

Co-dimension-p Shannon sampling theorems

YAN YANG* and TAO QIAN

Faculty of Science and Technology, University of Macau, China

Communicated by F. Sommen

(Received 7 April 2006; in final form 26 April 2006)

In this article, by defining the generalized co-dimension-*p* sinc function, the corresponding sinc interpolations (Shannon sampling theorems) are obtained.

Keywords: Shannon sampling; Sinc function; Clifford algebra

AMS Subject Classifications: 62D05, 30A05, 30D10, 42B35

1. Introduction

Sinc function in the real line \mathbf{R} is defined by

$$\operatorname{sinc}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ixt} dt = \frac{\sin(\pi x)}{\pi x}.$$

It has a holomorphic extension to the complex plane C, i.e.,:

$$\operatorname{sinc}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{izt} dt = \frac{\sin(\pi z)}{\pi z}.$$
 (1)

Some applications of the sinc function may be found in [1].

For a set A, let χ_A denote the characteristic function of A. Sinc function in \mathbf{R}^m is defined by

$$\operatorname{sinc}(\underline{x}) = (\chi_{[-\pi,\pi]^m})(\underline{x}) = \frac{1}{(2\pi)^m} \int_{\mathbf{R}^m} e^{i\langle \underline{x},\underline{\xi} \rangle} \chi_{[-\pi,\pi]^m}(\underline{\xi}) d\underline{\xi}$$
$$= \prod_{i=1}^m \operatorname{sinc}(x_i) = \prod_{i=1}^m \frac{\sin(\pi x_i)}{\pi x_i}.$$

^{*}Corresponding author. Email: ya27406@umac.mo

As a counterpart generalization of the sinc function (1) to higher-dimensional cases, Kou and Qian extended the sinc function in \mathbf{R}^m to m+1-dimensional real variables \mathbf{R}_1^m with the Clifford analysis setting in [2]. The definition of the extended sinc function (we call it *inhomogeneous co-dimension-1 sinc function*) is based on the generalized exponential function $e(x,\underline{\xi})$ in $\mathbf{R}_1^m \times \mathbf{R}^m$, extending the classical exponential function $e^{i\langle x,\underline{\xi}\rangle}$ in $\mathbf{R}^m \times \mathbf{R}^m$. Furthermore, using the inhomogeneous co-dimension-1 sinc function, they obtained the Shannon sampling theorem [2] corresponding to the Paley-Wiener (P-W) theorem in \mathbf{R}_1^m [3]. In this article, we define co-dimension-p sinc functions and prove the corresponding Shannon samplings in relation to the P-W theorems obtained in [4].

2. Preliminaries

For a basic knowledge and notation in relation to the Clifford algebra the readers are referred to [5–7].

Let $\mathbf{e}_1, ..., \mathbf{e}_m$ be basic elements satisfying $\mathbf{e}_i \mathbf{e}_j + \mathbf{e}_j \mathbf{e}_i = -2\delta_{ij}$, where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ otherwise, i, j = 1, 2, ..., m. Set

$$\mathbf{R}^m = \{x = x_1 \mathbf{e}_1 + \dots + x_m \mathbf{e}_m : x_i \in \mathbf{R}, j = 1, 2, \dots, m\},\$$

and

$$\mathbf{R}_1^m = \{ x = x_0 + \underline{x} \colon x_0 \in \mathbf{R}, \ \underline{x} \in \mathbf{R}^m \}.$$

 \mathbf{R}^m and \mathbf{R}^m_1 are called, respectively, the *homogeneous* and *inhomogeneous* Euclidean spaces.

Elements in \mathbf{R}^m are called *homogeneous vectors* and those of \mathbf{R}_1^m *inhomogeneous vectors* or *vectors*. The real (or complex) Clifford algebra generated by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$, denoted by $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), is the universal associative algebra generated by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$, over the real (or complex) field \mathbf{R} (or \mathbf{C}). A general element in $\mathbf{R}^{(m)}$ (or $\mathbf{C}^{(m)}$), a *Clifford number*, therefore, is of the form $x = \sum_S x_S \mathbf{e}_S$, where for $S \neq \emptyset$, \mathbf{e}_S are *ordered reduced products* of the basis elements and $\mathbf{e}_S = \mathbf{e}_{i_1} \mathbf{e}_{i_2} \cdots \mathbf{e}_{i_l}$, where S runs over all the ordered subsets of $\{1, 2, \dots, m\}$, namely

$$S = \{1 < i_1 < i_2 < \dots < i_l < m\}, \quad 1 < l < m,$$

and, for $S = \emptyset$, we set $\mathbf{e}_{\emptyset} = \mathbf{e}_{0} = 1$.

The natural inner product between x and y in $\mathbf{C}^{(m)}$, denoted by $\langle x, y \rangle$, is the complex number $\sum_{S} x_{S} \overline{y_{S}}$, where $x = \sum_{S} x_{S} \mathbf{e}_{S}$ and $y = \sum_{S} y_{S} \mathbf{e}_{S}$. The norm associated with this inner product is

$$|x| = \langle x, x \rangle^{1/2} = \left(\sum_{S} |x_{S}|^{2}\right)^{1/2}.$$

The Clifford conjugate of a vector $x = x_0 + \underline{x}$, is defined to be $\overline{x} = x_0 - \underline{x}$. It is easy to verify that if $x \neq 0$ and $x \in \mathbb{R}_1^m$, then x has an inverse, x^{-1} , and

$$x^{-1} = \frac{\overline{x}}{|x|^2}.$$

The *unit sphere* $\{\underline{x} \in \mathbb{R}^m : |\underline{x}| = 1\}$ is denoted by S^{m-1} . We use $B(\underline{x}, r)$ for the open ball in \mathbb{R}^m centered at \underline{x} with radius r, and $\overline{B}(\underline{x}, r)$ for the topological closure of $B(\underline{x}, r)$.

Subsequently we shall study functions defined in the homogeneous space \mathbf{R}^m taking values in $\mathbf{C}^{(m)}$. So, they are of the form $f(\underline{x}) = \sum_S f_S(\underline{x}) \mathbf{e}_S$, where f_S are complex-valued functions. We shall use the *Dirac operator*, or the *homogeneous Dirac operator*, $\partial_{\underline{x}}$, where $\partial_{\underline{x}} = (\partial/\partial x_1)\mathbf{e}_1 + \cdots + (\partial/\partial x_m)\mathbf{e}_m$. We define the "left" and "right" roles of the operator ∂_x by

$$\partial_{\underline{x}} f = \sum_{i=1}^{m} \sum_{S} \frac{\partial f_{S}}{\partial x_{i}} \mathbf{e}_{i} \mathbf{e}_{S}$$

and

$$f \partial_{\underline{x}} = \sum_{i=1}^{m} \sum_{S} \frac{\partial f_{S}}{\partial x_{i}} \mathbf{e}_{S} \mathbf{e}_{i}.$$

If $\partial_{\underline{x}} f = 0$ in a domain (open and connected) U, then we say that f is left-monogenic in U; and, if $f \partial_{\underline{x}} = 0$ in U, then f is said to be right-monogenic in U. Left- or right-monogenic are called one-sided-monogenic or simply monogenic. The function theories for left- and right-monogenic functions, respectively, are parallel. If f is both left- and right-monogenic, then we say that f is two-sided-monogenic.

In \mathbf{R}_1^m we shall use the *inhomogeneous Dirac operator*, or the *generalized Cauchy-Riemann operator*, $\partial_x = \partial_0 + \partial_x$, $\partial_0 = (\partial/\partial x_0)$. The concept of monogenic functions in \mathbf{R}_1^m is defined via the inhomogeneous Dirac operator ∂_x in a similar manner. The monogenic function theories for the homogeneous and inhomogeneous spaces, respectively, are analogous.

Let $k \in \mathbb{N}$, where \mathbb{N} denotes the set of non-negative integers. Denote by $M_{\ell}^+(m,k,\mathbb{C}^{(m)})$ the space of k-homogeneous left-monogenic polynomials in \mathbb{R}^m , whose restriction to S^{m-1} is denoted by $\mathcal{M}_{\ell}^+(m,k,\mathbb{C}^{(m)})$.

The Fourier transform of functions in \mathbb{R}^m is defined by

$$\hat{f}(\underline{\xi}) = \int_{\mathbf{R}^m} e^{-i\langle \underline{x}, \underline{\xi} \rangle} f(\underline{x}) d\underline{x},$$

and the inverse Fourier transform by

$$\check{g}(\underline{x}) = \frac{1}{(2\pi)^m} \int_{\mathbf{R}^m} e^{i\langle \underline{x}, \underline{\xi} \rangle} g(\underline{\xi}) d\underline{\xi},$$

where $\underline{\xi} = \xi_1 \mathbf{e}_1 + \cdots + \xi_m \mathbf{e}_m$.

To extend the domain of Fourier transforms to \mathbf{R}_1^m , we first need to extend the exponential function $e^{i\langle \underline{x},\underline{\xi}\rangle}$. Denote, for $x=x_0\mathbf{e}_0+\underline{x}$,

$$e(x,\underline{\xi}) = e^{i\langle\underline{x},\underline{\xi}\rangle} e^{-x_0|\underline{\xi}|} \chi_{+}(\underline{\xi}) + e^{i\langle\underline{x},\underline{\xi}\rangle} e^{x_0|\underline{\xi}|} \chi_{-}(\underline{\xi}), \tag{2}$$

where

$$\chi_{\pm}(\underline{\xi}) = \frac{1}{2} \left(1 \pm i \frac{\underline{\xi} \mathbf{e}_0}{|\underline{\xi}|} \right).$$

It is easy to verify that the functions χ_{\pm} satisfy the properties for projections:

$$\chi_{-}\chi_{+} = \chi_{+}\chi_{-} = 0, \quad \chi_{+}^{2} = \chi_{\pm}, \quad \chi_{+} + \chi_{-} = 1.$$

As extension of $e(\underline{x},\underline{\xi})=e^{i\langle\underline{x},\underline{\xi}\rangle}$ to $\mathbf{R}_1^m\times\mathbf{R}^m$, it is easy to verify that, for any fixed $\underline{\xi}$, $e(x,\underline{\xi})$ is two-sided-monogenic in $x\in\mathbf{R}_1^m$. The above extension is the inhomogeneous co-dimension-1 CK extension of $e(\underline{x},\underline{\xi})$ to \mathbf{R}_1^m . Replacing \mathbf{e}_0 by ϵ_0 in equation (2), where ϵ_0 is a basis element added to the collection $\mathbf{e}_1,\ldots,\mathbf{e}_m$, with $\epsilon_0^2=-1$ and anti-commutativity with the other \mathbf{e}_j , $j=1,\ldots,m$, one obtains the homogeneous co-dimension-1 CK extension $e(x_0\epsilon_0,\underline{x},\underline{\xi})$ of $e^{i\langle\underline{x},\underline{\xi}\rangle}$ in \mathbf{R}^{m+1} . This function $e(x_0\epsilon_0,\underline{x},\underline{\xi})$ is left-monogenic in $x\in\mathbf{R}^{m+1}$. Generalizations of the exponential function of these types can be first found in the work of Sommen [8], and then in Li et al. [7], where $\underline{\xi}$ is further extended to $\underline{\xi}+i\eta\in\mathbf{C}^m$.

In [6], the generalized $C\overline{K}$ extension tells us: If $A_0(\underline{y})$ is an analytic function in \mathbb{R}^q , for any k-homogeneous left-monogenic polynomial $P_k(\underline{x})$ in \mathbb{R}^p , there exists a unique sequence $(A_l(y))_{l>0}$ of analytic functions such that the series

$$f_{P_{k}}(\underline{x},\underline{y}) = \sum_{l=0}^{\infty} \underline{x}^{l} P_{k}(\underline{x}) A_{l}(\underline{y})$$

$$= \Gamma\left(k + \frac{p}{2}\right) \left(\frac{r\sqrt{\Delta_{\underline{y}}}}{2}\right)^{-(k+(p/2))} \left[\frac{r\sqrt{\Delta_{\underline{y}}}}{2} J_{k+\frac{p}{2}-1}\left(r\sqrt{\Delta_{\underline{y}}}\right) + \frac{\underline{x}\partial_{\underline{y}}}{2} J_{k+(p/2)}\left(r\sqrt{\Delta_{\underline{y}}}\right)\right] (P_{k}(\underline{x}) A_{0}(\underline{y})),$$
(3)

is convergent and its sum f_{P_k} is left-monogenic in any compact set belongs to $\mathbf{R}^p \oplus \mathbf{R}^q$. Where $(\sqrt{\Delta_y})^2 = \Delta_y$, the Laplacian in \underline{y} , and J_v the Bessel function

$$J_{\nu}(u) = \sum_{l=0}^{\infty} \frac{(-1)^{l}}{2^{2l+\nu} l! \Gamma(l+\nu+1)} u^{2l+\nu}.$$

We call $f_{P_k}(\underline{x}, \underline{y})$ the generalized CK extension in relation to P_k of $A_0(\underline{y})$ and $A_0(\underline{y})$ the initial value of $f_{P_k}(\underline{x}, \underline{y})$. In particular, when k = 0, $P_k = 1$, we get $A_0(\underline{y}) = f_{P_k}|_{\mathbf{R}^q}$. Denote $\mathcal{T}_{P_k}(\mathbf{R}^q)$ the space of all functions of the form (3).

Furthermore, for any left-monogenic function $f(\underline{x}, \underline{y})$ in \tilde{U} belongs to $\mathbf{R}^m = \mathbf{R}^p \oplus \mathbf{R}^q$, where $\underline{x} = r\underline{\omega} \in \mathbf{R}^p$, $\underline{y} \in \mathbf{R}^q$, denote $T_k(f)(\underline{\omega}, \underline{y}) = \lim_{r \to 0} 1/r^k P(k) f(r, \underline{\omega}, \underline{y})$, where P(k) being the projection onto $M_{\ell}^+(p, k, \mathbf{C}^{(p)})$. It can be decomposed in variable x. By using a basis $P_{k,\alpha}(\underline{\omega})$ for $\mathcal{M}_{\ell}^+(p, k, \mathbf{C}^{(p)})$,

$$T_k(f)(\underline{\omega}, \underline{y}) = \sum_{\alpha \in A_k} P_{k,\alpha}(\underline{\omega}) T_{k,\alpha}(f)(\underline{y}),$$

where $T_{k,\alpha}(f)(y)$ are real analytic functions.

Denote the generalized CK extension of $T_{k,\alpha}(f)(\underline{y})$ with $P_{k,\alpha}(\underline{x})$ by $T_{k,\alpha}(\underline{x},\underline{y})$, then f can be written in a uniquely way as

$$f(\underline{x}, \underline{y}) = \sum_{k} \sum_{\alpha \in A_k} T_{k,\alpha}(\underline{x}, \underline{y}), \tag{4}$$

where $T_{k,\alpha}(\underline{x},\underline{y}) = \sum_{l} \underline{x}^{l} P_{k,\alpha}(\underline{x}) T_{k,\alpha}^{(l)}(f)(\underline{y})$ and the series (4) converging uniformly on any compact set in \tilde{U} . The series (4) is called *the generalized Taylor series* and $T_{k,\alpha}^{(0)}(f)(\underline{y}) = T_{k,\alpha}(f)(\underline{y})$ are called *the initial values* of f.

To extend the domain of Fourier transforms to $\mathbf{R}^p \oplus \mathbf{R}^q$, we also need to extend the exponential function $e^{i\langle \underline{y},\underline{t}\rangle}$. In [4], for a given k-homogeneous left-monogenic polynomial $P_k(\underline{x})$, we get the generalized CK extension of $e^{i\langle \underline{y},\underline{t}\rangle}$ in $\mathcal{T}_{P_k}(\mathbf{R}^q)$, $\underline{x} = r\underline{\omega} \in \mathbf{R}^p$, $y,\underline{t} \in \mathbf{R}^q$, denoted by

$$\varepsilon_{P_{k}}^{p}(\underline{x},\underline{y},\underline{t}) = \Gamma\left(k + \frac{p}{2}\right)r^{k}e^{i\langle\underline{y},\underline{t}\rangle}\left(\frac{r|\underline{t}|}{2}\right)^{-k-(p/2)+1}\left[I_{k+(p/2)-1}(r|\underline{t}|) + iI_{k+(p/2)}(r|\underline{t}|)\underline{\omega}\frac{\underline{t}}{|\underline{t}|}\right]P_{k}(\underline{\omega}),\tag{5}$$

where

$$I_{\nu}(u) = i^{-\nu} J_{\nu}(iu) = \sum_{k=0}^{\infty} \frac{1}{k! \Gamma(\nu + k - 1)} \left(\frac{u}{2}\right)^{u+2k},$$

being a kind of Bessel functions. Then $\varepsilon_{P_k}^p(\underline{x},\underline{y},\underline{t})$ is left-monogenic in $\mathbf{R}^p \oplus \mathbf{R}^q$. In particular, when $P_k = 1$, k = 0, we have

$$\varepsilon_1^p(\underline{x},\underline{y},\underline{t}) = \Gamma\left(\frac{p}{2}\right)e^{i\langle\underline{y},\underline{t}\rangle} \left(\frac{r|\underline{t}|}{2}\right)^{-(p/2)+1} \left[I_{(p/2)-1}(r|\underline{t}|) + iI_{p/2}(r|\underline{t}|)\underline{\omega}\frac{\underline{t}}{|\underline{t}|}\right].$$

We in particular denote

$$\varepsilon_1^1(x_1\mathbf{e}_1,\underline{y},\underline{t}) = e(x_1\mathbf{e}_1,\underline{y},\underline{t}).$$

From [4], we have, for any u > 0,

$$\left(\frac{u}{2}\right)^{-\nu}I_{\nu}(u) = \sum_{k=0}^{\infty} \frac{1}{k!\Gamma(\nu+k+1)} \left(\frac{u}{2}\right)^{2k} \le C \sum_{k=0}^{\infty} \frac{u^{2k}}{(2k)!} \le Ce^{u}.$$
 (6)

When $|\underline{t}| \leq \Omega$, we have

$$|\varepsilon_{P_{k}}^{p}(\underline{x},\underline{y},\underline{t})| \leq C \left(\frac{2}{\Omega}\right)^{k} \left(\frac{r\Omega}{2}\right)^{-(p/2)+1} \left[I_{k+\frac{p}{2}-1}(r\Omega) + I_{k+\frac{p}{2}}(r\Omega)\right]$$

$$\leq C[I_{k}(r\Omega) + I_{k+1}(r\Omega)]$$

$$\leq Ce^{r\Omega}.$$
(7)

3. Exact interpolation with Shannon sampling in $R^m = R^p \oplus R^q$

Based on the extension of the exponential function given by (5), the *generalized* co-dimension-p sinc function in relation to $P_k(\underline{x}) \in M_\ell^+(p,k,\mathbb{C}^{(p)})$ is defined by

$$\operatorname{sinc}_{P_k}^p(\underline{x},\underline{y}) = \frac{1}{(2\pi)^q} \int_{\mathbf{R}^q} \varepsilon_{P_k}^p(\underline{x},\underline{y},\underline{t}) \chi_{[-\pi,\pi]^q}(\underline{t}) d\underline{t}. \tag{8}$$

For h > 0 fixed, define the cardinal function of f to be

$$C(f,h)(\underline{x},\underline{y}) \equiv \sum_{\underline{k}\in\mathbb{Z}^q} \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h},\frac{\underline{y}-h\underline{k}}{h}\right) f(h\underline{k}),$$

from equation (8), we have

$$\operatorname{sinc}_{P_{k}}^{p}\left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h}\right) = \frac{h^{q}}{(2\pi)^{q}} \int_{\mathbb{I}_{-(\pi/h)}(\pi/h)^{q}} \varepsilon_{P_{k}}^{p}(\underline{x}, \underline{y} - h\underline{k}, \underline{t}) d\underline{t}. \tag{9}$$

Next, we shall consider the generalized co-dimension-p interpolation via the cardinal function corresponding to the generalized co-dimension-p P–W theorem proved in [4]:

LEMMA 1 [4] (Generalized co-dimension-p P–W theorem) Let $P_k \in M_\ell^+(p,k; \mathbb{C}^{(p)})$ be given, F analytic, defined in \mathbb{R}^q , taking values in $\mathbb{C}^{(q)}$, which is the complex Clifford algebra generated by $\mathbf{e_{p+1}}, \ldots, \mathbf{e_{p+q}}$, and $F \in L^2(\mathbb{R}^q)$, Ω be a positive real number. Then the following two assertions are equivalent:

1⁰ F has a homogeneous co-dimensional-p generalized CK extension to \mathbf{R}^{p+q} , denoted by f_{P_k} , and there exists a constant C such that

$$|f_{P_k}(\underline{x},\underline{y})| \le Ce^{\Omega|\underline{x}|}, \text{ for any } \underline{x} \in \mathbf{R}^p, \ \underline{y} \in \mathbf{R}^q.$$

 $2^0 \ supp(\hat{F}) \subset \overline{B}(0,\Omega).$

Moreover, if one of the above conditions holds, then we have

$$f_{P_k}(\underline{x},\underline{y}) = \frac{1}{(2\pi)^q} \int_{\mathbf{R}^q} \varepsilon_{P_k}^p(\underline{x},\underline{y},\underline{\xi}) \hat{F}(\underline{\xi}) d\underline{\xi}, \text{ for any } \underline{x} \in \mathbf{R}^p,\underline{y} \in \mathbf{R}^q.$$

A function f in $\mathbf{R}^p \oplus \mathbf{R}^q$ is said to be of exponential type Ω if

$$|f(\underline{x}, y)| \le Ce^{\Omega|\underline{x}|}$$
, for any $\underline{x} \in \mathbf{R}^p$, $y \in \mathbf{R}^q$

holds.

For any h > 0, denote

 $PW_{\mathcal{T}_{P_k}(\mathbf{R}^q)}(\pi/h) = \{f | f \in \mathcal{T}_{P_k}(\mathbf{R}^q) \text{ and of exponential type } \pi/h, \text{ the initial value}$ $F \in L^2(\mathbf{R}^q) \text{ and taking values in } \mathbf{C}^{(q)} \}.$

Particularly, taking k = 0, $P_k = 1$ and p = 1, we have

 $PW_{\mathbf{R}^{q+1}}(\pi/h) = \{f | f \text{ is left-monogenic in } \mathbf{R}^{q+1} \text{ and of exponential type } \pi/h, f|_{\mathbf{R}^q} \in L^2(\mathbf{R}^q),$ and $f|_{\mathbf{R}^q}$ taking values in $\mathbf{C}^{(q)}\}.$

The following theorems characterize the functions in the P–W class $PW_{\mathcal{T}_{P_k}(\mathbf{R}^q)}(\pi/h)$. Theorem 1 If $f \in PW_{\mathcal{T}_{P_k}(\mathbf{R}^q)}(\pi/h)$, then for any $\underline{x} \in \mathbf{R}^p$, $\underline{y} \in \mathbf{R}^q$, we have 1^0

$$f(\underline{x},\underline{y}) = \frac{1}{h^q} \int_{\mathbf{R}^q} \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - \underline{\xi}}{h}\right) F(\underline{\xi}) d\underline{\xi}.$$

 2^{0}

$$\frac{1}{(2\pi)^q} \int_{[-\pi/h, \pi/h]^q} |\hat{F}(\underline{y})|^2 d\underline{y} = \int_{\mathbf{R}^q} |F(\underline{t})|^2 d\underline{t} = \sum_{k \in \mathbf{Z}^q} |F(h\underline{k})|^2, \tag{10}$$

where F is the initial value of f.

Proof 1⁰: Since $f \in PW_{T_{P_h}(\mathbf{R}^q)}(\pi/h)$, according to Lemma 1, we have

$$f(\underline{x}, \underline{y}) = \frac{1}{(2\pi)^q} \int_{\overline{B}(0, \pi/h)} \varepsilon_{P_k}^p(\underline{x}, \underline{y}, \underline{t}) \hat{F}(\underline{t}) d\underline{t}$$

$$= \frac{1}{(2\pi)^q} \int_{[-\pi/h, \pi/h]^q} \varepsilon_{P_k}^p(\underline{x}, \underline{y}, \underline{t}) \hat{F}(\underline{t}) d\underline{t}$$

$$= \frac{1}{(2\pi)^q} \int_{\mathbf{R}^q} \varepsilon_{P_k}^p(\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi/h, \pi/h]^q}(\underline{t}) \hat{F}(\underline{t}) d\underline{t}.$$

By Parseval's theorem and (9), the above is equal to

$$\begin{split} &\frac{1}{(2\pi)^q} \int_{\mathbf{R}^q} \left[\varepsilon_{P_k}^p(\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi/h, \pi/h]^q}(\underline{t}) \right] (\underline{\xi}) F(\underline{\xi}) \mathrm{d}\underline{\xi} \\ &= \frac{1}{h^q} \int_{\mathbf{R}^q} \left(\int_{[-\pi/h, \pi/h]^q} \varepsilon_{P_k}^p(\underline{x}, \underline{y} - \underline{\xi}, \underline{t}) \mathrm{d}\underline{t} \right) F(\underline{\xi}) \mathrm{d}\underline{\xi} \\ &= \frac{1}{h^q} \int_{\mathbf{R}^q} \mathrm{sinc}_{P_k}^p \left(\underline{\underline{x}}, \underline{y} - \underline{\xi} \right) F(\underline{\xi}) \mathrm{d}\underline{\xi}. \end{split}$$

2⁰: From Lemma 1, we have

$$F(\underline{t}) = \frac{1}{(2\pi)^q} \int_{B(0,\pi/h)} e^{i\langle \underline{y},\underline{t}\rangle} \hat{F}(\underline{y}) d\underline{y} = \frac{1}{(2\pi)^q} \int_{[-\pi/h,\pi/h]^q} e^{i\langle \underline{y},\underline{t}\rangle} \hat{F}(\underline{y}) d\underline{y}.$$

Considering the Fourier expansion of \hat{F} in the cube $[-\pi/h, \pi/h]^q$, we have

$$h^{q}F(h\underline{k}) = \frac{1}{(2R)^{q}} \int_{[-R,R]^{q}} e^{i\pi\langle\underline{x},\underline{k}\rangle/R} \hat{F}(\underline{y}) d\underline{y} = c_{k},$$

where $R = \frac{\pi}{h}$, and c_k are the Fourier coefficients of \hat{F} . The Plancherel theorem of Fourier series is

$$\int_{[-R, R]^q} |\hat{F}(\underline{y})|^2 d\underline{y} = (2R)^q \sum_{k \in \mathbf{Z}^q} |c_k|^2,$$

and the Plancherel theorem on L^2 -functions in \mathbf{R}^q reads

$$\int_{\mathbf{R}^q} |\hat{F}(\underline{y})|^2 d\underline{y} = \int_{[-R, R]^q} |\hat{F}(\underline{y})|^2 d\underline{y} = (2\pi)^q \int_{\mathbf{R}^q} |F(\underline{t})|^2 d\underline{t}.$$

So we have

$$\frac{1}{(2\pi)^q} \int_{[-\pi/h, \pi/h]^q} |\hat{F}(\underline{y})|^2 d\underline{y} = \int_{\mathbf{R}^q} |F(\underline{t})|^2 d\underline{t} = \sum_{\underline{k} \in \mathbf{Z}^q} |F(h\underline{k})|^2.$$

Corollary 1 If $f \in PW_{\mathcal{T}_1(\mathbf{R}^q)}(\pi/h)$, then for any $\underline{x} \in \mathbf{R}^p$, $y \in \mathbf{R}^q$, we have

$$f(\underline{x}, \underline{y}) = \frac{1}{h^q} \int_{\mathbf{R}^q} \operatorname{sinc}_1^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - \underline{\xi}}{h} \right) f(\underline{\xi}) d\underline{\xi}.$$

$$\frac{1}{(2\pi)^q} \int_{[-\pi/h, \pi/h]^q} |\hat{f}(\underline{y})|^2 d\underline{y} = \int_{\mathbf{R}^q} |f(\underline{t})|^2 d\underline{t} = \sum_{\underline{k} \in \mathbf{Z}^q} |f(h\underline{k})|^2.$$

From (8) and the co-dimension-p P–W theorem, we can obtain that $\operatorname{sinc}_{P_k}^p(\underline{x}/h,\underline{y}/h)$ belongs to $PW_{\mathcal{T}_{P_k}(\mathbf{R}^q)}(\sqrt{q\pi}/h)$. Furthermore, we can construct functions in $PW_{\mathcal{T}_{P_k}(\mathbf{R}^q)}(\sqrt{q\pi}/h)$ using the following Theorem.

Theorem 2 Let $P_k \in M^+_{\ell}(p,k;\mathbf{C}^{(p)})$ be given, $F \in L^2(\mathbf{R}^q)$ and take values in $\mathbf{C}^{(q)}$. Then $f \in PW_{T_{P_k}(\mathbf{R}^q)}(\sqrt{q}\pi/h)$, where

$$f(\underline{x}, \underline{y}) = h^q \int_{\mathbf{R}^q} \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - \underline{\xi}}{h}\right) F(\underline{\xi}) d\underline{\xi}. \tag{11}$$

Proof Applying the Parseval's theorem to the right-hand side of equation (11), owing to equation (9), we have

$$\begin{split} f(\underline{x},\underline{y}) &= \frac{h^q}{(2\pi)^q} \int_{\mathbf{R}^q} \left[\operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - \underline{\xi}}{h} \right) \right] (-\underline{t}) \hat{F}(\underline{t}) d\underline{t} \\ &= \frac{h^q}{(2\pi)^q} \int_{\mathbf{R}^q} h^{-q} \varepsilon_{P_k}^p (\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi/h, \pi/h]^q}(\underline{t}) \hat{F}(\underline{t}) d\underline{t} \\ &= \frac{1}{(2\pi)^q} \int_{\mathbf{R}^q} \varepsilon_{P_k}^p (\underline{x}, \underline{y}, \underline{t}) \chi_{[-\pi/h, \pi/h]^q}(\underline{t}) \hat{F}(\underline{t}) d\underline{t} \\ &= \frac{1}{(2\pi)^q} \int_{[-\pi/h, \pi/h]^q} \varepsilon_{P_k}^p (\underline{x}, \underline{y}, \underline{t}) \hat{F}(\underline{t}) d\underline{t}. \end{split}$$

According to the evaluation (7) of $\varepsilon_{P_k}^p$, we have

$$|f(\underline{x},\underline{y})| \le Ce^{\sqrt{q}\pi/h|\underline{x}|}$$
, for any $\underline{x} \in \mathbf{R}^p$, $\underline{y} \in \mathbf{R}^q$.

By Lemma 1, we get $f(\underline{x}, y) \in PW_{T_{P_h}(\mathbf{R}^q)}(\sqrt{q\pi/h})$.

Next, the exact $\operatorname{sinc}_{P_k}$ interpolation of functions in $PW_{\mathcal{T}_{P_k}(\mathbb{R}^q)}(\pi/h)$ is given.

Theorem 3 If $f \in PW_{\mathcal{T}_{P_k}(\mathbf{R}^q)}(\pi/h)$, then for any $\underline{x} \in \mathbf{R}^p$, $\underline{y} \in \mathbf{R}^q$,

$$f(\underline{x}, \underline{y}) = C(f, h)(\underline{x}, \underline{y}) = \sum_{k \in \mathbb{Z}^q} \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h}\right) F(h\underline{k}), \tag{12}$$

where F is the initial value of f and the series on the right-hand side is absolutely and uniformly convergent for any $y \in \mathbf{R}^q$ and \underline{x} belongs to any bounded set in \mathbf{R}^p .

Proof Since $f(\underline{x}, \underline{y}) \in PW_{\mathcal{T}_{P_k}(\mathbf{R}^q)}(\pi/h)$, Lemma 1 gives

$$f(\underline{x},\underline{y}) = \frac{1}{(2\pi)^q} \int_{[-\pi/h,\pi/h]^q} \varepsilon_{P_k}^p(\underline{x},\underline{y},\underline{t}) \hat{F}(\underline{t}) d\underline{t}.$$
 (13)

Expanding $\varepsilon_{P_k}^p(\underline{x},\underline{y},\underline{t})$ on the cube $[-\pi/h,\pi/h]^q$ into its multiple Fourier series in q-variables, we have

$$\varepsilon_{P_k}^p(\underline{x},\underline{y},\underline{t}) = \sum_{k \in \mathbb{Z}^q} e^{i\langle h\underline{k},\underline{t}\rangle} a_{\underline{k}}(\underline{x},\underline{y}), \tag{14}$$

where

$$a_{\underline{k}}(\underline{x}, \underline{y}) = \frac{h^q}{(2\pi)^q} \int_{[-\pi/h, \pi/h]^q} \varepsilon_{P_k}^p(\underline{x}, \underline{y}, \underline{t}) e^{-i\langle h\underline{k}, \underline{t} \rangle} d\underline{t}$$

$$= \frac{h^q}{(2\pi)^q} \int_{[-\pi/h, \pi/h]^q} \varepsilon_{P_k}^p(\underline{x}, \underline{y} - h\underline{k}, \underline{t}) d\underline{t}$$

$$= \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h} \right)$$

are the Fourier coefficients of $\varepsilon_{P_k}^p(\underline{x},\underline{y},\underline{t})$.

Substituting the series expansion (14) in the integral (13) and interchanging the order of the summation and the integration due to the L^2 -convergence, we have

$$f(\underline{x}, \underline{y}) = \frac{1}{(2\pi)^q} \int_{[-\pi/h, \pi/h]^q} \sum_{\underline{k} \in \mathbf{Z}^q} e^{i\langle h\underline{k}, \underline{t} \rangle} \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h}\right) \hat{F}(\underline{t}) d\underline{t}$$

$$= \sum_{\underline{k} \in \mathbf{Z}^q} \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h}\right) \left(\frac{1}{(2\pi)^q} \int_{[-\pi/h, \pi/h]^q} e^{i\langle h\underline{k}, \underline{t} \rangle} \hat{F}(\underline{t}) d\underline{t}\right)$$

$$= \sum_{\underline{k} \in \mathbf{Z}^q} \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h}\right) F(h\underline{k}).$$

We next show the uniform convergence of the series on the right side.

In fact, for any positive number M, using the Cauchy–Schwarz inequality, we have

$$\left| \sum_{|\underline{k}| \setminus M} \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h} \right) F(h\underline{k}) \right| \leq \left(\sum_{|\underline{k}| \setminus M} \left| \operatorname{sinc}_{P_k}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h} \right) \right|^2 \right)^{1/2} \left(\sum_{|\underline{k}| \setminus M} |F(h\underline{k})|^2 \right)^{1/2}.$$

Note that the function $\varepsilon_{P_k}^p(\underline{x},\underline{y},\cdot) \in L^2([-\pi/h,\pi/h]^q)$. Using the Bessel inequality and equation (7), for any bounded set $U \in \mathbf{R}^p$, we have

$$\begin{split} \left(\sum_{|\underline{k}|\rangle M} \left| \operatorname{sinc}_{P_{k}}^{p} \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h} \right) \right|^{2} \right)^{1/2} &\leq \left(\frac{h}{2\pi} \right)^{q/2} \|\varepsilon_{P_{k}}^{p} (\underline{x}, \underline{y}, \cdot)\|_{L^{2}([-\pi/h, \pi/h]^{q})} \\ &\leq \left(\frac{h}{2\pi} \right)^{q/2} e^{\sqrt{q}|\underline{x}|\pi/h} \leq C < \infty, \end{split}$$

where $\underline{y} \in \mathbf{R}^q$, $\underline{x} \in U$. Owing to the estimate and equation (10), the series in equation (12) is convergent uniformly and absolutely in $U \oplus \mathbf{R}^q$.

The homogeneous co-dimension-p P-W theorem is stated as:

LEMMA 2 [4] (Homogeneous co-dimension-p P-W theorem) Let F be analytic, defined in \mathbf{R}^q , taking values in $\mathbf{C}^{(q)}$, the complex Clifford algebra generated by $\mathbf{e_{p+1}}, \ldots, \mathbf{e_{p+q}}$, and $F \in L^2(\mathbf{R}^q)$. Ω is a positive real number. Then the following two assertions are equivalent:

 1^0 F has a homogeneous co-dimensional-p CK extension to \mathbf{R}^{p+q} , denoted by f, and there exists a constant C such that

$$|f(\underline{x},\underline{y})| \le Ce^{\Omega|\underline{x}|}$$
, for any $\underline{x} \in \mathbf{R}^p$, $\underline{y} \in \mathbf{R}^q$.

 $2^0 \ supp(\hat{F}) \subset \overline{B}(0,\Omega).$

Moreover, if one of the above conditions holds, we have

$$f(\underline{x},\underline{y}) = \frac{1}{(2\pi)^q} \int_{\mathbf{R}^q} \varepsilon_1^p(\underline{x},\underline{y},\underline{\xi}) \hat{F}(\underline{\xi}) d\underline{\xi}, \text{ for any } \underline{x} \in \mathbf{R}^p, \underline{y} \in \mathbf{R}^q.$$

Corresponding to the Lemma 2, we have the exact sinc_1^p interpolation of functions in $PW_{\mathcal{T}_1(\mathbf{R}^q)}(\pi/h)$.

Corollary 2 If $f \in PW_{T_1(\mathbf{R}^q)}(\pi/h)$, then for any $\underline{x} \in \mathbf{R}^p$, $y \in \mathbf{R}^q$,

$$f(\underline{x},\underline{y}) = C(f,h)(\underline{x},\underline{y}) = \sum_{k \in \mathbb{Z}^q} \operatorname{sinc}_1^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h}\right) f(h\underline{k}),$$

where

$$\operatorname{sinc}_{1}^{p}(\underline{x},\underline{y}) = \frac{1}{(2\pi)^{q}} \int_{\mathbb{R}^{q}} \varepsilon_{1}^{p}(\underline{x},\underline{y},\underline{t}) \chi_{[-\pi,\pi]^{q}}(\underline{t}) d\underline{t},$$

and the series on the right-hand side is absolutely and uniformly convergent for any $\underline{y} \in \mathbb{R}^q$ and \underline{x} belongs to any bounded set in \mathbb{R}^p .

Henceforth the article shall deal with the Shannon sampling theorem in relation to the generalized Taylor series.

In [4], the co-dimension-p P-W theorem related to generalized Taylor series reads:

LEMMA 3 Assume that $f(\underline{x},\underline{y})$ is left-monogenic in $\mathbf{R}^m = \mathbf{R}^p \oplus \mathbf{R}^q$ with the form (4). For any $k \geq 0$ and $\alpha \in A_k$, let $T_{k,\alpha}(f)(\underline{y}) = T_{k,\alpha}^{(0)}(f)(\underline{y})$ be analytic, defined in \mathbf{R}^q , taking values in $\mathbf{C}^{(q)}$, the complex Clifford algebra generated by $\mathbf{e}_{\mathbf{p}+1}, \ldots, \mathbf{e}_{\mathbf{p}+\mathbf{q}}, T_{k,\alpha}(f)(\underline{y}) \in L^2(\mathbf{R}^q)$,

$$\left| \sum_{k} \sum_{\alpha} P_{k,\alpha}(\underline{x}) \hat{T}_{k,\alpha}(f)(\underline{\xi}) \right| \leq C e^{\Omega|\underline{x}|}, \text{ for any } \underline{x} \in \mathbf{R}^{p}, \ \underline{\xi} \in \mathbf{R}^{q},$$

where Ω is a positive real number. Then the following two assertions are equivalent: 1^0 There exists a constant C such that

$$|f(\underline{x}, y)| \le Ce^{\Omega|\underline{x}|}, \text{ for any } \underline{x} \in \mathbf{R}^p, y \in \mathbf{R}^q.$$

 $2^0 \operatorname{supp}(\hat{T}_{k,\alpha}(f)) \subset \overline{B}(0,\Omega), \text{ for any } k \geq 0 \text{ and } \alpha \in A_k.$

Moreover, if one of the above conditions holds, we have

$$f(\underline{x},\underline{y}) = \sum_{k} \sum_{\alpha} T_{k,\alpha}(\underline{x},\underline{y}) = \frac{1}{(2\pi)^{q}} \sum_{k} \sum_{\alpha} \int_{\mathbf{R}^{q}} \varepsilon_{P_{k,\alpha}}^{p}(\underline{x},\underline{y},\underline{\xi}) \hat{T}_{k,\alpha}(f)(\underline{\xi}) d\underline{\xi}, \tag{15}$$

for any $\underline{x} \in \mathbb{R}^p$, $\underline{y} \in \mathbb{R}^q$ and the series is converging uniformly on any compact set in $\mathbb{R}^p \oplus \mathbb{R}^q$.

Next, the Shannon sampling theorem corresponding to the P–W theorem above is obtained. For any h > 0, denote

 $PW_{\mathbf{R}^p \oplus \mathbf{R}^q}(\pi/h) = \{f | f \text{ is left-monogenic in } \mathbf{R}^p \oplus \mathbf{R}^q \text{ with the form (4) and of exponential}$ type π/h , the initial values $T_{k,\alpha}(f)(y) \in L^2(\mathbf{R}^q)$ and taking values in $\mathbf{C}^{(q)}$.

Theorem 4 If $f \in PW_{\mathbf{R}^p \oplus \mathbf{R}^q}(\pi/h)$, then for any $\underline{x} \in \mathbf{R}^p$, $y \in \mathbf{R}^q$,

$$f(\underline{x}, \underline{y}) = \sum_{k} \sum_{\alpha} C[T_{k,\alpha}(f), h](\underline{x}, \underline{y}), \tag{16}$$

where

$$C[T_{k,\alpha}(f), h](\underline{x}, \underline{y}) = \sum_{k \in \mathbb{Z}^q} \operatorname{sinc}_{P_{k,\alpha}}^{\rho} \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h}\right) T_{k,\alpha}(f)(h\underline{k})$$
(17)

and $T_{k,\alpha}(f)(\underline{y})$ are the initial values of f. The series (16) and (17) on the right-hand side are uniformly convergent on any compact set in $\mathbb{R}^p \oplus \mathbb{R}^q$.

Proof If $f \in PW_{\mathbb{R}^p \oplus \mathbb{R}^q}(\pi/h)$, then f has the form in (15). Using Theorem 3, we obtain

$$T_{k,\alpha}(\underline{x},\underline{y}) = C[T_{k,\alpha}(f),h](\underline{x},\underline{y}) = \sum_{k \in \mathbb{Z}^q} \operatorname{sinc}_{P_{k,\alpha}}^p \left(\frac{\underline{x}}{h}, \frac{\underline{y} - h\underline{k}}{h}\right) T_{k,\alpha}(f)(h\underline{k}).$$

Acknowledgement

This work was supported by Research Grant of the University of Macau No. RG024/03-04S/QT/FST.

References

- [1] Lund, J. and Bowers, K., 1992, Sinc Methods for Quadrature and Differential Equations, SIAM.
- [2] Kou, K. and Qian, T., 2005, Shannon sampling with the Clifford Analysis setting. Zeitschrift für Analysis und ihre Anwendungen, 24(4), 853–870.
- [3] Kou, K. and Qian, T., 2002, The Paley-Wiener theorem in R₁ⁿ with the Clifford analysis setting. *Journal of Functional Analysis*, 189, 227–241.
- [4] Yang, Y., Qian, T. and Sommen, F., Co-dimension-P Paley-Wiener Theorems (preprint: Singapore).
- [5] Delanghe, R., Somman, F. and Souček, V., 1992, Clifford Algebra and Spinor-Valued Functions, Vol. 53, (Dorderecht, Boston, London: Kluwer Academic Publishers).
- [6] Delanghe, R., Sommen, F. and Souček, V., 1992, Residues in Clifford analysis. *Partial Differential Equations with Complex Analysis*, Pitman Research Notes in Math., Vol. 262, pp. 61–92.
- [7] Li, C., Mcintosh, A. and Qian, T., 1994, Clifford algebras, fourier transforms, and singular convolution operators on lipschitz surfaces. *Rev. Mat. Iberoamericana*, **10**, 665–721.
- [8] Sommen, F., 1982, Some connections between Clifford analysis and complex analysis. *Complex Variables: Theory Appl.*, **1**, 97–118.

Copyright of Complex Variables & Elliptic Equations is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listsery without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.