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Abstract. Following the previous study on the unit ball of Delanghe et al,
half-Dirichlet problems for the upper-half space are presented and solved. The
solutions further lead to decompositions of the Poisson kernels, and the fact
that the classical Dirichlet problems may be solved merely by using Cauchy
transformation in the respective two contexts. We show that the only domains
for which the half-Dirichlet problems are solvable in the same pattern are balls
and half-spaces.
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1. Half-Dirichlet Problems on Surfaces

Let Φ(x) be a real-valued C∞ function and let Φ(x) = 0 represent a topologically
closed, C∞ and m-dimensional surface, Σ, in Rm+1, the latter being identified
with the linear subspace

R0,m+1 = {x = x0e0 + x | x0 ∈ R, x = x1e1 + · · · + xmem},
in the real Clifford algebra R0,m+1 generated by e0, e1, · · · , em, for m ≥ 1, satis-
fying the properties

eiej = −ejei, e2
i = −1, i, j = 0, 1, · · · , m, i �= j.

The complex Clifford algebra Cm+1 over Cm+1 generated by e0, e1, · · · , em is
defined to by

Cm+1 = R0,m+1

⊗
C.

The work was supported by research grant of the University of Macau No. RG079/04-
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We adopt the notation of Clifford algebras from [5]. In particular, a general
element a ∈ Cm+1 has the form

a =
∑

A

aAeA,

where aA ∈ C, A =< j1, · · · , jl, 0 ≤ j1 < · · · < jl ≤ m, and where eA = ej1 · · · ejl

are the reduced products of basis elements. Furthermore |a| =
(∑

A |aA|2
)1/2 is

the norm a ∈ Cm+1. The conjugate a is defined to be the tensor product of the
conjugation in R0,m+1 and the complex conjugation in C. Of central importance
is the fundamental solution of the Dirac operator (see below) in Rm+1 denoted by
E(x); it has the expression

E(x) =
1

Am+1

x

|x|m+1
,

where Am+1 is the area of the m-dimensional unit sphere in Rm+1.
We introduce the functions

α(x) =
1
2

(
1 + i

∂Φ(x)
|∂Φ(x)|

)
, β(x) =

1
2

(
1 − i

∂Φ(x)
|∂Φ(x)|

)
,

where ∂ is the usual Dirac operator ∂ = ∂
∂x0

e0 + ∂
∂x1

e1 + · · ·+ ∂
∂xm

em, and i is the
usual imaginary unit in the complex number system. The vector ∂Φ(x)/|∂Φ(x)| is
a unit normal vector of the surface Σ to the point x on Σ, denoted by

nx =
∂Φ(x)
|∂Φ(x)| .

We assume that the surface is orientable and divides the whole space into two
open regions of which at least one is simply-connected, denoted by Ω. Thus nx is
the well defined “outward” or “inward” pointing unit normal of Ω. In this note it
is on Ω that the Dirichlet problem and half-Dirichlet problems will be studied.

For each fixed x ∈ Σ, α(x) and β(x) are hermitian orthogonal primitive idem-
potents in Cm+1, i.e.

α2(x) = α(x), β2(x) = β(x);

α(x)β(x) = β(x)α(x) = 0;

α(x) = α(x), β(x) = β(x).
Moreover,

α(x) + β(x) = 1.

The functions α and β give rise to Hardy-space projections as Fourier mul-
tiplier operators, acting on the frequency domain of the functions. The represen-
tations of those projections on the space domain are singular integrals. The study
may be found in [4], [9], [10], and lately in [8]. In this note, however, use of those
functions is made directly in the space domain of the functions.

The half Dirichlet problems with respect to α and β are formulated as follows.
Given a boundary data f ∈ Cλ(Σ), 0 < λ < 1, where Cλ(Σ) denotes the class of
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Hölder continuous functions of degree λ, or f ∈ Lp(Σ), 1 < p < ∞, find W (x) such
that {

∂W (x) = 0 x ∈ Ω
α(x)W (x) = α(x)f(x) x ∈ Σ,

(1.1)

{
∂W (x) = 0 x ∈ Ω
β(x)W (x) = β(x)f(x) x ∈ Σ.

(1.2)

The cases p = 1 and p = ∞ require more delicate analysis that will be
omitted in this paper. The following two sections will be devoted to solving the half
Dirichlet problems in the unit ball and in the upper-half space Rm+1, respectively.
We will also discuss the Dirichlet problems and the corresponding decompositions
of the Poisson kernels in these contexts. In the third section we will show that balls
and half-spaces are the only cases for which half Dirichlet problems have solutions
of similar structure.

2. Half Dirichlet Problems in the Unit Ball

Denote the open unit ball centered at the origin by B(1) whose closure is B(1). As
boundary of B(1), the unit sphere is denoted by Sm. The unit sphere consists of
the points on the surface Φ(x) = 1, where Φ(x) = |x|2. Consider the level surfaces
Φ(x) = r ≤ 1 in the closed ball B(1). The idempotent functions α and β on the
level surfaces are

α(x) =
1
2
(1 + ix), β(x) =

1
2
(1 − ix).

We have
α(x)β(x) = β(x)α(x) = 1 − |x|2.

If, in particular, x = rω with r = 1, i.e. x is on the unit sphere, then we have

α(ω)β(ω) = β(ω)α(ω) = 0.

The Cauchy transform of a given boundary data f is given by

C(f)(x) =
∫

Sm

Cx(ω)f(ω)ds(ω),

where
C(x, ω) =

1
Am+1

ω
x − ω

|x − ω|m+1

is the Cauchy kernel on the sphere.
Throughout the paper we will adopt the inner product notation for the above

integral, viz.
C(f) =< Cx, fΣ,

while in general we define

< g, fΣ =
∫

Σ

g(ω)f(ω)ds(ω).
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To solve the half Dirichlet problem in relation to α, for instance, one considers
the Cauchy integral C(f) = CSm(f) of the function 2α(ω)f(ω) inside the unit ball,
where f(ω) is the boundary data given in (1.1), i.e.

C(2αf)(x) =
1

Am+1

∫

Sm

x − ω

|x − ω|m+1
ω[2α(ω)f(ω)]ds(ω)

=
1

Am+1

∫

Sm

x − ω

|x − ω|m+1
ω(1 + iω)f(ω)ds(ω).

Set
Wα(x) = C(2αf)(x).

Write x = rξ, we have
(i) Wα(x) is (left-) monogenic in B(1);
(ii)

lim
r→1−

Wα(rξ) = W (ξ) (as definition)

=
1
2

[2α(ξ)f(ξ) + H(2αf)(ξ)] ,

where H is the Hilbert transformation on Cλ(Sm) and Lp(Sm). (ii) is the so called
Plemelj-Sokhotzki formula. The Hilbert transform of a general function f on the
sphere is defined to be the principal value integral

H(f)(x) = p.v.
2

Am+1

∫

Sm

ξ − ω

|ξ − ω|m+1
ωf(ω)ds(ω).

The fact that H maps Cλ(Sm) to Cλ(Sm) as a bounded operator is traced
back to [11]; and that H maps Lp(Sm) to Lp(Sm), is based, for p = 2, on the
Plancherel theorem on the sphere; for p �= 2 we refer to [2] or [4]. The validity of the
Plemelj-Sokhotzki formula for functions in Lp is a consequence of the boundedness
of H in the Lp spaces (see [12] or [14]).

Note that the use of the terminology Hilbert transformation is not uniform
among analysts. Some authors call the above defined H the Cauchy singular in-
tegral on the sphere. They instead use the terminology Hilbert transformation for
the mapping that maps the real part to the imaginary part of the boundary value
of a (left-) monogenic function in Ω (see, for instance, [1]). On the upper-half space
the two concepts coincide but this does not happen for general domains including
balls.

Now consider the function α(x)Wα(x). Taking the limit to the boundary, we
have

lim
r→1−

α(x)Wα(x) = α(ξ)Wα(ξ)

= α2(ξ)f(ξ) + α(ξ)H(αf)(ξ)
= α(ξ)f(ξ) + α(ξ)H(αf)(ξ).

But, as

(1 + iξ)(ξ − ω)ω(1 + iω) = 0, (2.1)
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we obtain
α(ξ)H(αf)(ξ) = 0.

Consequently,
lim

r→1−
α(x)Wα(x) = α(ξ)f(ξ)

Therefore, Wα solves the problem (1.1). Similarly,

W β(x) = C(2βf)(x)

solves the problem (1.2).
The above solutions Wα and W β to the problems (1.1) and (1.2), respectively,

give rise to the solutions of the classical Dirichlet problem: Given boundary data
f ∈ Cλ(Σ), 0 < λ < 1 or f ∈ Lp(Σ), 1 < p < ∞, find U(x) such that

{
∆U(x) = 0 x ∈ B(1)
U |Sm(x) = f(x) x ∈ Sm,

(2.2)

We recall the following facts.
(i) Wα and W β are left-monogenic in B(1); and
(ii) For any (left-) monogenic function f in the open set Ω ⊂ Rm+1, the

function xf(x) is harmonic in Ω (see, for instance, [5]).
We therefore have that α(x)Wα(x) and β(x)W β(x) both are harmonic in

B(1). Hence

U(x) = α(x)Wα(x) + β(x)W β(x) (2.3)

is harmonic in B(1). Moreover,

lim
r→1−

U(rξ) = α(ξ)Wα(ξ) + β(ξ)W β(ξ)

= α(ξ)f(ξ) + β(ξ)f(ξ)
= f(ξ).

Consequently, U(x) solves the Dirichlet problem (2.2).
The solutions Wα and W β to the problems (1.1) and (1.2) also give rise to a

decomposition of the Poisson kernel on the sphere. Note that the solution of (2.2)
is given by

U(x) =
∫

Sm

P (x, ω)f(ω)ds(ω),

where

P (x, ω) =
1

Am+1

1 − |x|2
|x − ω|m+1

, x ∈ B(1), ξ ∈ Sm,

is the Poisson kernel on the sphere. The solutions Wα and W β now motivate to
define the functions

Cα
x (ω) =

2
Am+1

α(x)
x − ω

|x − ω|m+1
ωα(ω)

and
Cβ

x (ω) =
2

Am+1
β(x)

x − ω

|x − ω|m+1
ωβ(ω).
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Due to the simple relation

(1 + ix)(x − ω)ω(1 + iω) + (1 − ix)(x − ω)ω(1 − iω) = 2(1 − |x|2),
we obtain the decomposition

P (x, ω) = Cα
x (ω) + Cβ

x (ω), (2.4)

and hence the solutions α(x)Wα(x) and β(x)W β(x) are given, respectively, by

α(x)Wα(x) =
∫

Sm

Cα
x (ω)f(ω)ds(ω) (2.5)

and

β(x)W β(x) =
∫

Sm

Cβ
x (ω)f(ω)ds(ω). (2.6)

Remarks
(i) The solutions of (1.1) and (1.2) for the unit ball case are already discussed

in the paper [7].
(ii) Formula (2.3), together with (2.5) and (2.6), may be written as

U(x) = α(x)
∫

Sm

Cx(ω)(2αf)(ω)ds(ω) + β(x)
∫

Sm

Cx(ω)(2βf)(ω)ds(ω),

thus indicating the fact that the classical Dirichlet problem (2.2) for the unit ball
may be solved by using the Cauchy transformation only.

(iii) It is based on the splitting (2.4) that we obtain the decomposition (2.3).
Indeed, apart from the decomposition (2.4) all the other results may already be
found in [7]. The latter paper uses the splitting

P (x, ω) = Pα(x, ω) + P β(x, ω),

where
Pα(x, ω) = α(x)P (x, ω), P β = β(x)P (x, ω).

The observation that the Dirichlet problem for ∆ in B(1) can thus be solved by
using the Cauchy transformation was not explicitly made, although it is implicitly
presented in [7] Theorem 3.2 (i).

(iv) In [6], it is proved that the unique solution to the problem (2.2) reads

U(x) = F1(x) + xF2(x), (2.7)

where
F1(x) =< Sx(ω), f(ω)Sm

and
F2(x) =< Sx(ω), ωf(ω)Sm ,

and Sx(ω) is the Szegö kernel for the ball. Note that for the ball, Sx(ω) = Cx(ω).
We thus have that F1 and F2 both are (left-) monogenic in B(1). If f is square-
integrable, then F1, F2 belong to the Hardy space H2(B(1)) with

lim
r→1−

F1(rξ) = Pf(ξ)
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and
lim

r→1−
F2(rξ) = P(ωf)(ξ),

where P is the orthogonal projection operator of L2(Sm) onto H2(Sm).
Notice that the decomposition (2.7) was obtained by using the following

decomposition of P (x, ω) :

P (x, ω) = Sx(ω) + xSx(ω)ω, x ∈ B(1), ω ∈ Sm.

Since for the ball Sx(ω) = Cx(ω), this again shows that the classical Dirichlet
problem may be solved by merely using the Cauchy transformation.

(v) Notice that (2.7) generalizes to Rm+1 the following result concerning the
Dirichlet problem for the unit disc in the complex plane C (see [2]).

Given f ∈ L2(S1), the solution u to
{

∆u(x) = 0 x ∈ B(1)
u|S1(x) = f(x) x ∈ S1,

(2.8)

is given by
u(z) = h(z) + H(z),

where
h(z) = (Sf)(z)

and
H(z) = zS(zf)

are both holomorphic in B(1), where S is the Szegö transform on L2(S1).

3. Half Dirichlet Problems in the Upper Half Space

Throughout this section we take Ω = Rm+1
+ , where

Rm+1
+ = {(x0, x) ∈ Rm+1 : x0 > 0}.

The boundary of Ω is Σ = Rm. Note that the vector e0 is the unit normal of the
surface Rm outward pointing with respect to Rm+1

+ . The Cauchy kernel on Rm+1
+

is
Cx(y) =

1
Am+1

e0

x − y

|x − y|m+1
, x ∈ Rm+1

+ , y ∈ Rm.

The Cauchy transformation on Lp(Rm), 1 < p < ∞, is given by

Cf(x) =< Cx, f =
1

Am+1

∫

Rm

x − y

|x − y|m+1
e0f(y)dy.

It enjoys the following properties:
(i) Cf ∈ Hp(Rm+1

+ ), the Hardy space on the upper-half space, for f ∈
Lp(Rm); (ii) (Plemelj-Sokhotzki)

lim
x0→0+

Cf(x0, x) = (Cf)+(x)

=
1
2
[f(x) + Hf(x)],
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where H is the Hilbert transformation on Rm. Note that in the present case
H maps the real part to the imaginary part of the boundary value of a (left-)
monogenic function in the upper-half space Rm+1

+ . The boundedness of the Hilbert
transformation is referred to that of the Riesz transformations ([14]).

We now solve the corresponding half Dirichlet problems in the upper-half
space with the idempotent functions

σ± =
1
2
(1 ± ie0).

Note that they are just the functions α(x) and β(x) defined in §1 and they are
constant functions. The half Dirichlet problems are posed as follows.

Given u ∈ Lp(Rm), 1 < p < ∞, find W in Rm+1
+ such that (1.1) and (1.2)

hold respectively for α(x) = σ+ and β(x) = σ−, where f = u, Ω = Rm+1
+ , Σ = Rm.

We claim that the half Dirichlet problems are solved by

W±(x) = C(2σ±u)(x).

Indeed, we have ∂xW±(x) = 0, and, as a matter of fact, W± ∈ H2(Rm+1
+ ). As for

the boundary conditions, let us show that

lim
x0→0+

σ+W+(x0, x) = σ+u(x),

the case for W− being similar.
The boundedness of the Riesz transforms imply the Plemelj-Sokhotzki for-

mula. We therefore have

lim
x0→0+

W+(x0, x) =
1
2
[2σ+u(x) + H(2σ+u)(x)].

Notice that for x, y ∈ Rm,

(1 + ie0)(x − y)e0(1 + ie0) = 0, (3.1)

whence
σ+H(σ+u) = 0.

Together with the fact that σ+2 = σ+, we get

lim
x0→0+

σ+W+(x0, x) = σ+u(x).

Analogously,
lim

x0→0+
σ−W−(x0, x) = σ−u(x).

Now we consider a similar decomposition of the Poisson kernel in terms of the
Cauchy kernel and the corresponding solution of the classical Dirichlet problem.

Define, for (x, y) ∈ Rm+1
+ × Rm, the kernel functions

C±
x (y) =

2
Am+1

σ± x − y

|x − y|m+1
e0σ

±.

A straightforward computation shows that

4x0 = (1 + ie0)(x − y)e0(1 + ie0) + (1 − ie0)(x − y)e0(1 − ie0),
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which then leads to the following decomposition of the Poisson kernel P (x, y) for
Rm+1

+ :

P (x, y) =
2

Am+1

x0

|x − y|m+1
= C+

x (y) + C−
x (y), x ∈ Rm+1

+ ; y ∈ Rm

Consequently, for u ∈ Lp(Rm) given,
∫

Rm

P (x, y)u(y)dy =
∫

Rm

C+
x (y)u(y)dy +

∫

Rm

C−
x (y)u(y)dy

= σ+W+(x) + σ−W−(x).

As σ+W+ and σ−W− both are harmonic in Rm+1
+ , and

lim
x0→0+

(
σ+W+(x0, x) + σ−W−(x0, x)

)
= u(x),

it follows that the (unique) solution to the classical Dirichlet problem
{

∆U(x) = 0 x ∈ Rm+1
+

U |Rm(x) = u(x) x ∈ Rm,
(3.2)

is given by
U(x) = σ+W+(x) + σ−W−(x).

This shows that the Dirichlet problem may be solved by using the Cauchy trans-
formation.

As in the unit ball case we now cite the decomposition of the Poisson kernel
and the corresponding decomposition of the solution of the Dirichlet problem (3.2)
in relation to the Szegö kernel in the upper half space.

For the half-space case the Szegö kernel, as in the ball case, is the same as
the Cauchy kernel (see [3]):

Sx(y) =
1

Am+1
e0

x − y

|x − y|m+1
= Cx(y).

Due to the elementary relation

(x − y)e0 + e0

(
(x − y)e0

)
e0 = 2x0,

we obtain

P (x, y) = Sx(y) + e0Sx(y)e0. (3.3)

Correspondingly, we have the decomposition of the solution of the Dirichlet prob-
lem:

U(x) = F1 + e0F2, x ∈ Rm+1
+ (3.4)

where
F1(x) =< Sx, u, F2(x) =< Sx, e0u.

Note that for u ∈ L2(Rm), F1 and F2 both belong to the Hardy space H2(Rm+1
+ ).

The decomposition (3.4) was already obtained in [6].
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4. Half Dirichlet Problems for General Domains

Let the boundary surface Σ of a general domain Ω be given by Φ(x) = 0. We recall
that the primitive idempotents are defined by

α(x) =
1
2

(
1 + i

∂Φ(x)
|∂Φ(x)|

)
, β(x) =

1
2

(
1 − i

∂Φ(x)
|∂Φ(x)|

)
,

where the vector ∂Φ(x)/|∂Φ(x)| is a unit normal vector to the surface Σ at the
point x ∈ Σ, denoted by

nx =
∂Φ(x)
|∂Φ(x)| .

For the ball case Φ(x) =
∑m

k=0 xk2 − 1 and for the upper half space case
Φ(x) = x0. For these cases nx = x

|x| and nx = e0, respectively. In the former two
sections the crucial relations for developing the theories in the two contexts are
(2.1) and (3.1), respectively. If the half Dirichlet problems (1.1) and (1.2) were
solvable in the same pattern, then the following relation should hold

(1 + inx)(x − y)ny(1 + iny) = 0.

Through simple computation, taking into account n2
y = −1, there then would hold

[(x − y)ny + nx(x − y)] + i[nx(x − y)ny − (x − y)] = 0,

or
(x − y)ny + nx(x − y) = 0 and nx(x − y)ny − (x − y) = 0.

By multiplying nx to both sides of the second equation, it becomes the same as
the first, and they further reduce to the relations

< x − y, ny+ < x − y, nx = 0, and (x − y) ∧ ny − (x − y) ∧ nx = 0,

or
(x − y) ⊥ (nx + ny) and (x − y) ‖ (nx − ny).

The last two conditions imply that the surface must be a sphere or an m-dimen-
sional hyperplane, which are exactly the two cases studied in the previous two
sections. We thus could not expect to have an analogous theory on the surfaces
other than spheres and half-spaces.
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