. Original image and edges extracted by rotational Mor-
let wavelet and Canny operator

6. Conclusion. Rotational Morlet wavelet can efficiently extract edges of different directions. It
therefore is suitable for the cases such as remote sensing images and pattern images. The edges
are extracted when the parameter a is chosen to be comparable with width of the edges. The
resolution is precise in location.

7. Generalizations of the Morlet Wavelet. The task of this section is to prove the theorems
of Section 3 and 4 in a more general context. We first generalize the Morlet wavelet. Unless
otherwise stated, throughout this section ® will be an arbitrary but fixed function, satisfying the
conditions:

()

®elL'nL?
(ii) There exists a radial function ¥ such that

[®(x)] < ¥(x).
(iii)

/ (1 + [x)) (x)dx < oo.
Rn
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(iv)

We have the following
Theorem 7.1. For any vector k € R", the function
d(x) = $(0)e’F*> P(x) — B(—k)P(x)

is a wavelet.
Proof: It is obvious that ¢ € L' N L2. Tt suffices to verify that ¢ satisfies the admissibility
condition (4). Based on the Fourier transformation relations cited in §1, we have

B(€) = (0)D(¢ — k) — B(~k)D(¢).
[ O < [ aorass [ ibera
lg>1 1€1" l€]>1 = Jrn

191 = (2" 21913 < oo.

To show the integrability at the origin we notice that

$(€)

We first have

D(0)(d(¢ — k) — d(—k)) + (—k)($(0) — B(¢))
®(0)g k(&) — D(—k)go(£),
where for any j € R"™, we use the notation

9;(&) = D(E+1) — ().
Owing to the elementary inequality |a + b|? < 2|a|? + 2|b|?,we have

|6(©)I” 5012 l9-1(6)I
d < 2|®(0 —d.
/|5|31 g = o) /\£|s1 g

) 2
+ AR /|g\<1 ‘gTﬁ(f")‘ o

lg; (&) < CIél,
where C' is a constant depending only on ¥. Indeed, owing to the condition (iii) and the Lebesgue
dominated convergence theorem, ® has first order partial derivatives everywhere, and

‘We now show that for any j,

Va© < [ 19em<E apojax

IN

[ el
RTL
= C < oo,
where C depends on V. Therefore,
l9;(6)] < max{|V|}¢| < Cle].

lg; ()12 1
de < C 4
/\agl 13k 6= /\5\31 gt oo

20eY|2
[
HESENk
The proof is complete.

We can construct rotational wavelets based on Theorem 7.1. For instance, the 2D and nD
I

Now

implies

Morlet wavelets are constructed from the function ®(x) = e~(1/2)IxI" the Gaussian density
function. Indeed, in the case, ¥ = ® and $(¢) = (271’)”/267(1/2)‘&'2, and so $(0) = (27)"/2. We
therefore have

P(x) = (27r)gei<k’x>e_%|x|2 — (27r)%e_%|k‘2e_%‘x‘2.
There is a great freedom to choose ® under the conditions (i) to (iv), and one can establish a bank
of rotational wavelets of the Morlet type. In particular, the commonly used kernel functions for



)
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approximation to the identity can all be used for ® (See the examples to the end of this section.).
Bear in mind, however, that & itself should not have zero momentum, for otherwise, the term
incorporating the rotation factor will disappear. The results and the proofs in §3, and the theorem
in §4 for the 2D case can all be extended to R™ without encountering essential difficulty. We have

Theorem 7.2. Let f € LP(R™),1 < p < co. Then for any rotation p € SO(n) and almost all
b € R", we have

lim (W f)(a,p, b) = 0.

The proof invokes Theorem 1.25, Chapter 1, [12].
As before, we truncate ¢ into its rotational and radial parts:

é(x) = dp (%) — dp(x),
where
$r(x) = 2(0)e' 7 0(x) and  $p(x) = d(~k)P(x).
Their Fourier transforms are
$u(§) = 2(0)B(E k) and ¢p(€) = B(-K)2(©),
respectively. With the same proof as for Theorem 3.2, we have

Theorem 7.3. Let f € LP(R"),1 < p < co. Then for any rotation p € SO(n) and almost all
b € R", we have
al‘i_rﬂ)(W¢A1f)(a7p7 b) = g%(W¢Ef)(avpvb)

= &(0)®(—k)f(b).

By a (n — 1)-dimensional hyperplane we mean the (n — 1)-dimensional linear subspace in R™
satisfying the equation < a,x >= a1x1 + -+ anxn = 0, where a = (a1, -+ ,an) is a unit normal
of the hyperplane.

Theorem 7.4. Let a be a unit vector. Denote by l(x) = §(< a,x >) the Dirac distribution
supported on the hyperplane {a1z1 + -+ + anzy = 0}. Assume that ® is radial and satisfies the
conditions (i) to (iv). Then we have

In the functional sense,
lim (W, D(ap.b) = Jim (W, 1)(a, p,b)
= $0)d(k)l(b).
For any a > 0 and b € R"™, in the pointwise sense,
a2 W (a,pb) = SE)FD (@()4))(0)
(k)Y (a/a)(0),

where d is the distance from the point b to the hyperplane, the jth-component of a general vector
v is denoted by (v);, where

VO = ()1, (Va1 B, (D) = @), FOD (@) )(EPY) = iy, (D)),
and F=1 stands for the Fourier transform in R("—1) (The existence of the function @ :
[0,00) — C is owing to the property (vii) of Fourier transformation).

For any a > 0 and b € R", in the pointwise sense,

'~ E (WD )(a,p,b) = B(0)e’ 0K Gy 4 (sin 0]k]),

where 6 denotes the angle between the vector p~'k and the normal of the hyperplane.

Proof: To prove (i) let f be any test function in C.. Let pg be the rotation such that pala =
en, = (0,---,0,1), and thus pg rotates the plane z,, = 0 to the plane < a,x >= 0. Since Lebesgue
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measure is invariant under rotation, using the notation fr°(x) = f(pox), we have
< (WopD(asp,), f >=< ($4)a * 1, f >
= / (¢§\'4)a(x)/ f(pob)d(< a,x — pob >)dbdx
R” R”

/ (¢§4)a(X)/ fPO(b)3(< pyta, pytx — b >)dbdx
R” R”

/ (¢ﬁf)a(X)/ FPO(b)3(< en, py 'x — b >)dbdx
R7L Rn

/Rn(%})a(x)/m_l(/pro(bl,m bn_1,bn)

5((pg  %)n — bn)dbn) dby -+ - dbp_1dx

/ (%’,)a(x)/ FP0(b1, - b1, (o Yx)n)dby - - - dbp—1dx,
R” Rnfl

where we denote (pglx)n the nth component of pglx. Using the result of approximation net and
the value of F(¢ns)(0), the above is equal to

BOBK) [ O b Oy by

= d0)dK) <, f>.

The assertion for ¢ can be proved similarly.
Next we first prove (iii). Performing the translation x’ = x — b in the integral and noting that
| <a,b>|=d is the distance from b to the hyperplane < a,x >= 0, |a] = 1, we have

<a' T2 (PR )a,l >
= bt [ e e

_ x/ /
= ﬁ)(O)al_”/ et<r 1k’7>‘1>(x—)5(< a,x’ > +d)dx’.
n a

b
>o(X " 25(< a,x >)dx
a

Now applying the same rotation pp as in the proof of (i) to the integral variable x’, since ® is
radial, the value of the functional is

<al™"2(¢h Yoyl >
_ é(o)akn/nei<pglp*1k,%’>¢(%’)
5(< pgta,x’ > +d)dx’
- (i>(0)a1*"/ ei<PElp’1kv%’>¢(%’)5(w; + d)dx!

A !
A o1y (B, g Fd)
— <I>(0)a17” el<Pg P k———>
Rn—1

(@, 2y, d)

@ )dzy - day,

— $(0) ¢i<Po LT (@ ey Fd/a)>
RrRn—1

®((ah, 2y, dfa))da] - daf,
= &(0)eTiUY/ Dy P On
FOD(@a/a) (g ' 0D,

where F("=1) denotes the Fourier transform in R~ for («,---,2!,_;). Denote the j-th com-

ponent of a general vector v by (v);, and (v)("=1 = ((v)1,--+,(V)n—1). In this notation,

ot p k= ((og ' p )Y, (o o7 ) ).
Set
D(y), (V)"7D) = o(v).
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It is noted that D vy,

pglp_lk and the vector (0, -- ,0,1) that is identical with the angle between the vector p~1k and
the normal of the hyperplane < a,x >= 0. We have

is a radial function in (v)("~1. Let @ be the angle between the vector

(o p K = <pylp 'k (0,-+,0,1) >
(cos0)]pg " p k| = (cos 0) K],

and therefore
(o5 ™) V)| = (sin B)[KI.
Using this notation, the last value of the functional can be further written
d(0)eFicos DIkl ay, ) ((sin6)[K]),

where we adopt the notation

FOmD (@) )™)Y = ey, (1(©) 7).

When we prove the assertion (ii) there are two things are different from the above: The constant
multiple in ¢g is ‘i>(7k) in stead of CiD(O) in ¢p; and in the integral representing the functional
the exponential function is missing. These induce the final result ‘f(k)w(d/a)([)). The proof is
complete.

Note that the assumption that ® is radial in Theorem 7.4 is only to make the functions
appearing in the end of the formulas for assertions (ii) and (iii) to be radial and thus simpler.
There is a general version of the theorem for ® not being a radial function.

By applying Theorem 6.4 to the special case ®(x) = e_(1/2)‘9“|27 we obtain

Corollary 7.1. For ®(x) = e_(l/g)mz,x € R", we have
For any a > 0 and b € R", in the pointwise sense,
_ 2
a2 (W) (a, p, b)

= (271—)("*1)/2@*(1/2)|1<|2e*dg/(2a2)7
where d is the distance from b to the hyperplane
<a,x>=0.
For any a > 0 and b € R", in the pointwise sense,

_n 2

a' =% (WP 1)(a, p,b)

n—1

= (271') 2

ei(cos 9)|k|d/ae—%e—l sin? 0\k|2.

For n = 2 these are (ii) and (iii) of Theorem 4.1. The assertion (i) of Theorem 4.1 is from (i) of
Theorem 7.4. Theorem 7.4 and Corollary 7.1 well establish the applicability of rotational wavelets
to edge detection. Briefly speaking, based on these results, (Z)fw may be used to detect the portions
of a (n—1)-dimensional surface whose normal vectors are close to the direction of the vector p~'k.
It is expected that a large class of functions ® satisfy the conditions in Theorem 6.4 for which
the Fourier transform function 1 (4,4) may be explicitly worked out. Whenever 1 (4,q)(sin 0)|k|)
fast decays along with d/a — oo and takes its maximal value at § = 0 for d = 0 (Owing to
Riemann-Lebesgue Theorem, in any case,  # 0,%(4/q)(sin0]k|) — 0 as k| — o00), then we can
use the function ¢j; to detect edge. We especially note that for the edge detection purpose only
(i), (ii) and (iv) are essential. We, in particular, do not need the admissibility condition (4) as we
do not use inversion formula. As example, if P(x) is a polynomial of degree k and a > 0, then ®
can be of the following forms as long as the moment is non-zero:

P(x)

2 -\
’ (14 [x[)nthte

P(x)e~ M P(x)e~l and
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