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Abstract

With the newly developed octonion analytic function theory, we confirm the octonionic analogue of the Calderón’s conjecture.
As application, we obtain the Plemelj formula in octonionic space.
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0. Introduction

Let z(x) = x + iA(x), where A :R → R, ‖A′‖∞ < ∞. Then the graph Γ of z = z(x), x ∈ R, is a Lipschitz curve
in the complex plane. The classical Cauchy integral of f on Γ is given by

(Cf )(x) = p.v.

+∞∫
−∞

f (y)

z(x) − z(y)
dy,

and there was a long history to study the Cauchy integral operator on smooth curves, because of the essential technical
difficulties, there were no significant progress on Lipschitz curves till 1970s. In 1977, by using complex analysis
methods, A.P. Calderón proved the L2-boundedness of the operator when ‖A′‖∞ is small [5]. He conjectured that, in
general, the Cauchy integral operator is bounded in L2 for all A such that ‖A′‖∞ < ∞ [6,7].

The conjecture was first proved by Coifman, McIntosh and Meyer, known as the CMcM theorem [10]. Since then,
many alternative proofs, including those for its higher dimensional generalizations, were given [9,11,12,27,28,30].

C. Kenig and Y. Meyer proved that in the one-dimensional case the Calderón’s conjecture is equivalent with the
square root problem [16].
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By embedding Rn into Clifford algebras, using Clifford monogenic function theory, the Lp-boundedness of the
Cauchy integral operators on Lipschitz surfaces in Euclidean spaces was proved by M.M. Murray [30] (for surfaces
with small Lipschitz constants) and by McIntosh for the general case [27]. The result is also a consequence of the
lately proved, and celebrated, T (b) theorem by David, Journé and Semmes [12]. The higher dimensional analogue of
the T (b) theorem played an important role in the solution of the Kato square root problem [1].

In [28], McIntosh and Qian studied the bounded holomorphic functional calculus of the Dirac operator on a Lip-
schitz curve γ , that is an operator algebra equivalent with the convolution operators of certain holomorphic functions φ

with u ∈ Lp(γ ). They obtained the Lp-boundedness of the convolution singular integral operators on γ . An important
fact is that when ϕ = i

πz
, the convolution singular integral operator is just the Cauchy integral operator.

In [9], using Clifford monogenic function theory, Chun Li, McIntosh and Semmes generalized the methods and
results in [28] to higher dimensional cases. The related Fourier multiplier theory is provided in [8].

The other stream is to study singular integrals on more general curves and surfaces, including “chord-arc” curves
and “regular” curves and surfaces, but restricted to kernels of the Cauchy type, or close ones. For this, see, for instance,
the related work by D. Jerison, C. Kenig, G. David and S. Semmes.

Let Σ be the Lipschitz surface Σ = {G(x)e0 + x ∈ Rn+1: x ∈ Rn}, where G is a real-valued function satisfying
‖∇G‖∞ � tanω < ∞, where 0 � ω < π

2 . For 0 < μ < π
2 , the open cones C0

μ+ , C0
μ− in Rn+1 are defined by

C0
μ+ = {

x = x0 + x ∈ Rn+1: x0 > −|x| tanμ
}
,

C0
μ− = −C0

μ+ .

The Banach spaces K(C0
μ±) consist of the functions φ, with values in complex Clifford algebra C(n), and right-

monogenic in C0
μ± for which

‖φ‖K(C0
μ± ) = σn sup

{|x|n∣∣φ(x)
∣∣: x ∈ C0

μ±
}

< ∞,

where σn is the volume of the unit n-sphere in Rn+1. Given φ ∈ K(C0
μ±) and r > 0, define a function φ(r) by

φ±(r) =
∫

|x|=r,±x0>0

φ(x)n(x) dSx,

where n(x) is the upward pointing normal to the sphere {x ∈ Rn+1: |x| = r} and dSx = √
1 + |∇G(x)|2 dx. In [9],

Chun Li, McIntosh and Semmes proved the following result.

Theorem A. Suppose that ω < μ < π
2 and 1 < p < ∞. Given φ ∈ K(C0

μ±), there is a bounded operator Tφ on
Lp(Σ,C(n)) defined for all u ∈ Lp(Σ,C(n)) and almost all x ∈ Σ , by

(Tφu)(x) = lim
δ→0+

{ ∫
Σ

Φ(x ± δ − y)n(y)u(y) dSy

}

= lim
ε→0+

{ ∫
y∈Σ

|x−y|�ε

Φ(x − y)n(y)u(y) dSy + φ±
(
εn(x)

)
u(x)

}
.

Moreover∥∥(Tφu)
∥∥

p
� Cω,μ,p‖φ‖K(C0

μ± )‖u‖p,

where φ±(εn(x)) is the suitable bounded function extended from φ±(r).

This theorem generalizes the higher dimensional Calderón’s conjecture in [27,30].
The purpose of this paper is to present an octonionic analogue of the Calderón’s conjecture.
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We note that the proofs of Theorem A rely on the following facts:

(1) If f (x) is a right Clifford monogenic function, a is any Clifford constant, then the function af (x) is still a right
Clifford monogenic function. That is to say, the set of right Clifford monogenic functions becomes a left Clifford
module.

(2) If g(x) is a right Clifford monogenic function, f (x) is any Clifford valued function, then their convolution f ∗ g

is also a right Clifford monogenic function.

Since octonions algebra is not associative, these are not true in octonionic analysis [18], however. In this paper, to
prove our result, we need an extra condition, along which new methods and some new results are to be explored.

The organization of the paper is as follows. Section 1 is devoted to the necessary preliminaries on octonionic
analysis. Section 2 contains the statements of our main results. In Section 3, also as preparation, some technical
results in octonions are proved. In Section 4 we prove our main results stated in Section 2.

1. Octonionic analysis

It is well known [2,3,15] that there are only four normed division algebras: the real numbers R, complex numbers C,
quaternions H and octonions O , satisfying the relations R � C � H � O . In other words, for any x, y ∈ Rn, if we

define a product x · y such that x · y ∈ Rn, and |x · y| = |x||y|, where |x| =
√∑n

1 x2
i , then the only four values of n

are 1, 2, 4, 8. Quaternions algebra H is not commutative, while the octonions algebra O is neither commutative nor
associative, and, unlike R, C and H , the non-associative octonions cannot be embedded into the associative Clifford
algebras.

Let e0, e1, . . . , e6, e7 be the basis elements of octonions O , and let

W = {
(1,2,3), (1,4,5), (2,4,6), (3,4,7), (2,5,7), (6,1,7, ), (5,3,6)

}
,

then the multiplication rules between the basis elements are given as follows [15,23]:

e2
0 = e0, eαe0 = e0eα = eα, e2

α = −1, α = 1,2, . . . ,7,

and for any triple of (α,β, γ ) ∈ W ,

eαeβ = eγ = −eβeα, eβeγ = eα = −eγ eβ, eγ eα = eβ = −eαeγ .

Denote a = ∑7
0 akek , b = ∑7

0 bkek (ak, bk ∈ R, k = 0,1, . . . ,7) by a = a0 + 	A, b = b0 + 	B , then ab = a0b0 +
a0 	B + b0 	A − 	A · 	B + 	A × 	B , where

	A × 	B = e1(A2,3 + A4,5 − A6,7) + e2(−A1,3 + A4,6 + A5,7)

+ e3(A1,2 + A4,7 − A5,6) + e4(−A1,5 − A2,6 − A3,7) + e5(A1,4 − A2,7 + A3,6)

+ e6(A1,7 + A2,4 − A3,5) + e7(−A1,6 + A2,5 + A3,4),

and

Aij = det

(
ai aj

bi bj

)
, i, j = 1,2, . . . ,7.

We have [20,31]

( 	A × 	B) · 	A = 0, ( 	A × 	B) · 	B = 0, 	A// 	B ⇐⇒ 	A × 	B = 0, 	A × 	B = − 	B × 	A.

For each x ∈ O , x is of the form x = ∑7
0 xkek , xk ∈ R. x0 is called the scalar part of x, denote it by Scx, or Sc{x},

if ambiguity may arise. Its conjugate is defined by x = ∑7
0 xkek , where e0 = e0, ej = −ej , j = 1,2, . . . ,7. We have

eiej = ej ei , i, j = 1,2, . . . ,7, and xy = yx, xx = xx = ∑7
0 x2

i =: |x|2. So, if O � x 
= 0, then x−1 = x

|x|2 .
The object [a, b, c] = (ab)c − a(bc) is defined to be the associator of a, b, c. Just like the commutator [a, b] =

ab − ba to measure the failure of commutativity, the associator is to measure the failure of the associativity.
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The octonions obey some weakened associative laws, including the so-called R. Moufang identities [2,15]: for all
x, y, z,u, v ∈ O ,

[x, x, y] = 0, [x, x, y] = 0, [x, y, z] = [y, z, x] = [z, x, y],
[x, z, y] = −[z, x, y], [y, x, z] = −[y, z, x], [y, x, z] = −[z, x, y],
(uvu)x = u

(
v(ux)

)
, x(uvu) = (

(xu)v
)
u, u(xy)u = (ux)(yu).

The functions, f , under study will be defined in an open and connected set in R8, with the form f (x) =∑7
0 ekfk(x), where fk(x) (k = 0,1, . . . ,7), are real-valued functions.
The Dirac operator D and its conjugate D are the first-order systems of differential operators on C∞(Ω,O),

defined, respectively, by

D =
7∑
0

ek

∂

∂xk

, D =
7∑
0

ek

∂

∂xk

.

A function f in C∞(Ω,O) is said to be left (right) octonion analytic on Ω , if

Df =
7∑
0

ek

∂f

∂xk

= 0

(
f D =

7∑
0

∂f

∂xk

ek = 0

)
.

Let M be an 8-dimensional, compact, oriented C∞-manifold with boundary ∂M contained in some open
connected subset Ω of R8. Let dσ(x) = ∑7

0(−1)j ej d
∧
xj , ν = f (x)dσ (x) with the exterior derivatives dν =∑7

0(−1)j
∂f
∂xj

ej dxj ∧ d
∧
xj = (f (x)D)dV (x), where dV (x) = dx0 ∧ · · · ∧ dx7 is the volume element on Ω . For each

x ∈ ∂M , let n(x) = ∑7
0 nj ej be the outer unit normal to ∂M at x. Then (−1)j d

∧
xj = nj (x) dS(x), where dS(x) is the

scalar element of surface area on ∂M , and dσ = ndS, ν = f (x)n(x) dS(x). Let Φ(x) = 1
ω7

x

|x|8 (x 
= 0), where ω7

is the surface area of the unit sphere in R8, we have the Cauchy theorem and the Cauchy integral formula for right
octonion analytic functions [20].

Theorem B. Let M be a compact, 8-dimensional, oriented C∞ manifold in Ω . Then∫
∂M

ν =
∫

∂M

f (x)n(x) dS(x) = 0

for any function f which is right octonion analytic in Ω .

Theorem C. M,Ω are as above, f D = 0, x ∈ Ω . Then for any interior point z of M ,

f (z) =
∫

∂M

(
f (x)dσ (x)

)
Φ(x − z) =

∫
∂M

f (x)
(
dσ(x)Φ(x − z)

) +
∫
M

7∑
t=0

[
et ,Dft (x),Φ(x − z)

]
dV,

and for any z ∈ Ω \ M ,
∫
∂M

(f (x) dσ (x))Φ(x − z) = 0.

Remarks. We denote the complexification of O by Oc . Thus, x ∈ Oc is of the form x = ∑7
k=0 xkek , xk ∈ C. x0 is

still called the scalar part of x and denoted by Sc{x}. The norm of x ∈ Oc is defined by |x| = ∑7
0 |xk|2, and we can

easily show that for any x, y ∈ Oc , |xy| � 82|x||y|. Note that Oc is no longer a division algebra, and by checking the
proofs, we claim that the theorems stated above are also true in this case.

For other results and more information about Clifford analysis and octonionic analysis, we refer the reader to
references [4,13,17–25].
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2. Main results

Let Σ denote the Lipschitz surface consisting of points x = G(x)e0 + x ∈ O , where x ∈ R7, and G is a real-
valued Lipschitz function which satisfies ‖∇G‖∞ � tanω < ∞, where 0 � ω < π/2. If 1 � p < ∞, Lp(Σ,Oc) is the
space of functions u :Σ → Oc, which satisfy ‖u‖p = {∫

Σ
|u|p dSx}1/p < ∞, where dSx = √

1 + |∇G(x)|2 dx. For
0 < μ < π

2 , define the open cones C0
μ+ , C0

μ− in R8 by

C0
μ+ = {

x = x0 + x ∈ R8: x0 > −|x| tanμ
}
, C0

μ− = −C0
μ+ .

Denote by K(C0
μ±) the spaces of the right octonion analytic functions φ in C0

μ± , respectively, with

‖φ‖K(C0
μ± ) = ω7 sup

{|x|7∣∣φ(x)
∣∣: x ∈ C0

μ±
}

< ∞.

It may be easily verified that K(C0
μ±) are Banach spaces. Given φ ∈ K(C0

μ±) and r > 0, define

φ±(r) =
∫

|x|=r,±x0>0

φ(x)n(x) dSx,

where n(x) is the upward pointing normal to the sphere {x ∈ R8: |x| = r}. Note that φ±(r) can be extended to the

open cone T 0
μ = {y = y0 + y ∈ R8: y0 > |y| cotμ} by

φ±(rt) = φ±(r) −
∫

A(r,t)

(
φ(x) + φ(−x)

)
n(x)dSx, t ∈ T 0

μ, |t | = 1, r > 0,

where A(r, t) = {x ∈ R8: |x| = r, x0 > 0, 〈x, t〉 < 0}, and n(x) is the exterior normal to A(r, t) at the point x,
〈x, t〉 is the usual inner product in R8.

Our main results of this paper are as follows.

Theorem 2.1. Suppose that 0 � ω < μ < π
2 and 1 < p < ∞, φ ∈ K(C0

μ±) satisfying that for any constant a ∈ Oc,

[
a,φ(x),D

] =
[
a,φ(x),

7∑
0

ek

∂

∂xk

]
= 0, (1)

where [a,φ(x),D] = (aφ(x))D − a(φ(x)D). Then there is a bounded operator Tφ on Lp(Σ,Oc) defined for all
u ∈ Lp(Σ,Oc) and almost all x ∈ Σ by

Tφu = lim
δ→0+

∫
Σ

φ(x ± δ − y)
(
n(y)u(y)

)
dSy

= lim
ε→0+

{ ∫
y∈Σ, |x−y�ε

φ(x − y)
(
n(y)u(y)

)
dSy + φ±

(
εn(x)

)
u(x)

}
,

where n(x) is the upward pointing unit normal vector to Σ which is defined at almost all x ∈ Σ .
Moreover

‖Tφu‖p � Cω,μ,p‖φ‖K(C0
μ± )‖u‖p

for some constants Cω,μ,p which depend only on ω,μ and p.
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Theorem 2.2. Let Φ(x) = 1
ω7

x

|x|8 (x 
= 0), then there are bounded linear Cauchy operators P+, P−, and CΣ on

Lp(Σ,Oc) (1 < p < ∞), defined for all u ∈ Lp(Σ,Oc) and almost all x ∈ Σ by

(P±u)(x) = ± lim
δ→0+

∫
Σ

Φ(x ± δ − y)
(
n(y)u(y)

)
dSy,

(CΣu)(x) = 2 p.v.
∫
Σ

Φ(x − y)
(
n(y)u(y)

)
dSy.

Moreover,

P± = 1

2
(±CΣ + I ),

I = P+ + P−,

CΣ = P+ − P−.

This theorem generalizes the Plemelj formulas in [9,14,32,33], and it played an important role in proving the
Paley–Wiener theorem in octonions [26].

3. Technical preparations

Lemma 3.1. (See [24].) Let ei, ej , ek be any distinct elements of {e1, e2, . . . , e7} and (eiej )ek 
= ±1. Then (eiej )ek =
−ei(ej ek).

Theorem 3.2. For any i, j, k ∈ {0,1,2, . . . ,7},
[ei, ej , ek] = 0 ⇐⇒ ijk = 0, or (i − j)(i − k)(j − k) = 0, or (eiej )ek = ±1.

The tedious checking proof of Theorem 3.2 is omitted here.
From Theorem 3.2, we can prove the following theorem, its proof is also omitted.

Theorem 3.3. For any i, j, k ∈ {0,1,2, . . . ,7},Sc{[ei, ej , ek]} = 0.

Theorem 3.4. For any x, y, z ∈ Oc, we have Sc{(xy) z} = Sc{x (yz)}.

Proof. Let x = ∑7
0 xiei, y = ∑7

0 yj ej , z = ∑7
0 zkek , where xi, yj , zk ∈ C. By Theorem 3.3,

Sc
{[x, y, z]} = Sc

{ ∑
0�i,j,k�7

xiyj zk[ei, ej , ek]
}

=
∑

0�i,j,k�7

xiyj zkSc
{[ei, ej , ek]

} = 0,

the result follows. �
For x = ∑7

0 xkek , y = ∑7
0 ykek ∈ Oc , their inner product is defined by

(x, y) =
7∑
0

xkyk = (xy)0 = (yx)0,

where y = ∑7
0 yk ek, yk is the complex conjugate of yk . For any u,v,w ∈ Oc, by Theorem 3.4,

(uv,w) = (
(uv)w

)
0 = (

w(uv)
)

0 = (
(wu)v

)
0 = (

(uw)v
)

0 = (v,uw).

Thus we obtain the following useful result.

Corollary 3.5. (uv,w) = (v,uw) for any u,v,w ∈ Oc.
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Remark. Corollary 3.5 is critical for the proof of Theorem 3.7 as given below.

From Theorem 3.4, we can also obtain the following interesting result, which generalizes the corresponding result
in R3 to R7.

Corollary 3.6. 	A · ( 	B × 	C) = ( 	A × 	B) · 	C for any 	A, 	B, 	C ∈ R7.

Proof. Let a = a0 + 	A,b = b0 + 	B,c = c0 + 	C, where a0, b0, c0 ∈ R. Then,

(ab)c = (a0b0 − 	A · 	B + a0 	B + b0 	A + 	A × 	B)(c0 + 	C)

= (a0b0 − 	A · 	B)c0 + (a0b0 − 	A · 	B) 	C + c0(a0 	B + b0 	A + 	A × 	B)

− (a0 	B + b0 	A + 	A × 	B) · 	C + (a0 	B + b0 	A + 	A × 	B) × 	C;
a(bc) = (a0 + 	A)(b0c0 − 	B · 	C + b0 	C + c0 	B + 	B × 	C)

= a0(b0c0 − 	B · 	C) + a0(b0 	C + c0 	B + 	B × 	C) + (b0c0 − 	B · 	C) 	A
− 	A · (b0 	C + c0 	B + 	B × 	C) + 	A × (b0 	C + c0 	B + 	B × 	C).

So, we have

Sc
{
(ab)c

} = (a0b0 − 	A · 	B)c0 − (a0 	B + b0 	A + 	A × 	B) · 	C,

Sc
{
a(bc)

} = a0(b0c0 − 	B · 	C) − 	A · (b0 	C + c0 	B + 	B × 	C).

By invoking Theorem 3.4 we conclude the corollary. �
Let Ω+ be the domain in R8 above the surface Σ and Ω− the one below. Suppose τ(x) = dist(x,Σ). Then

H+ = L2(Ω+,Oc, τ (x) dx) is a Hilbert space with norm

‖f ‖H+ =
( ∫ ∫

Ω+

∣∣f (x)
∣∣2

τ(x) dx

) 1
2 = sup

g∈B

∣∣∣∣
∫ ∫
Ω+

(
f (x), g(x)

)
τ(x) dx

∣∣∣∣,
where B = {g ∈H+, compactly supported in Ω+: ‖g‖H+ � 1}. Similarly we define H−.

Theorem 3.7. Suppose that f :Ω+ → Oc is right octonion analytic and continuous to the boundary Σ . If |f (x)| �
c/(1 + |x|)7 and |∇f (x)| � c/(1 + |x|)8 for all x ∈ Ω+ ∪ Σ , then{ ∫

Σ

∣∣f (x)
∣∣2

dSx

} 1
2

� C
∥∥∇f (x)

∥∥
H+ ,

where ‖∇f (x)‖2
H+ = ∑7

0 ‖ ∂
∂xj

f ‖2
H+ .

Proof. By Theorem C and the assumption, for any t > 0, it is easy to see that f (x + te0) is the Cauchy integral of its
restriction to Σ and ‖f (x + te0)‖L2(Σ,dx) → 0 as t → ∞. So,

∫
Σ

∣∣f (x)
∣∣2

dSx =
∞∫

0

∫
Σ

∂

∂t

∣∣f (x + te0)
∣∣2

dSx dt =
∞∫

0

∫
Σ

∂

∂t

(
f (x + te0), f (x + te0)

)
dSx dt

= 2Sc
∫ ∫
Ω+

((
∂

∂x0
f

)
(x), f (x)

)
dx.

For f and g defined on Ω+, let
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B(f,g) =
∫ ∫
Ω+

((
∂

∂x0
f

)
(x), g(x)

)
dx,

N(g)(x) = sup
y∈x+Γ (θ)

∣∣g(y)
∣∣,

where Γ (θ) = {x = x0 + x ∈ R8: |x| < x0 tan θ} for some θ ∈ (0, π
2 − ω).

We will first prove that if g is smooth on Ω+ and satisfies the conditions |g(x)| � c/(1 + |x|)7 and |∇g(x)| �
c/(1 + |x|)8, then

∣∣B(f,g)
∣∣ � C

( ∫ ∫
Ω+

|∇f |2τ(x) dx

) 1
2 ∣∣‖g‖∣∣, (2)

where

∣∣‖g‖∣∣ =
( ∫ ∫

Ω+

|∇g|2τ(x) dx

) 1
2 +

( ∫
Σ

N(g)2 dSx

) 1
2

.

Choose φ to be a smooth function on R7, compactly supported,
∫
R7 φ(x) dx = 1, and define φδ(x) = δ−7φ( x

δ
),

ρ(x) = x0 + x + φx0 ∗ G(x), x = x0 + x ∈ R8+.

Following [9], for properly chosen φ,ρ defines a bilipschitz map from R8+ onto Ω+ such that |∇ρ|2x0 dx is a

Carleson measure. Since f D = 0, ∂f
∂x0

= −∑7
1

∂f
∂xk

ek , we can rewrite B(f,g) as

∫ ∫
R8+

(
7∑

i=1

aj (x)
∂

∂xj

f
(
ρ(x)

)
, g

(
ρ(x)

))
dx,

the aj (x) ∈ L∞(R8+,Oc) and |∇aj (x)|2x0 dx are Carleson measures on R8+.
By Corollary 3.5, and the methods in [9],

∣∣B(f,g)
∣∣ =

∣∣∣∣∣
∫ ∫
R8+

(
7∑

i=1

�
1
4 Rj (x)f

(
ρ(x)

)
,�

1
4 aj (x)g

(
ρ(x)

))
dx

∣∣∣∣∣

�
( ∫ ∫

R8+

∣∣� 1
4 f

(
ρ(x)

)∣∣dx

) 1
2
(

7∑
i=1

∫ ∫
R8+

∣∣� 1
4 aj (x)g

(
ρ(x)

)∣∣2

) 1
2

,

where Rj denote the Riesz transforms and � the negative of the Laplacian on R7. Similar with [9], we have

( ∫ ∫
R8+

∣∣� 1
4 f

(
ρ(x)

)∣∣dx

) 1
2

� C

( ∫ ∫
Ω+

∣∣∇f (x)
∣∣2

τ(x) dx

) 1
2

,

(
7∑

i=1

∫ ∫
R8+

∣∣� 1
4 aj (x)g

(
ρ(x)

)∣∣2

) 1
2

� C
∣∣‖g‖∣∣.

Therefore (2) holds. From (2), we have

∫
Σ

∣∣f (x)
∣∣2

dSx = 2ScB(f,f ) � C

( ∫ ∫
Ω+

∣∣∇f (x)
∣∣2

τ(x) dx

) 1
2 ∣∣‖f ‖∣∣.
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We now claim that∫
Σ

∣∣Nf (x)
∣∣2

dSx � C

∫
Σ

∣∣f (x)
∣∣2

dSx.

Indeed, let

CΣ(f )(x) = ±
∫
Σ

(
f (y)dσ (y)

)
Φ(x − y) = ±

∫
Σ

(
f (y)n(y)

)
Φ(x − y)dSy, x ∈ Ω±,

then by Theorem C and the assumption that f decays at ∞ we get CΣ(f ) = f on Ω+, CΣ(f ) = 0 on Ω−. Using the
methods in [9], we get∫

Σ

∣∣Nf (x)
∣∣2

dSx � C

∫
Σ

∣∣Mf (x)
∣∣2

dSx � C

∫
Σ

∣∣f (x)
∣∣2

dSx

and {∫
Σ

∣∣f (x)
∣∣2

dSx

}1/2

� C
∥∥∇f (x)

∥∥
H+ ,

where Mf (x) is the Hardy–Littlewood maximal function of f pointwise on Σ . This finishes the proof of Theo-
rem 3.7. �

Now, assume that f is a function in H+, with compact support in Ω+, φ ∈ K(C0
μ+), j = 0,1, . . . ,7, and δ > 0.

Define

Sφ,δ,j f (y) =
∫ ∫
Ω+

f (x)
∂φ

∂xj

(x − y + δ)τ (x) dx, y ∈ Ω−.

Theorem 3.8. Sφ,δ,j f (y) is a right octonion analytic function on Ω−.

Proof. Observe that τ(x) dx ∈ R, denote D by Dy , we have

(
Sφ,δ,j f (y)

)
Dy =

∫ ∫
Ω+

(
f (x)

∂φ

∂xj

(x − y + δ)

)
Dyτ(x)dx

=
∫ ∫
Ω+

{
f (x)

(
∂φ

∂xj

(x − y + δ)Dy

)
+

[
f (x),

∂φ

∂xj

(x − y + δ),Dy

]}
τ(x) dx.

Since φ is a right octonion analytic function, we have

∂φ(x − y + δ)

∂xj

Dy = ∂

∂xj

(
φ(x − y + δ)Dy

) = 0.

Due to condition (1),[
f (x),

∂φ(x − y + δ)

∂xj

,Dy

]
= 0, x ∈ Ω+,

so we arrive (Sφ,δ,j f (y))Dy = 0 for all y ∈ Ω−. This proves the theorem. �
Theorem 3.9. ‖Sφ,δ,j f (y)‖L2(Σ) � C‖φ‖K(C0

μ+ )‖f ‖H+ .

Proof. Since f is compactly supported we have

|Sφ,δ,j f | � C/
(
1 + |x|)7

,
∣∣∇Sφ,δ,j f (x)

∣∣ � C/
(
1 + |x|)8

,
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by Theorem 3.8, Sφ,δ,j f is right octonion analytic on Ω−. From Theorem 3.7, we have∥∥Sφ,δ,j f (y)
∥∥

L2(Σ)
� C

∥∥∇(Sφ,δ,j f )
∥∥
H− .

Since∣∣∣∣∇y

∂φ

∂xj

(x − y)

∣∣∣∣ �
C‖φ‖K(C0

μ+ )

|x − y|9
/

sin9
(

μ − ω

2

)
, ∀x − y ∈ C0

μ−ω
2

,

we have∣∣∇(Sφ,δ,j f )(y)
∣∣ =

∣∣∣∣
∫ ∫
Ω+

f (x)∇y

∂φ

∂xj

(x − y + δ)τ (x) dx

∣∣∣∣ � C‖φ‖K(C0
μ+ )

∫ ∫
Ω+

|f (x)|τ(x)

|x − y + δ|9 dx,

where C depends on μ and ω.
Since

sup
y∈Ω−

∫ ∫
Ω+

τ(y)1/2τ(x)1/2

|x − y + δ|9 dx � C,

sup
y∈Ω+

∫ ∫
Ω−

τ(y)1/2τ(x)1/2

|x − y + δ|9 dy � C,

with C independent of δ (notice τ(x) � |x − y|, τ (y) � |x − y| for x ∈ Ω+, y ∈ Ω−), by Schur’s lemma,∥∥∥∥
∫ ∫
Ω+

|f (x)|τ(x)

|x − y + δ|9 dx

∥∥∥∥
H−

� C‖f ‖H+ .

Therefore∥∥Sφ,δ,j f (y)
∥∥

L2(Σ)
� C

∥∥∇(Sφ,δ,j f )
∥∥
H− � C‖φ‖K(C0

μ+ )‖f ‖H+ .

This proves the theorem. �
The following theorem is a particular case of Lemma 5.4 in [9], whose proof in the octonionic case does not involve

associativity, so is omitted here.

Theorem 3.10. Let

Φt(x) = 1

2σ7

(
x + t

|x + t |8 − x − t

|x − t |8
)

= 1

σ7

t

(|x|2 + t2)4
, t > 0, x ∈ R7,

then for u ∈ Lp,Φt ∗ u(y) = ∫
R7 Φt(x − y)u(x) dx → u(y) in Lp(Σ,Oc) (1 < p < ∞) as t → 0.

4. Proofs of the main results

Proof of Theorem 2.1. We first prove Theorem 2.1 in the case when φ ∈ K(C0
μ+). Our proof is an adaptation of the

paper [9].
Let us begin with scalar-valued functions u ∈ Lp(Σ,Oc), 1 < p < ∞. Then for δ > 0, Wφδu(x) is right O-analytic

on Ω+, where

(Wφδu)(x) =
∫
Σ

φ(x + δ − y)u(y) dSy, x ∈ Ω+.

Suppose first u ∈ L2(Σ,Oc) with compact support on Σ. It is easy to show that, for a fixed δ, (Wφδu)(x) is right
octonion analytic and continuous to the boundary Σ, satisfying |(Wφδu)(x)| � C/(1 + |x|)7 and |∇(Wφδu)(x)| �
C/(1 + |x|)8 for all x ∈ Ω+ ∪ Σ . By Theorem 3.7,
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‖Wφδu‖L2(Σ) � C
∥∥∇(Wφδu)

∥∥
H+ � C

7∑
j=0

sup
fj ∈B

∣∣∣∣
∫ ∫
Ω+

(
∂

∂xj

(Wφδu)(x), fj (x)

)
τ(x) dx

∣∣∣∣.
From Theorem 3.9,∣∣∣∣

∫ ∫
Ω+

(
∂

∂xj

(Wφδu)(x), fj (x)

)
τ(x) dx

∣∣∣∣ =
∣∣∣∣
∫ ∫
Ω+

∫
Σ

(
∂φ

∂xj

(x − y + δ)u(y), fj (x)

)
dSyτ(x) dx

∣∣∣∣
=

∣∣∣∣
∫ ∫
Ω+

∫
Σ

(
fj (x)

∂φ

∂xj

(x − y + δ)

)
0
u(y)dSyτ(x) dx

∣∣∣∣
=

∣∣∣∣
∫
Σ

(Sφ,δ,j fj )0(y)u(y) dSy

∣∣∣∣ � ‖u‖
L2(Σ)

∥∥Sφ,δ,j fj (y)
∥∥

L2(Σ)

� C‖φ‖K(C0
μ+ )‖fj‖H+‖u‖

L2(Σ)
� C‖φ‖K(C0

μ+ )‖u‖
L2(Σ)

.

Thus we get ‖Wφδu‖L2(Σ) � C‖φ‖K(C0
μ+ )‖u‖L2(Σ) for all u ∈ L2(Σ,Oc) with compact support. Therefore the

operator Wφδ is a Calderón–Zygmund operator, and ‖Wφδu‖Lp(Σ) � Cp‖φ‖K(C0
μ+ )‖u‖Lp(Σ) for all scalar-valued

functions u ∈ Lp(Σ,Oc) (1 < p < ∞).
We now prove the same estimate for Tφδu,u ∈ Lp(Σ,Oc), where

(Tφδu)(x) =
∫
Σ

φ(x + δ − y)
(
n(y)u(y)

)
dSy.

Let n(y)u(y) = ∑7
0(nu)k(y)ek , where (nu)k(y) are scalar-valued functions. Then we have

7∑
0

∥∥(nu)k(y)
∥∥

p
� C

∥∥n(y)u(y)
∥∥

p
� C

∥∥∣∣n(y)
∣∣∣∣u(y)

∣∣∥∥
p

= C
∥∥u(y)

∥∥
p
,

‖Tφδu‖Lp(Σ) �
7∑

k=0

∥∥Wφδ(nu)k
∥∥

Lp(Σ)
� C‖φ‖K(C0

μ+ )

7∑
k=0

∥∥(nu)k
∥∥

Lp(Σ)
� C‖φ‖K(C0

μ+ )‖u‖Lp(Σ).

We next prove that Tφδu converges in the Lp(Σ) sense as δ → 0.
According to Theorem 3.10, we only have to prove Tφδ (Φt ∗u) converges for fixed t > 0 and u compactly supported

with Lipschitz continuity.
Note that dSy ∼ dy, it is easy to check that for x ∈ R7,∣∣Tφδ (Φt ∗ u)(x) − Tφδ′ (Φt ∗ u)(x)

∣∣ � C
|�δ|

(|x|2 + t2)4
,

we get ‖Tφδ (Φt ∗ u)(x) − Tφδ′ (Φt ∗ u)(x)‖Lp(Σ) → 0 as �δ → 0, which means Tφδ (Φt ∗ u) converges in Lp(Σ) as
δ → 0. Hence there exists a bounded operator Tφ on Lp(Σ) given by Tφu = limδ→0 Tφδu, which satisfies the required
estimate

‖Tφu‖Lp(Σ) � C‖φ‖K(C0
μ+ )‖u‖Lp(Σ).

Let Tφu = ∑7
0(Tφ,ku)ek , where

(Tφ,ku)(x) = lim
δ→0

∫
Σ

φ(x + δ − y)(nu)k(y) dSy

are all right octonion analytic functions. Note that n(x) is an O-valued function, for any x ∈ O and any function u(x),
we have[

n(x)−1, n(x), u(x)
] = [

n(x), n(x),u(x)
] = 0,

therefore (Tφ,ku)(x) = Tφ(n−1(nu)k)(x).
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Thus we get

∥∥N(Tφu)
∥∥

Lp(Σ)
� C

7∑
k=0

∥∥N(Tφ,ku)
∥∥

Lp(Σ)
� C

7∑
k=0

∥∥(
Tφ

(
n−1(nu)k

))∥∥
Lp(Σ)

� C

7∑
k=0

∥∥(
n−1(nu)k

)∥∥
Lp(Σ)

� C‖u‖Lp(Σ),

where N is the nontangential maximal function.
Then a routine argument shows that the convergence is also almost everywhere. That is

Tφu(x) = lim
δ→0

Tφδu(x)

for almost all x ∈ Σ , that is the first equality for Tφ in Theorem 2.1.
In order to prove the second equality, we need the following lemma.

Lemma 4.1. (See [20].) Let M be an 8-dimensional, compact, oriented C∞-manifold with boundary ∂M contained
in some open connected subset Ω of R8. Then for any Oc-valued f = ∑7

j=0 fj (x)ej , g = ∑7
j=0 gj (x)ej , we have

∫
M

{
f (Dg) + (f D)g −

7∑
j=0

[ej ,Dfj , g]
}

dV =
∫

∂M

f (ng)dS

where n = ∑7
0 nj ej is the outward unit normal to ∂M at x, and dS is the scalar element of surface area on ∂M .

Suppose that u is a Lip-continuous with a compact support. For any 0 < ε < 1,

(Tφδu)(x) =
∫

y∈Σ

φ(x + δ − y)
(
n(y)u(y)

)
dSy

=
∫

|x−y|>ε
y∈Σ

φ(x + δ − y)
(
n(y)u(y)

)
dSy +

∫
|x−y|�ε

y∈Σ

φ(x + δ − y)
(
n(y)u(y)

)
dSy,

and ∣∣∣∣
∫

|x−y|>ε
y∈Σ

φ(x + δ − y)
(
n(y)u(y)

)
dSy −

∫
|x−y|>ε

y∈Σ

(
φ(x + δ − y)n(y)

)
u(x)dSy

∣∣∣∣

=
∣∣∣∣

∫
|x−y|>ε

y∈Σ

φ(x + δ − y)
(
n(y)u(y)

)
dSy −

∫
|x−y|>ε

y∈Σ

φ(x + δ − y)
(
n(y)u(x)

)
dSy

−
∫

|x−y|>ε
y∈Σ

[
φ(x + δ − y),n(y),u(x)

]
dSy

∣∣∣∣,

where the associator is used. It is easy to show that∣∣∣∣
∫

|x−y|>ε
y∈Σ

φ(x + δ − y)
(
n(y)u(y)

)
dSy −

∫
|x−y|>ε

y∈Σ

φ(x + δ − y)
(
n(y)u(x)

)
dSy

∣∣∣∣ � Cε‖u′‖∞,

∣∣∣∣
∫

|x−y|>ε
y∈Σ

[
φ(x + δ − y),n(y),u(x)

]
dSy

∣∣∣∣ � Cε.
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Taking f = φ(x + δ − y), g = 1 in Lemma 4.1, we have∫
|x−y|�ε

y∈Σ

φ(x + δ − y)
(
n(y)u(y)

)
dSy =

∫
|x−y|=ε
y∈Ω+

φ(x + δ − y)
(
n(y)u(y)

)
dSy.

Owing to Cauchy’s theorem and existence of tangential planes of Σ at almost everywhere points on Σ ,

lim
ε→0

{ ∫
|x−y|=ε
y∈Ω+

φ(x − y)
(
n(y)u(y)

)
dSy − φ+

(
εn(x)

)} = 0 a.e.

Hence we get

Tφu(x) = lim
ε→0

{ ∫
|x−y|>ε

y∈Σ

φ(x − y)
(
n(y)u(y)

)
dSy + φ+

(
εn(x)

)
u(x)

}
a.e.

This proves that Tφ is a Calderón–Zygmund operator, by Theorem 5 in Chapter VII of [29], we obtain that for all
u ∈ Lp(Σ),

Tφu(x) = lim
ε→0

{ ∫
|x−y|>ε

y∈Σ

φ(x − y)
(
n(y)u(y)

)
dSy + φ+

(
εn(x)

)
u(x)

}
a.e.

A similar proof applies to φ ∈ K(C0
μ−). This completes the proof of Theorem 2.1. �

Remarks. The condition (1) is an extra condition compared with [9]. We can show that (1) holds for φ(x) = Φ(x) =
1
ω7

x

|x|8 when x 
= 0. Therefore, based on our theorem, the octonionic analogue of Calderón’s conjecture is true.

We need only to prove that for any i = 1,2, . . . ,7, [ei,Φ,D] = 0. Note that

[ei,Φ,D] =
7∑

j=0

[
ei,

∂Φ

∂xj

, ej

]
.

Let Φ(x) = ∑7
0 esΦs , then by using the properties of the associators, we have

7∑
j=0

[
ei,

∂Φ(x)

∂xj

, ej

]
=

7∑
s=0

7∑
j=0

[
ei, es

∂Φs

∂xj

, ej

]
=

7∑
s=1

7∑
j=1

[
ei, es

∂Φs

∂xj

, ej

]
,

where

Φ0 = x0

ω7|x|8 , Φs = −xs

ω7|x|8 , s = 1,2, . . . ,7,

∂Φs

∂xj

= 8xsxj

ω7|x|10
, s 
= j, s, j = 1,2, . . . ,7,

∂Φj

∂xj

= −|x|2 + 8(xj )
2

ω7|x|10
, j = 1,2, . . . ,7.

Since[
ei,

8xjxj

ω7|x|10
ej , ej

]
= 0,

[
ei,

∂Φj

∂xj

ej , ej

]
= 0, j = 1,2, . . . ,7,
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taking
8xj xj

ω7|x|10 in place of
∂Φj

∂xj
, we have

[
ei,

∂Φ(x)

∂xj

, ej

]
=

[
ei,

7∑
s=0

8esxsxj

ω7|x|10
, ej

]
=

[
ei,

7∑
s=1

8esxs

ω7|x|10
, xj ej

]
.

Hence [ei,Φ,D] = ∑7
j=0[ei,

∂Φ(x)
∂xj

, ej ] = 8
ω7|x|10 [ei,

∑7
1 xses,

∑7
1 xj ej ] = 0.

This shows that (1) holds for φ(x) = Φ(x) = 1
ω7

x

|x|8 when x 
= 0.

Proof of Theorem 2.2. For Φ(x) = 1
ω7

x

|x|8 , we have Φ±(εn(x)) = Φ±(ε), according to [30], Φ±(ε) = ± 1
2 . The

desired results are then the direct corollaries of Theorem 2.1. �
Open problem. Find the necessary and sufficient conditions for an Oc-valued function φ, such that for any a ∈ Oc,
[a,φ(x),D] = 0.
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