Complex Variables and Elliptic Equations Taylor & Francis
Vol. 52, No. 1, January 2007, 9-20 e Taylor & Francis Group

Co-dimension-p Shannon sampling theorems
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In this article, by defining the generalized co-dimension-p sinc function, the corresponding sinc
interpolations (Shannon sampling theorems) are obtained.
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1. Introduction

Sinc function in the real line R is defined by

sinc(x) = % / eMdt = M

x X

It has a holomorphic extension to the complex plane C, i.e.,:

sinc(z) = %/‘” eldt = M (1)

nz
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Some applications of the sinc function may be found in [1].
For a set A, let x4 denote the characteristic function of 4. Sinc function in R™ is
defined by
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As a counterpart generalization of the sinc function (1) to higher-dimensional cases,
Kou and Qian extended the sinc function in R” to m + 1-dimensional real variables R}’
with the Clifford analysis setting in [2]. The definition of the extended sinc function
(we call it inhomogeneous co-dimension-1 sinc function) is based on the generalized
exponential function e(x, £) in R}' x R™, extending the classical exponential function

8 in R™ x R™. Furthermore using the inhomogeneous co-dimension-1 sinc
function, they obtained the Shannon sampling theorem [2] corresponding to the
Paley—Wiener (P-W) theorem in R}’ [3]. In this article, we define co-dimension-p sinc
functions and prove the corresponding Shannon samplings in relation to the P-W
theorems obtained in [4].

2. Preliminaries

For a basic knowledge and notation in relation to the Clifford algebra the readers are
referred to [5-7].

Let ey, ..., e, be basic elements satisfying e;e; + eje; = —28;;, where §; = 1 if i=j and
8; = 0 otherwise, i, j=1,2,...,m. Set

Rm:{EZXIel+"'+xmem:xj€R’ J=12,...,m},
and
"'={x=x0+x:x €R, xeR"}.

R™ and R]" are called, respectively, the homogeneous and inhomogeneous Euclidean
spaces.

Elements in R™ are called homogeneous vectors and those of RY' inhomogeneous
vectors or vectors. The real (or complex) Clifford algebra generated by ej,es,...,e,,
denoted by R" (or C"), is the universal associative algebra generated by
e, e, ...,e,, over the real (or complex) field R (or C). A general element in R
(or C™), a Clifford number, therefore, is of the form x = 3_ g Xses, where for S # 0,
es are ordered reduced products of the basis elements and es = e;e;, ---¢;,, where S
runs over all the ordered subsets of {1,2,...,m}, namely

S={1§i1<i2<-~~<i/§m}, ISZSWZ,

and, for S= @, we set e = ey = 1.
The natural inner product between x and y in C™, denoted by (x,y), is the
complex number ) ¢ xs¥s, Where x = ) ¢ xges and y = ) ¢ yses. The norm associated

with this inner product is
1/2
x| = (x,x)!/* = (Z |XS|2) .
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The Clifford conjugate of a vector x = xg + x, is defined to be X = xy — x. It is easy
to verify that if x#0 and x € R, then x has an inverse, x~!, and
1 X
X = .
|x|?

The unit sphere {x € R™: |x| = 1} is denoted by S”~'. We use B(x, r) for the open ball
in R™ centered at x with radius r, and B(x, r) for the topological closure of B(x,r).

Subsequently we shall study functions defined in the homogeneous space R taking
values in C". So, they are of the form f(x) = 3 sfs(x)es, where fg are complex-valued
functions. We shall use the Dirac operator, or the homogeneous Dirac operator, Oy,
where 9, = (9/0x1)e; + - - - + (3/0x,)e,,. We define the “left” and “‘right” roles of the
operator 9, by

and

If 9, /=0 in a domain (open and connected) U, then we say that f'is left-monogenic in
U; and, if f9, =0 in U, then f is said to be right-monogenic in U. Left- or right-
monogenic are called one-sided-monogenic or simply monogenic. The function theories
for left- and right-monogenic functions, respectively, are parallel. If f'is both left- and
right-monogenic, then we say that f'is two-sided-monogenic.

In R we shall use the inhomogeneous Dirac operator, or the generalized
Cauchy—Riemann operator, 98, = dy + dx, dp = (3/dxp). The concept of monogenic
functions in RY" is defined via the inhomogeneous Dirac operator 9, in a similar
manner. The monogenic function theories for the homogeneous and inhomogeneous
spaces, respectively, are analogous.

Let ke N, where N denotes the set of non-negative integers. Denote by
M} (m,k, C)Y the space of k-homogeneous left-monogenic polynomials in R”, whose
restriction to S”~! is denoted by M (m,k, C"™).

The Fourier transform of functions in R is defined by

fie)= / e fx)dy,
- RI7’I
and the inverse Fourier transform by
B = / 8 g(&)ds
= (271)”’ R” 2

where &£ = £1e) + - - + £,8.
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To extend the domain of Fourier transforms to RY', we first need to extend the
exponential function ¢"*# . Denote, for x = xpep + X,

e(x, §) _ ei(ﬁ,ﬁ)e—x0|§|X+(§) + ei(£>§>exo\§\x_(§)’ )

x+(8) = <1 +i 1?)

It is easy to verify that the functions y. satisfy the properties for projections:

where

XXt = XX-=0, Xxi=xe Xx++x-=1L

As extension of e(x,§) = &9 to RY" x R™, it is easy to verify that, for any fixed &,
e(x, &) is two-sided-monogenic in x € RY". The above extension is the inhomogeneous
co-dimension-1 CK extension of e(x, S) to R}". Replacing ey by € in equation (2),

where ¢; is a basis element added to the collection ey,...,e,, with e% = —1 and
anti-commutativity with the other e;, j=1,...,m, one obtains the homogeneous
co-dimension-1 CK extension e(xo€o, x,§) of ol § in R”*!. This function e(xy€, X, &)

is left-monogenic in x € R”*!. Generalizations of the exponential function of these
types can be first found in the work of Sommen [8], and then in Li et al. [7], where &
is further extended to & +in € C". -

In [6], the generalized CK extension tells us: If 4(y) is an analytic function in RY,
for any k-homogeneous left-monogenic polynomial Px(x) in R”, there exists a unique
sequence (A/(y)).~o of analytic functions such that the series

fr(x.y) =Y X P(x)Al(y)
=0

e ()

—(k+(p/2))
X0

r /A, X0,
[ J;Jﬂgl (ry32) + 5 s (r\/XX)}(Pk@AoQ»,

(©)

is convergent and its sum fp, is left-monogenic in any compact set belongs to R” @ RY.
Where (\/17 ) = A,, the Laplacian in y, and J, the Bessel function

(=1 gy
Ty(u) =
@ 1;: 2N+ v+ 1)

We call fp,(x,y) the generalized CK extension in relation to Py of Ag(y) and A(y) the
initial value of fp,(x, »). In particular, when k = 0, P, = 1, we get Ao(y) frlRe-
Denote 7 p (R) the space of all functions of the form (3).
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Furthermore, for any left-monogenic function f(x, y) in U belongs to R" =R’ @ RY,
where x = rw € R”, y € R?, denote Ti(f)(w,y) = lim,_o 1//* P(k)f(r, w, ), where P(k)
being the projection onto M/ (p,k, C?). Tt can be decomposed in variable x.
By using a basis Py 4(w) for /\/l+(p, k,C?),

Ti()@.9) = Y Pral@ Tral /).

a€Ay

where Tj o(/)(y) are real analytic functions.
Denote the generalized CK extension of Tj o(/)(y) with Py 4(x) by T «(x, ), then
f can be written in a uniquely way as

[ )= Tralx.) )

k acA;
where Ty q(x, y):Zlg/{’k,a(g)TQa(f)( y) and the series (4) converging uniformly
on any compact set in U. The series (4) is called the generalized Taylor series and
TO()(p) = Trol /) p) are called the initial values of f.
To extend the domain of Fourier transforms to R” @ RY, we also need to extend
the exponential function ¢2Y. In [4], for a given k-homogeneous left-monogenic

polynomial Pi(x), we get the generalized CK extension of ¢? in 7 p, (RY),
x=rweR’, y,teR’ denoted by

rli| —k—(p/2)+1
e (X, 3, 1) = (k+ ) <2> |:I/c+(p/2) 112D + iy o) (Do = :|Pk(w)
(5)

where

u+2k
I(u) =i "J,(iu) = Zm< ) ’

being a kind of Bessel functions. Then 811’%(5’ ,1) is left-monogenic in R” @ RY.
In particular, when P, = 1, k = 0, we have

o (P (T O
(x5, 3, ) =T A ) Lipy2)- 1(V|t|)+ll/2(r|t|)7| 1

We in particular denote
ej(x1er,p. 1) = e(xier, . 1).

From [4], we have, for any u > 0,

u\ —v > 1 u\ 2k > u "
(5) L) = ;m(i) = CZ(Zk)! = Ce. ©
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When [f] < @, we have

N e\ P+
e, (X, . )| < C<§> <7> [lk+§,1(rsz)+1k+g(rsz)]

< Cl(r2) + Ly 1 (rQ)]
< Ce™. @)

3. Exact interpolation with Shannon sampling in R” =R” ¢ R?

Based on the extension of the exponential function given by (5), the generalized
co-dimension-p sinc function in relation to Pi(x) € M (p,k, C”) is defined by

. 1 )
i (1) = g [, Dt O ®
For h>0 fixed, define the cardinal function of f to be

— hk
C(fM)x.p) = ) sinch, (% yT‘)f(h@,

kez!
from equation (8), we have
) x V- hk) h
sinch, | =, =—— | = 5= el (x,y — hi, Hde. ©)
o (h h QO e

Next, we shall consider the generalized co-dimension-p interpolation via the cardinal
function corresponding to the generalized co-dimension-p P—-W theorem proved in [4]:

LemMa 1 [4] (Generalized co-dimension-p P-W theorem) Let Py € M (p,k; C?) be
given, F analytic, defined in RY, taking values in C9, which is the complex Clifford
algebra generated by epy1, ..., ey, and F € L*(RY), Q be a positive real number. Then
the following two assertions are equivalent:

1° F has a homogeneous co-dimensional-p generalized CK extension to R’ denoted by
fp,, and there exists a constant C such that

|fp, (. p)| < Ce®R, for any x e R”, y € RY.
2° supp(F) C B(0, Q).
Moreover, if one of the above conditions holds, then we have

fry) = / & (x, v, FE)E, for any x € R,y € RY.
D)= Gy Jy 8 2 OFOE L4

A function fin R” @ RY is said to be of exponential type Q if
| fix,p)| < Ce®™, for any x € R,y € R

holds.
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For any 4> 0, denote

PWTPk(m)(n/h) = {f1f € 7T p,(R7) and of exponential type 7/h, the initial value
F e L*(RY) and taking values in C9}.

Particularly, taking k =0, P, =1 and p=1, we have

PWyai(rr/h) = {f]f1s left-monogenic in R¢*!and of exponential type /A, f|gs € L*(RY),

and f|gs taking values in C?}.

The following theorems characterize the functions in the P-W class PWr, ®ny(1/h).
Tueorem 1 If fe PWr, ®:)(w/h), then for any x € RP,y € RY, we have
10

1 . -
-f(ﬁ’ X) = h_q/];q Slncllj’k (%5 )}TS)F(S)dE
20
1 N
- Fi 2d:fF2d: F(hk)|?, 10
(277)(] [—n/h,n/h]‘f| (X)| L Rt/| (£)| L 56224| (_)| ( )

where F is the initial value of f.
Proof 1°: Since f e PWTpk(R‘/)(ﬂ/h), according to Lemma 1, we have

b

& (x, v, HF(1)dt
Q) S50,/ (-2, DFDAL

flx,y) =

1 / ~
=—— & (x,y, HF()dt
@n)? [—7/h,7c/h)" Pk(_ . DR

1 ) A
= Gt /R ) & (X, ¥, DX/, 2y (D F(D)AL.

By Parseval’s theorem and (9), the above is equal to

o~

1
@n)? /m [811)%(5’ Y DX[—JI/h,n/h]"(D:I (§)F(§)dg
— ([ ey - enar) e
RY [—=m/h, 7/H)?

X

Lo, (x y—&
=7 )., sinch, <E’ T) F(§)dé.
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2%: From Lemma 1, we have

1

F@) =
) J o, n)

e ﬁ(z)dz = Pl ﬁ(z)dz.

(2].[)61 [=7/h,7c/h)?
Considering the Fourier expansion of F in the cube [—m/h, /h)?, we have

1
2Ry

(k) — f FERIRE )y = ¢
[-R. R} -

where R =7, and ¢, are the Fourier coefficients of F. The Plancherel theorem of
Fourier series is

F(y)*dy = 2R)! s
/[_R’R]J ()Pdy = CRY Y lexl

keZ4

and the Plancherel theorem on L?-functions in R reads
[ Ewrdy = [ iEpRay=eny [ R0
RY [~ R, R)Y RY

So we have

1

— |F(y)PPd =/ |F(OPde =Y |Fhio)>. [
) . iy = | 1FO > |F(hk)

keZ!

CoroLLary 1 If f€ PWr ey (w/h), then for any x € R?,y € R, we have

o = [ sneh (3,27 o

1

_ yy Zd _ 2d _ hk 2.
(2m)! [—n/h,n/h]f/lf(k)| o4 /R,, Ao de Z|f( k)|

keZ?

From (8) and the co-dimension-p P-W theorem, we can obtain that sinc’}k(g/h, y/h)
belongs to  PWr, ri(/g/h). Furthermore, we can construct functions in
PWr, ®")(y/q/h) using the following Theorem.

THEOREM 2 Let Py € M} (p,k;C\P) be given, F e L*(RY) and take values in C.
Then f € PWTPk(Rq)(\/En/h), where

fx.p) = /R sinc}, (% )—%g)F(g)dg. (1
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Proof Applying the Parseval’s theorem to the right-hand side of equation (11), owing
to equation (9), we have

o~

A = o [ [sinc‘;k (Z,Xf)](—z)ﬁ@dz

e - .
= ) /R qh el (X, Y2 D) X/ mp (D F(0)dE

1 “
. /R e 0, Ot DR
1

= & (x, v, HF(0)dt.
(27.[)11 [—m/h,7c/h]? Pk(i ¥ _) (_) h

According to the evaluation (7) of e’,’,}\, we have
|Ax, ) < CeVa/"X | for any x € R”,y e RY.

By Lemma 1, we get f(x, y) € PWr, ®)(/qm/h). |
Next, the exact sincp, interpolation of functions in PWTP/C(Rq)(n/h) is given.

Tueorem 3 If f'€ PWr, rey(rw/h), then for any x € R”, y € RY,

fory) = LMy = 3 smcg( )F(hk) (12)

keZ?

where F is the initial value of f and the series on the right-hand side is absolutely and
uniformly convergent for any y € R? and x belongs to any bounded set in R”.

Proof  Since f(x,y) € PWr, ®e(w/h), Lemma 1 gives

flx,y) = eh (x, . DF(Dd1. (13)

(27T)q/[ /b, 7/

Expanding s‘}k(g, »,1) on the cube [—m/h,7w/h]? into its multiple Fourier series in
g-variables, we have

8[;,((&)_24) = Z ei(hli’l)ak(ﬁ,z), (14)
keZ?
where
h —i(hk,t
ak(i’ y) = —/ 81) (Ea ya £)€ l< g _> dl
- h (271)(1 [—=7/h,c/h)? P -
ht

QO S T

, (X ) hk
_smc’PA<h T)

are the Fourier coefficients of e’;,k (x,1,0).
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Substituting the series expansion (14) in the integral (13) and interchanging the order
of the summation and the integration due to the L’-convergence, we have

— hk\ -
X, v E "M Dsinch (ﬁ, Z—_)F ndz
f(_ .V) (27[)1/[ w/h,w/h] keZ4 b h h (_) -

x — hk 1 . R
/;/ e h (2m)! [—7/h,7/h)?
=) sindj, ( )F(hk)

keZ?

We next show the uniform convergence of the series on the right side.
In fact, for any positive number M, using the Cauchy—Schwarz inequality, we have

. x v —hk\|?
sinc), (ﬁ’ T)

Note that the function sﬁ’,k(g, »,0) € L*>([—mt/h,t/h]?). Using the Bessel inequality and
equation (7), for any bounded set U € R”, we have

. x y—hk\|?
sinc, (h’ h>

1/2 1/2

> IFho)

|kl) M

Z sinch, ( )F(hk) Z

|kl) M |kl) M

1/2

h q/2
< (271) e, (s Y I L2/, 7m0

2

|kl) M

h\ 72
<(z=) V"< (C<oo
~ \2n - ’

where y € RY, x € U. Owing to the estimate and equation (10), the series in equation (12)
is convergent uniformly and absolutely in U @ RY. [ |
The homogeneous co-dimension-p P-W theorem is stated as:

Lemma 2 [4] (Homogeneous co-dimension-p P-W theorem) Let F be analytic, defined
in RY, taking values in CD . the complex Clifford algebra generated by ep1, . . ., €piq, and
F e L*(RY). Q is a positive real number. Then the following two assertions are equivalent:

1° F has a homogeneous co-dimensional-p CK extension to R**4, denoted by f, and there
exists a constant C such that

|fx, )l < Ce®™, for any x € R”, y € RY.

O supp(F) C B(0, ).

Moreover, if one of the above conditions holds, we have

fxy) = / (5,7, OFE)E, for any x € R,y € RY.

@my’
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Corresponding to the Lemma 2, we have the exact sinc] interpolation of functions in
PWT](Rq)(JT/h).

Corollary 2 If f'€ PWr,re)(7w/h), then for any x € R,y € RY,

— hk
foep) = by = 3 smc”( : )f(hk)

keZ?

where

. 1
sincf(x, y) = @y /R ) (X, Y, DX, (DL,

and the series on the right-hand side is absolutely and uniformly convergent for any y € RY
and x belongs to any bounded set in R”.

Henceforth the article shall deal with the Shannon sampling theorem in relation to
the generalized Taylor series.
In [4], the co-dimension-p P-W theorem related to generalized Taylor series reads:

Lemma 3 Assume that f(x,y) is left-monogenic in R™ = R’ @ R? with the form (4).
For any k>0 and a € Ai, let Ty o(f)(y) = T;O)a(f)(y) be analytic, defined in RY,
taking values in C9, the complex Clifford algebra generated by epi1,...,€p1qs

Tio(/)(p) € L*(RY),
YN Pra@Tea( )] < Ce™™, for any x e R”, £ € RY,
k «

where Q2 is a positive real number. Then the following two assertions are equivalent:

1° There exists a constant C such that
|flx,p)| < Ce®™, for any x e R”,y € RY.

2% supp(Ti.o(f)) C B0, ), for any k > 0 and a € Ay.

Moreover, if one of the above conditions holds, we have

M) =Y Teats )=y )qZZ | b ofaneie a9

for any x e R’,y e RY and the series is converging uniformly on any compact set
in R” @ RY.

Next, the Shannon sampling theorem corresponding to the P-W theorem above is
obtained. For any /2 >0, denote
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PWryegre(t/h) ={ff1s left-monogenic in R” @ RYwith the form (4) and of exponential
type 7r/h, the initial values T o(/)(p) € L*(R%) and taking values in C9) }

THeorEM 4 If f'€ PWregre(rt/h), then for any x € R?,y € RY,

S )= C[Tiol ) h](x. p). (16)
k o
where
— hk
C[Tat s y) = ¥ sinef, (525 Tty ()
keZ?

and Ty o(f)(y) are the initial values of f. The series (16) and (17) on the right-hand side
are uniformly convergent on any compact set in R” @ RY.

Proof 1f f'€ PWygrgre(m/h), then f has the form in (15). Using Theorem 3, we obtain

— hk
Tea(x.) = C[ThalNH)x2) = Y sind, (f — —)Tk,a(f)(h@. 0

keZ4
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