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SUMMARY

We prove that boundary derivatives of the phases of inner functions exist and are positive almost every-
where, but those of outer functions, on the other hand, have zero mean on the boundary. The concepts and
results have definitive applications to the definitions of instantaneous frequency and mono-components
complying with requirements in physics and contemporary study of analytic signals. Copyright © 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Denote by D the open unit disc in the complex plane, and

Z—da
1,(z2)=——, lal<l (D
1—az

As Mobius transform, 7, € Aut(D). The mapping has analytic extension to C\ {1/a}. In particular,
it maps dD onto dD in one-to-one manner, and it preserves the orientation. Since t,(e") is
unimodular, for a strictly monotone function 0,(¢) depending on a, we have

Tq (eit) — ei()a ([)
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Simple computation shows that the derivative of the phase function 0,(¢) satisfies

do,t) 1 1—ja® 1 1—|al?
— = — — = — >
dt 2n  2m|ei®—a|2 2m1—2lalcos(t, —t)+|al?

where a=|ale', and the last expression is the Poisson kernel on the circle at a (see [1]). This
positive-phase derivative property can be immediately extended to finite Blaschke products. In
fact, the phase function of a finite Blaschke product is the finite sum of the phase functions of the
composing Mobius transforms (see, for instance, [2]).

The phenomenon of positive-phase derivative property may also be seen in the simplest singular
inner functions case. Recall that a singular (or singular inner) function is given by the formula

2n c?[+z d,u(t)

S(z)=e 0 i

where du is a positive regular Borel measure singular (orthogonal) to Lebesgue measure. The
simplest singular inner function is given by the point mass at a single point, say at t =0, that is
du(t) =9 (¢)dt, where g is the usual Dirac function. We have, in the case,

S(Z):e(z-i-l)/(z—l)
For z=¢l’, we have
, . ¢
Se)=e’®, (1) =—cot 3

where

1 1

2 sin? E
2

d 0@) 0, t#0
J— — >
dt ’

If du is a sum of a finite many of point masses, we have the same conclusion ¢’ (t)>0 for all ’s
but those at which the point masses are placed. This phenomenon is also observed in [3].

Functions having this property are not necessarily to be unimodular. A family that possesses
global non-negative phase derivatives is the family of starlike mappings. Let Q be a simply
connected open and starlike domain containing the point z =0 and bounded by a Jordan curve. Let
f:D— Q be a conformal mapping with f(0)=0. By a famous theorem of Carathéodory (see [4])
the mapping f has a one-to-one continuous extension from D — Q. Then f is a starlike mapping
about zero if and only if f/(0)#0, and

Relzf'(2)/f(2)]>0 forzeD

(see, for instance, [5]). The mapping f : D — Q induces a natural parameterization for the boundary

FE)=p®)e",  pt)>0
If both f and f’ are in the Hardy H'(D) space, then f(e'’) is of bounded variation, and

d

—0(t)=0 ae.rel0,2

” (1) a.e. 1€[0,2m)
(see, for instance, [1, p. 93, 8(b)]).
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In this note, we restrict ourself to the function classes involved in the Nevanlinna canonical
factorization theorem: A function f is in the Nevanlinna class, ./, if and only if f is of the form

f=CFBS/Sy, |C|=1

where B is a Blaschke product, S; and S, are singular functions, F is an outer function and C is
a constant. Except for the choice of the constant C, the decomposition is unique. Functions in the
Nevanlinna class with S» = 1 constitute a class ./ . A function f is in the Hardy H” (D), 0<p<oo,
if and only if f €./ and its outer function part, F, is in H?(D).

A function f is an outer function in D if and only if f has the form

F@)=CeB i i osh @ @)
where £ is a positive measurable function and logh € L' (D), and C is a constant. A function f
defined in (2) is in Hardy H?,0<p<oo, if and only if A€ L?. A function f is an inner function
in D if and only if f=CBS, where C is a constant, |[C|=1, B is a Blaschke product and S is
a singular function, or, equivalently, f maps D into D with unimodular non-tangential boundary
values almost everywhere on 0D (see, for instance, [1]). There are parallel notions and results for
the upper-half complex plane.

A natural question is whether there is a similar boundary behavior for Blaschke products of
infinite zeros, and for singular functions constructed from general singular measures on 0D, and
what is for outer functions? The mentioned functions are all in the Nevanlinna class and therefore
have non-tangential boundary values (or angular limits). The concept of the phase derivative and
monotonicity of the phase function all depend on suitable parameterizations of the boundary curve.
As example, for the boundary values of a Blaschke product there exists a real-valued function 6(¢)
such that

B(e")=e?® ae.
The choice for the function 0(¢), however, is not unique. In fact,

B(eit) :ei((?(t)+27tk(t)) ae.

for any function k: [0, 21) — Z, where Z denotes the set of all integers.

The above questions have root in contemporary study of theoretical signal analysis. They
motivated a number of researchers who have subsequently worked out partial results in this
direction (see [2, 3, 6—11]). But none of the existing results are able to concern Blaschke products of
infinite zeros or singular inner functions from general positive Borel measures singular to Lebesgue
measure, or for general inner functions and outer functions. Very relevant results, such as Julia—
Wolff-Carathéodory’s theorem, however, already exist in complex analysis of one variable. What
we do in this note is to interpret the existing results and provide a formulation in the right context
under which the above questions are answered. We show that under our formulation, the phase
derivatives of inner functions exist and are positive almost everywhere. For outer functions, it is
different. The simplest case of outer functions is studied in [3]. In strict mathematical formulation
and by using a different approach, we show that under a mild condition phase derivatives of outer
functions exist almost everywhere and are of zero mean on the boundary. In Section 2 we develop
the theory and, in Section 3, as application, we interpret the obtained results in the signal analysis
context.
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2. BOUNDARY DERIVATIVE OF PHASE FUNCTIONS

For an analytic function f:D— C, writing f(re)=p,(1)e’”® r<l1, and taking derivative to
both sides with respect to ¢, we obtain that

3)

%Qr(t)zRe (zf (Z))

f(@)

Note that this relation may be extended to the points re'’ for r>1 if the function f has analytic
continuation across an open interval containing the point re!’. For general points z=¢!, there is
a substitution called angular derivative defined as follows.

Definition 2.1
Let f be analytic in the annulus region {z € C|r<|z|<1},0<r<1. Suppose that for some Stolz
angle Ay, ({) at {€0D (see [5, p. 6]),

Agy () ={zeD||arg(1—{z)| <0, |z—{|<p}, O<ag<m/2, p<2cosa
the limit

lim f)=0

12604 ()

exists, and for all the Stolz angles A, at { for cp<a<m/2 the limits exist and are of the same
value ¢. In the case we denote the limit by

lim f(z)=0
S:z—>(

and call it the angular limit of f at {. In this circumstance, this value ¢ is denoted by f({). Note
that here we allow the limit to be oo or +o0o0. We say that f has the angular derivative f'({) at
{edD, if f({)=limg.,_,¢ f(z) #oo exists and if

i F@—=f©
im ——— >

. =1'©O
S:z—( z—{
Again, it allows the infinite values. In the sequel without further notice, the notation f/({) itself
indicates the existence and represents the value of the angular derivative of f at {€dD.
It has been proved that the analytic function f has a finite angular derivative if and only if f(z)
has the finite angular limit f/({) at {€dD [5, p. 79]. We are now ready to define the boundary
derivative of the phase function of an analytic function f:D — C.
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Definition 2.2
Let f:D— C be analytic, and { € D. If the angular limit Re(z f'(z)/ f (z)) exists, then we denote
it by

/!
Df©= lim Re (z ! (Z))
S:z—( (@)
and call it the boundary derivative of the phase, or phase derivative, of f at {. Note that for a
given {, Df({) may not exist, and when exists, it may happen D f({) =400, or D f({) =o0. In
the sequel the notation Df ({) itself indicates the existence, as well as represents the value of the
phase derivative of f at {€dD.

If f has a non-zero angular limit and a finite angular derivative f'({) at {€dD, then Df({)=
Re(Lf'(O)/ f(0). If f has analytic extension across an open interval on 0D containing { where
(O #0, then Df(Q)=Re((f(0)/f (). In this case, the observation made at the beginning of
this section concludes that Df () =Re(f'(0)/ f ()= 9’(tg), where { =el’c. This gives the reason
of the terminology ‘boundary derivative of the phase’ or ‘phase derivative’ in Definition 2.2.

We recall Julia—Wolff—Carathéodory’s theorem [12, 13]:

Theorem 2.1 (Julia—Wolff—Carathéodory)
Let f be analytic, f:D— D and o,{€dD. Then

o—f(z)

3224 - =0l 0)
where
 Tle—f@P |§—z|2]
ﬁf(c’a)_félﬁ[l—v(znz e

If ﬁf(C, o) is finite, then
lim f(z)=¢ and lim f'(z)=0{B;((. 0)
S:z—( S:z—(

The above may be re-formulated in the following form that is more pertinent to our purpose
(see [5, p. 82]):

Theorem 2.2
Let f be analytic in D with an angular limit f({) at {€0D. If

fMch, f(edb

then the angular derivative f/({) exists, and

'O _ 1=lzI* 1f(O-f@P

0 _ <
“FO M T iopop ST
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We have the following:

Theorem 2.3

If f is an inner function, then Df >0 a.e. Moreover, if f has an analytic extension across an open
interval containing { =e'’¢, then with the angular parameterization f(e')= 0@ the phase function
0(t) is differentiable at t =1;, and 0<0' (t;) <+ oo.

Proof
As inner function f has unimodular non-tangential boundary limits at almost all points on the unit
circle, Theorem 2.2 can be directly used to conclude the theorem. O

Theorem 2.3, together with Theorems 6.1 and 6.2 of Chapter II, Section 6 of [1], then implies

Corollary 2.4

If B is a Blaschke product, then DB>0 a.e. Let B(z) be the Blaschke product with zeros {z,},
and let £ C 0D be the set of accumulation points of {z,}. Then B(z) has analytic extension across
each arc of 0D\ E. In particular, on each of those arcs the finite boundary derivatives of the phase
function 6(¢) of B(z) exist and are positive.

Corollary 2.5

If S is a singular function, then DS>0 a.e. Let S(z) be the singular function determined by the
measure ¢ on 0D, and let E be the closed support of u. Then S(z) has analytic extension across
each arc of 0D\ E. In particular, on each of those arcs the finite boundary derivatives of the phase
function 6(¢) of S(z) exist and are positive.

Example

We construct in below an example for an inner function that has Df =400 almost everywhere
on the unit circle dD. Let {a,}°2, be an interpolating sequence in [, that is, for any sequence
{b,} €l there exist solutions f € H*°(D) such that f(a,)=>b, [1,14]. We can further assume
ZZOZI (1—lay|)<oo (i.e. itis additionally also a Blaschke sequence) that is a sufficient and necessary
condition for the solution fe€ H* and f(a,)=>b, is not unique, and in the case there exists an
inner function f solving the interpolation problem [14, pp. 6, 62]. It suffices, therefore, to construct
a uniform interpolating sequence [14, p. 63]. For our special purpose, we proceed as follows. We,
along each radius reikn/ 3, O<r<l1,k=0,1,...,5, construct a uniform interpolating sequence, the
availability of which is based on, for instance, Theorem 7.4, [14, p. 65]. We then combine the
six interpolating sequences together to form a sum-interpolating sequence {a,}. Later, we select a
sequence {b,} C D such that for each n, b, is on the same radius as a,, |a,|<|b,|<1, and

1—|ay|

m =
100 T [by|

Let now f be an inner function that solves the interpolating problem f(a,)=b,,n=1,2,...,
where {a,} and {b,} are constructed as above. Let { be a point on dD such that f({) exists as
angular limit

Sgggf(z)=f(C) and |f(D]=1

Such  distributes on 0D almost everywhere. Let the points { and f ({) be situated on some half circle
{e"|to<t<to+m}. Then there exists ko, between 0 and 5, such that elkom/3 ig outside the closure of
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the half disc having the half circle as part of its boundary. Thus, the radius Ry, = (reko™3|0<r<1}
is separated from both { and f({) by a positive distance. On the basis of Theorem 2.2, we have

O =P I O-F@P

FO TSR T -rQr

sy (DO bl 1=
an€Ry, |C_an|2(1+|bn|) 1—1by|

=0

Next we study outer functions and prove

Theorem 2.6

Let f be an outer function in some H?” space for 0<p<oo, and the analytic function f’/f in D
belongs to the Hardy H'(D) space. Then the angular derivatives f’(e'’) exist and are finite almost
everywhere, and the function

/")
feh)

eit

is integrable with

27 1 (al
/ RGO @
o FEn

Proof

Since f € H?, the non-tangential boundary values of f are non-zero almost everywhere [1, p. 65,
Corollary 4.2]. The existence of the finite non-tangential boundary limits of the function f’/f then
implies that f/({) exist and are finite almost everywhere. As the boundary value of a function in
the Hardy H' space we have

/
S 4o
oo fO
After changing to the angular parameter, the above relation becomes (4). ]

Corollary 2.7
Under the assumptions of Theorem 2.6 there holds

2n )
/ Df(e")dr=0 (5)
0
Proof 4 _ _ _ . 4 _
The integrability of e f/(e!)/ f (") implies that of Df (e*) = Re[e f'(e")/ f (e'*)]. The zero mean
assertion follows from (4). O

Corollary 2.7 shows that for a large class of outer functions though the boundary derivatives of
the phase functions exist and are finite almost everywhere, they must be sometimes positive and
sometimes negative so that they have zero mean.
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3. APPLICATIONS IN SIGNAL ANALYSIS

There are some recent studies on adaptive decomposition of signals by using mono-components.
The related concepts are defined as follows.

Definition 3.1 .
Let F be a real-valued signal in L? ([0, 2x]), 1< p<0oo. If we denote F(t) = f(e"), this is equivalent
to let f be a real-valued signal in L?(0D), 1< p<oo. The complex-valued signal

AfEe"y=f(")+iH f(e")

is called the analytic signal associated with f(e''), where H is the circular Hilbert transformation
(see [1,7]). The complex-valued signal Af has the amplitude—phase modulation

Af @ =p@e’"

where p(t) = \/ F2(el) 4+ H f2(eit), (1) =arccos f (el")/p(t). The induced modulation

F(e")=p(t)cos0(r)

is called the analytic amplitude—phase modulation (analytic modulation) of f(e'"), and the func-
tion 0(¢) is called the analytic phase of f(e'). In the sense given in Definition 2.2, the boundary
derivative of the phase function of Af, D(Af), if exists, is called the analytic phase deriva-
tive of f(e!). A real-valued such signal F in LP([0,2x]) or f in LP(JD) is said to have
instantaneous frequency if and only if D(Af) exist and D(A f)>0,a.e. on 0D, allowing the
value +00. We say that F is a mono-component on [0,27], or f is a mono-component on 0D if
and only if f has instantaneous frequency on 0D.

Note that a function f is a mono-component if and only if its analytic phase derivative is of
positive values, allowing 400, almost everywhere. And if and only if in this case, we say that the
signal f has instantaneous frequency. We wish to stress that mono-component and instantaneous
frequency are for the whole function: They are not a local or point-wise property.

Amplitude—phase modulation for a real-valued signal is not unique. However, it is the analytic
modulation based on which the concept mono-component is defined. Analytic signals associated
with real-valued signals in L” spaces are boundary values of functions in the corresponding
complex Hardy spaces [2]. They are interpreted as ‘physically realizable’ signals. The requirement
0’ (t)>0, a.e. for analytic phase derivative is essential. Frequency in physics is defined to be the
time of vibrations in the unit time interval, and, thus has to be non-negative. Quantitative signal
analysis is crucially based on the positivity of frequencies. The concept instantaneous frequency has
some controversies, however. Some authors call any analytic phase derivative ¢’ (¢) instantaneous
frequency without the requirement 0'(¢)>0, a.e.

Associated with this notion one seeks adaptive decomposition of signals. Given an arbitrary
signal f on 0D, one wishes to have the decomposition of f into mono-components in the fastest
manner:

F(0)=3_pi (1) cos O (1) (6)
1
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where for each k the analytic modulation p; (f) cos O (¢) is a mono-component. A characterization
of analytic modulation is

H (pi () c0s 0 ()) (1) = py (1) sin 04 (1)

Note that this is a generalization of the Fourier series theory to both contexts the unit circle and
the real line. In particular, there hold

H(cosk(-))(t) =sinks, k=1,2,...

The notion ‘fastest decomposition’ depends on a metric of the space of signals. After a metric
is assigned to a class of signals, there are different ways to formulate what is meant by ‘fastest
decomposition’. For instance, for a fixed ¢>0, one can require to find the least index ko for which
there exists a set of mono-components p; (¢)cos 0x (f), 1 <k<ko, such that

ko
dist (f, > picos 9k> <e

k=1

One can alternatively first choose kp and then find a set of mono-components p; (¢)cos 0 (¢),
1<k<k, that minimizes the distance

ko
dist (f, > picos 0k>

k=1

To the author the adaptive decomposition problem is motivated by Huang et al.’s algorithm
EMD (see [15]). In order to achieve the adaptive decomposition goal we need a large pool of
mono-components from which the most suitable ones may be chosen to approximate a given
signal. In the formulation given in Section 2, the application of our results rests on the following:

Theorem 3.1
The real parts of the boundary values on the inner functions on the unit disc are all mono-
components.

Proof

Since inner functions belong to Hardy H°, their boundary values satisfy the condition H f =
—if [2]. Boundary values of inner functions are of the form f(e') =¢el?® under which the last
relation is equivalent to

H (cos0(-)) (1) =sin0(z)

Thus, cos0(¢) is an analytic modulation. On the other hand, Theorem 2.3 asserts that the instanta-
neous frequencies of such a modulation almost everywhere exist, and are positive. Therefore, the
real parts of boundary values of inner functions are mono-components. ]

There are analogous concepts on the real line with respect to Hilbert transformation H. The
two contexts can be converted to each other by using the Cayley transformation and its inverse [2].
Denote by x the Cayley transformation that maps the upper-half complex space conformally onto
the disc D and the mapping continuously and in one-to-one manner extends to their boundaries:

i—z w
:C* D, = =—, =x lw=i , 1)=0, =—1
K — w=K(2) s =K w 11+w k(i) K (00)
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On the boundaries,

. i—s .
el=——  Kk((—o00,o0])={e"|—n<t<n}, s=i .
s (( D={e"| <} o

and

2 ds 1 t
Sl

t
s=tan—, t=2arctans, —=-—, =
2 ds 1+4s2° dt 2 2

The mono-components on the line are a subclass of the real-valued functions f on the line
whose Hilbert transform Hf can be defined. This will allow the possibility of having f as the
real part of the boundary value of a good analytic function in the upper-half complex plane.
We define, in the same pattern as for signals on the unit circle, the associated analytic signal
A(f)=f+iHf. By using the natural amplitude—phase modulation A(f)(s) =p(s)ei9("), we can
define the analytic modulation f(s)=p(s)cos0(s). The mono-components should be defined to
be those for which the corresponding phase function 6, obtained via analytic modulation, has
non-negative derivatives ('(s) almost everywhere, allowing the +oo value. To make it a wider
sense and avoid boundary parameterization paradox, we also approach it from the inner points
of the domain. We proceed by converting the case to the already established theory in the disc,
that is to map everything in the upper-half complex plane by Cayley transformation into the unit
disc. The Cayley transformation preserves complex analyticity and is of monotonicity restricted
on the boundaries. We call f a mono-component on the line if and only if f(x~'(e'*)) is a mono-
component on the circle, and the boundary derivative of the phase, or the phase derivative, of f is
defined to be Dg f(s)=Dp(f ok~ 1) (k(s))dt/ds, where Dp is identical with D in Definition 2.2.
By abuse of notation we express

K H@=f0w), k)@= fKk2)
and, consequently, the above-defined phase derivative may be re-written as

2

. +SZ(KDDK—1)f<s)

Drf(s)=

We indicate that there also holds
H=xHr™!

In fact, if F is defined on R, then we have kx 'HF = Hx ' F. This is because the both sides
are the boundary value of the harmonic conjugate, with certain normalization, of the harmonic
extension of k! F into the unit disc.

Theorem 3.2
The real parts of the boundary values of the inner functions on the line are all mono-components.

For mono-components on the real line, the adaptive decomposition problem is formulated in
the same form as in (6) but with the domains of the signals and the mono-components being the
whole real line.

For the related issues on analytic signals, we refer the reader to the literature [2, 3, 6—11, 15-19].
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