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are studied in detail.
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1. Introduction

Let Cl0,n be the complex 2n-dimensional universal Clifford algebra constructed from the basis {e1, e2, . . . , en}, under the
usual relations

eie j + e jei = −2δi, j, i, j = 1, . . . ,n. (1.1)

An element a ∈ Cl0,n can be represented as a = ∑
A aAe A , where the coefficients aA are complex-valued, e A = el1...lh =

el1 . . . elh , A = {l1, . . . , lh} with 1 � l1 < · · · < lh � n, e0 = e∅ = 1 is the identity element of Cl0,n . The Clifford involution
operation − on Cl0,n is defined, on the basis elements e A , as

e j = −e j, j = 1, . . . ,n; el1...lk = elk . . . el1 , (1.2)

such that e je j = e je j = e0 and el1...lk el1...lk = el1...lk el1...lk = e0. In the complex Clifford algebra, the Clifford involution op-
eration − also acts on the complex coefficients via the usual complex conjugate operation. So if a = ∑

A⊂M aAe A , then

a = ∑
A⊂M aAe A . The norm of a is |a| = (aa)

1
2
0 = (

∑
A |aA |2) 1

2 , where for a Clifford number a = ∑
A aAe A, (a)0 = a0 (see

[1,3]).

Denote x = x1e1 + · · · + xnen ∈ R
n , x = x0 + x ∈ R

n+1, then |x| = (
∑n

j=0 x2
j )

1
2 and |x| = (

∑n
j=1 x2

j )
1
2 . Denote ς ∈ C

n as
ς = ς1e1 + · · · + ςnen , ς j ∈ C, then its Clifford conjugate ς is given by the Clifford involution operation:

ς = ς1e1 + · · · + ςnen,

and |ς | = (ςς)
1
2 = (ςς)

1
2 = (|ς1|2 + · · · + |ςn|2) 1

2 .
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Let D = ∂
∂x0

+ ∑n
j=1 e j

∂
∂x j

be the Dirac differential operator in R
n+1. The Cl0,n-valued function f (x) = ∑

A f A(x)e A is

called left-monogenic if D f (x) = ∑n
j=0

∑
A e je A

∂ f A
∂x j

= 0; and right-monogenic if f D(x) = ∑n
j=0

∑
A e Ae j

∂ f A
∂x j

= 0. If f is both

left- and right-monogenic, then we say it is two-sided monogenic, or briefly just monogenic.
Left- or right-, or monogenic functions are the generalizations of analytic functions for one complex variable to R

n+1.
Many basic results of holomorphic functions in one complex variable are extended to these three kinds Clifford monogenic
functions [1,3]. In the definition M2(R

n+1) below we concern only two-sided monogenic functions (monogenic functions).
It is clear that the functions, z j = x j −x0e j ( j = 1, . . . ,n), are the monogenic polynomials of order 1, and other monogenic

functions can be constructed by means of symmetric products of z j , j = 1, . . . ,n. More precisely, denote α = (α1, . . . ,αn),
α j � 0, |α| = α1 + · · · + αn , α! = α1! . . . αn!, and Vα(x) the C-K extension of 1

α1!...αn ! xα1
1 . . . xαn

n , then (see [1, pp. 68 and 113])

Vα(x) = 1

|α|!
∑

π(l1,...,l|α|)
zl1 . . . zl|α| , (1.3)

is a left- and right-monogenic polynomial of order |α|, where π(l1, . . . , l|α|) denote all the distinguished permutations
of (l1, . . . , l|α|), l j ∈ {1, . . . ,n}, with k appearing αk times in {l1, . . . , l|α|},k = 1, . . . ,n. Let Vα(x) be the Clifford conjugate
of Vα(x), it is also given by the symmetric product of {z j: j = 1,2, . . . ,n}.

The polynomials in {Vα(x): α j � 0; j = 1, . . . ,n} are orthogonal to each other with respect to the following inner
product (see [1,3])

〈Vα, Vα′ 〉 =
∫

Rn+1

(
Vα(x)Vα′ (x)

)
0e−n|x|2 dx. (1.4)

With the inner product (1.4), let M2(R
n+1) be the separable, infinite-dimensional, Clifford-valued complex Hilbert space

generated by the basis {Vα(x): k j = 0,1, . . . ; j = 1, . . . ,n}. The norm ‖ f ‖M induced on f ∈ M2(R
n+1) is given by

‖ f ‖M =
( ∫

Rn+1

∣∣ f (x)
∣∣2

e−n|x|2 dx

) 1
2

< ∞. (1.5)

M2(R
n+1) is called monogenic Fock space. Note that M2(R

n+1) does not consist of monogenic functions, although it is the
completion of monogenic polynomials under the Banach norm (1.5). If the weight function e−n|x|2 is replaced by e−|x|2 ,
then the above defined reduces to the monogenic Fock space introduced by J. Cnops and V.V. Kisil in the study of group
representations [2].

Segal–Bargmann space F2(C
n) is the Fock space of holomorphic functions in C

n taking their values in the span of
{e0, e1, . . . , en} with complex-valued functions as coefficients (see [4, p. 43]) induced by the inner product based on holo-
morphic polynomials

[F , G] =
∫
Cn

(
G(ς)F (ς)

)
0e−|ς |2 dς. (1.6)

Thus the norm of F ∈ F2(C
n) is

‖F‖F =
(∫

Cn

∣∣F (ς)
∣∣2

e−|ς |2 dς

) 1
2

< +∞, (1.7)

where ς = ς1e1 + · · · + ςnen = ξ + iη ∈ C
n , |ς | = (

∑n
j=1(ξ

2
j + η2

j ))
1
2 . The space F2(C

n) is also a separable, infinite-
dimensional, Clifford-valued complex Hilbert space (see Lemma 3.5 below). It is the completion of Clifford-vector-valued
holomorphic polynomials under the weighted Banach norm L2

w(Cn,C
n+1) given in (1.7).

Both M2(R
n+1) and F2(C

n) are complex Hilbert spaces, both being very useful in the group representations. F2(C
n) is

the famous Segal–Bargmann space derived from the representation of Heisenberg group [4, p. 43], while M2(R
n+1) is a

newly developed one [2,6]. The fact is that monogenic functions are generalizations of holomorphic functions in one complex
variable to R

n+1 variable, while holomorphic functions are generalizations of holomorphic functions in one variable to C
n

variable. It would be interesting to study the relationships between them, and it is the main goal of this paper to study
the connections between F2(C

n) and M2(R
n+1) in terms of the bounded operators between them. In Section 2, the newly

developed exponential functions are introduced to connect the monogenic functions and the holomorphic functions together.
In Section 3, two integral transforms are defined through the exponential functions. Then the isomorphic properties in terms
of the specific bases of M2(R

n+1) and F2(C
n) are established, and the boundedness of the defined isomeric isomorphism

operators are discussed. The combinatorial inequality in Lemma 3.3 should have its own interest.



Y.F. Gong et al. / J. Math. Anal. Appl. 354 (2009) 435–444 437
2. Exponential functions in Clifford analysis

Because of the non-commutative properties (1.1) of Clifford algebra Cl0,n , there have appeared many generalizations of
special functions in Clifford analysis for diverse applications [1,3,7–10]. In [1] (see §15.7.6, p. 131), there is a monogenic
exponential function e(x,a) which is the C-K extension of e〈x,a〉 for the fixed vector a ∈ R

n . This exponential function is
used in the Schrödinger representation of Heisenberg group in the function space M2(R

n+1) (see [2]). In [9,10], F. Sommen
considered the extensions of ei〈x,ξ〉 to e(x, ξ) which is monogenic with respect to x while ξ ∈ R

n is a fixed vector. More
recently Alan McIntosh and his collaborators used a similar extension in [7,8] in relation to a study of functional calculus.
They extended ei〈x,ξ〉 to a complex Clifford-valued exponential functions e(x, ς), which is monogenic with respect to x =
x0 + x ∈ R

n+1 and holomorphic with respect to ς = ξ + iη ∈ C
n . By using McIntosh et al.’s idea to Sommen’s model, we, in

what follows, will use a new exponential function, still denoted by e(x, ς) (also see [6]), that is monogenic with respect to

x ∈ R
n+1 and holomorphic with respect to ς ∈ C

n respectively.
Let ς = ξ + iη = ∑n

j=1 ς je j ∈ C
n , and

|ς |2
C

=
n∑
j

ς2
j = |ξ |2 − |η|2 + 2i〈ξ,η〉, (2.1)

where ξ,η ∈ R
n , ς j = ξ j + iη j , and 〈ξ,η〉 = ∑

j ξ jη j , then |ς |2
C

is the natural holomorphic extension of |ξ |2 from R
n to C

n

satisfying the relationships (iξ)2 = |ξ |2 and (iς)2 = |ς |2
C

. If |ς |2
C

�= 0, then |ς |C is taken to be any but fixed one of the two

square roots of |ς |2
C

(see [7,8]). Define

e(x0e0, ς) �
{

cos(x0|ς |C)e0 − sin(x0|ς |C)
ς

|ς |C , if |ς |2
C

�= 0;
1 − x0ς, if |ς |2

C
= 0,

(2.2)

then

e(x0e0, ς) = e−x0ς

in the Taylor series expansion sense, and

e(x, ς) � e〈x,ς〉e(x0e0, ς) = e(x0e0, ς)e〈x,ς〉 (2.3)

where e〈x,ς〉 = e
∑

j x jς j . Thus e(x, ς) takes its value in the span of {e0, e1, . . . , en} with complex-valued functions as its

coefficients. It is a natural extension of e〈x,ξ〉 which is monogenic with respect to x and holomorphic with respect to ς
respectively. This can be proved from the power series expansion of the exponential function e(x, ς) as follows. Define

ςα = ς
α1
1 . . . ςαn

n and p(x, ς) = ∑n
j=1 z jς j = 〈x, ς〉 − x0ς , where zi = xi − x0ei (1 � i � n), then

p(x, ς)k =
(

n∑
j=1

z jς j

)k

= k!
∑
|α|=k

Vα(x)ςα

is a both left- and right-monogenic polynomial of order k (see [1, p. 127]), thus e(x, ς) in (2.3) can also be written as

e(x, ς) �
∞∑

k=0

1

k!

(
n∑

j=1

z jς j

)k

=
∞∑

k=0

1

k!
(〈x, ς〉 − x0ς

)k =
∞∑

k=0

∑
|α|=k

Vα(x)ςα, (2.4)

the series is point-wise convergent in each variable. Its proof is similar to that of exp(x,a) in §15.7.6 of [1] (see pp. 131
and 117) and [3] (see p. 175). Similar functions also appeared in [2], but they were not discussed in detail.

By the same procedure as (2.1)–(2.4), other exponential functions are given as follows:

e(x, ς) �
∞∑

k=0

1

k!

(
n∑

j=1

z jς j

)k

=
∞∑

k=0

∑
|α|=k

Vα(x)ςα =
⎧⎨⎩ e

∑n
j=1 x jς j (cos(x0|ς |C)e0 + sin(x0|ς |C)

ς

|ς |C ), if |ς |2
C

�= 0;
e
∑n

j=1 x jς j (1 + x0ς), if |ς |2
C

= 0,
(2.5)

where ς = ∑n
j=1 ς je j = −∑n

j=1 ς je j , |ς |2
C

= (iς)2 = ∑n
j=1(ς j)

2, ςα = ς1
α1 . . . ςn

αn .

e(x, ς) �
∞∑

k=0

1

k!

(
n∑

j=1

z jς j

)k

=
∞∑

k=0

∑
|α|=k

Vα(x)ςα =
⎧⎨⎩ e

∑n
j=1 x jς j (cos(x0|ς |C)e0 + sin(x0|ς |C)

ς

|ς |C ), if |ς |2
C

�= 0;
e
∑n

j=1 x jς j (1 + x0ς), if |ς |2
C

= 0,
(2.6)

where ς = ∑n
j=1 ς je j , |ς |2

C
= (iς)2 = ∑n

j=1(ς j)
2, ςα = ς

α1
1 . . . ςαn

n .
Properties of these exponential functions are discussed in [6].
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3. Integral operators between F2(CCC
n) and M2(RRR

n+1)

Assume f ∈ M2(R
n+1) and F ∈ F2(C

n). Define

(B f )(ς) =
∫

Rn+1

e(x, ς) f (x)e−n|x|2 dx, (3.1)

and

(AF )(x) =
∫
Cn

e(x, ς)F (ς)e−|ς |2 dς. (3.2)

The main goal of this paper is to study the connections between F2(C
n) and M2(R

n+1) in terms of the operators A and B.

Lemma 3.1. Let Vα(x) be the monogenic polynomial of order |α|, then∣∣Vα(x)
∣∣ � 1

α1! . . . αn!
(
x2

1 + x2
0

)α1/2 · · · (x2
n + x2

0

)αn/2
, (3.3)

and ∣∣e(x, ζ )
∣∣ � e

√
x2

1+x2
0|ζ1|+···+

√
x2

n+x2
0|ζn|

. (3.4)

For the other variations e(x, ζ ) and e(x, ζ ) the same estimate holds.

Proof. By the definition (1.3) of Vα(x), the number of the distinguished permutations in (1.3) is |α|!
α1!...αn ! (see [1, pp. 68

and 113]). Therefore,∣∣Vα(x)
∣∣ � 1

|α|!
∑

π(l1,...,l|α|)
|zl1 . . . zl|α| |

= 1

|α|!
∑

π(l1,...,l|α|)
|zl1 . . . zl|α| |

= 1

|α|!
|α|!

α1! . . . αn! |z1|α1 . . . |zn|αn

= 1

α1! . . . αn!
(
x2

1 + x2
0

)α1/2 · · · (x2
n + x2

0

)αn/2
,

where the property |zl1 . . . zl|α| | = |zl1 | . . . |zl|α| | = |z1|α1 . . . |zn|αn (see [5, p. 54, Corollary 7.25]) was used. Then

∣∣e(x, ζ )
∣∣ �

∞∑
k=0

∑
|α|=k

∣∣Vα(x)ζα
∣∣

�
∞∑

k=0

1

k!
∑
|α|=k

|α|!
α1! . . . αn!

((
x2

1 + x2
0

)|ζ1|2
)α1/2 · · · ((x2

n + x2
0

)|ζn|2)αn/2

=
∞∑

k=0

1

k!
(√(

x2
1 + x2

0

)|ζ1|2 + · · · +
√(

x2
n + x2

0

)|ζn|2 )k

= e

√
x2

1+x2
0|ζ1|+···+

√
x2

n+x2
0|ζn|

. �
Remark. As a consequence of Lemma 3.1, the generalized exponential functions e(·, ζ ) ∈ M2(R

n+1) for each fixed ζ ∈ C
n;

and e(x, ·) ∈ F2(C
n) for each fixed x ∈ R

n+1. The estimate (3.4) also allows us to use Fubini’s Theorem with the weight
functions in the two spaces (see the proofs of Theorems 3.9 and 3.10).

Lemma 3.2. Let C2
n,α = ‖Vα‖2

M = ∫
Rn+1 Vα(x)Vα(x)e−n|x|2 dx, |α| > 0, then

C2
n,α � 2

n+1
2

√
π

n
n
2 α!|α| n−1

2

. (3.5)
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Proof. In the following, we adopt the multi-index notations as usual. For example, for α = (α1, . . . ,αn), we have α! =
α1! . . . αn!, and α!! = (α1!!) . . . (αn!!). For any α,β ∈ N

n , where N stands for the set of non-negative integers, we write β � α
if and only if βi � αi for all 1 � i � n. By Lemma 3.1 and simple calculations, we have

C2
n,α � 1

(α1! . . . αn!)2

∫
Rn+1

(
x2

1 + x2
0

)α1 · · · (x2
n + x2

0

)αn e−n|x|2 dx

= 1

n
n+1

2 n|α|(α!)2

∫
Rn+1

(
x2

1 + x2
0

)α1
. . .

(
x2

n + x2
0

)αn e−|x|2 dx

= 2n+1

n
n+1

2 n|α|(α!)2

+∞∫
0

. . .

+∞∫
0

(
x2

1 + x2
0

)α1 · · · (x2
n + x2

0

)αn e−|x|2 dx1 . . .dxn dx0,

and

+∞∫
0

(
x2

j + x2
0

)α j e−x2
j dx j =

α j∑
k j=0

(
α j

k j

)
x

2(α j−k j)

0

+∞∫
0

x
2k j

j e−x2
j dx j

= 1

2

α j∑
k j=0

(
α j

k j

)
Γ

(
k + 1

2

)
x

2(α j−k j)

0

=
√

π

2

α j∑
k j=0

(
α j

k j

)
(2k j − 1)!!

2k j
x

2(α j−k j)

0 .

Then we have

C2
n,α � 2n+1(

√
π/2)n

n
n+1

2 n|α|(α!)2

+∞∫
0

n∏
j=1

α j∑
k j=0

(
α j

k j

)
(2k j − 1)!!

2k j
x

2(α j−k j)

0 e−x2
0 dx0

= 2(π)n/2

n
n+1

2 n|α|(α!)2

α1∑
k1=0

. . .

αn∑
kn=0

α!(2k − 1)!!
2|k|k!(α − k)! ×

∞∫
0

x
2|α−k|
0 e−x2

0 dx0

= (π)n/2

n
n+1

2 n|α|α!
∑

0�k�α

(2k − 1)!!
2|k|k!(α − k)! · (2|α − k| − 1)!!

2|α−k|

� (π)n/2

n
n+1

2 n|α|α!
∑

0�k�α

(2k − 1)!!
(2k)!! · (2|α − k|)!!

(α − k)!2|α−k|

� (π)n/2

n
n+1

2 n|α|α!
∑

0�k�α

(|α − k|)!
(α − k)!

� (π)n/2

n
n+1

2 n|α|α!
∑

0�k�α

(|k|
k

)
. (3.6)

To obtain an upper bound of C2
n,α , we need to estimate the sum T (α) = ∑

0�k�α

(|k|
k

)
for any multi-index α. For this, we

define |α| = 
 |α|
n �, and r = |α|−n|α|, where 0 � r < n. Define α̂ = (|α|, . . . , |α|)+ (1, . . . ,1︸ ︷︷ ︸

r times

,0 . . . 0). Then |α̂| = n|α|+ r = |α|.

For any multi-index α ∈ N
n , define d(α) = max{|αi − α j |: 1 � i, j � n}. Let Sα = {k ∈ N

n: k � α}. We want to prove the
following

Lemma 3.3. For any multi-index α ∈ N
n, we have

T (α) � T (α̂). (3.7)

Moreover, the equality holds if and only if d(α) � 1.

Proof. We first prove (3.7) for n = 2. For any given α ∈ N
2, we may assume that α = (α1,α2) such that α1 � α2. Observe

that if d(α̂) � 1, then the indices α and α̂ are equal up to a permutation in coordinates, in this case equality of (3.7) holds
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immediately. In the following, we may assume that d(α) � 2, then α1 −α2 � 2, and α1 > α1 − 1 � |α| � α2 + 1 > α2. Define
affine map f : R

2 → R
2, by f (x, y) = (x − 1, y + 1), hence d( f (α)) = |(α1 − 1) − (α2 + 1)| = d(α) − 2.

Let S0 = Sα ∩ S f (α) , S1 = Sα \ S f (α) and S2 = S f (α) \ Sα . Cancelling the common contributions from the multi-nomial
coefficients indexed by β ∈ S0, we have

T
(

f (α)
) − T (α) =

∑
β∈S f (α)

(|β|
β

)
−

∑
β∈Sα

(|β|
β

)
=

∑
β∈S2

(|β|
β

)
−

∑
β∈S1

(|β|
β

)

=
α1−1∑

j=0

(
α2 + 1 + j

α2 + 1

)
−

α2∑
j=0

(
α1 + j

α1

)

=
[

α1−1∑
j=α2+1

(
α2 + 1 + j

α2 + 1

)
+

α2∑
j=d(α)

(
α2 + 1 + j

j

)
−

α2∑
j=0

(|α| − j

α2 − j

)]
+

d(α)−1∑
j=0

(
α1 + 1 + j

j

)

=
[ d(α)−2∑

j=0

(|α| − j

α2 + 1

)
+

α2−1∑
j=d(α)−1

( |α| − j

α1 − 1 − j

)
−

α2∑
j=0

(|α| − j

α2 − j

)]
+

d(α)−1∑
j=0

(
α1 + 1 + j

j

)

�
d(α)−1∑

j=0

(
α1 + 1 + j

j

)
> 0. (3.8)

It follows from (3.7) and an induction argument that T (α) � T (α̂) for any α ∈ N
2.

Back to the proof of the general case of inequality (3.7), where α ∈ N
n with n � 2, we can reduce the general case to the

case for n = 2. In fact, for any given α ∈ N
n , as the values of T (α) and multi-index α̂ do not change if we permutate the

components of α, so with a suitable permutation we may assume that α1 � · · · � αn . For any given β = (β1, . . . , βn) ∈ N
n

we define β ′ = (β2, . . . , βn−1) ∈ N
n−2, and β ′′ = (β1, βn) ∈ N

2, hence β = (β1, β
′, βn). In this case |β ′′| = |β| − |β ′|, which

does not depend on the choices of β1 and βn individually.
Then we have

T (α) =
∑
β�α

(|β|
β

)
=

∑
β ′�α′

|β|!
β2! . . . βn−1!

∑
(β1,βn)�(α1,αn)

1

β1!βn!

=
∑

β ′�α′

|β|!
β2! . . . βn−1!(|β| − |β ′|)!

∑
β ′′�α′′

(|β| − |β ′|)!
β ′′!

=
∑

β ′�α′

|β|!
β2! . . . βn−1!(|β| − |β ′|)!

∑
β ′′�α′′

|β ′′|!
β ′′!

�
∑

β ′�α′

|β|!
β2! . . . βn−1!(|β| − |β ′|)!

∑
β ′′�α̂′′

|β ′′|!
β ′′!

= T
(
(α′, α̂′′)

)
.

Note that the strict inequality holds if and only if d(α′′) > 1. In this case, d((α′, α̂′′)) < d(α). Inductively, one can show
that T (α) < T (α̂) if d(α) > 1, which completes the proof of Lemma 3.3. �

It follows, from the definition of the binomial coefficients
(n+1

r

) = (n
r

) + ( n
r−1

)
and an induction argument on n, that we

have

2

(|α̂|
α̂

)
�

∑
β�α̂

(|β|
β

)
� 2n

(|α̂|
α̂

)
. (3.9)

In the next lemma we will use Stirling’s Inequality: for any natural number n we have

n! =
(

n

e

)n√
2πnedn , (3.10)

where 1
12n+1 < dn < 1

12n .

Lemma 3.4. For |α| > 0, we have
( α̂
α̂1,...,α̂n

) = |α|!
α̂1!...α̂n! � n|α|+ 1

2√
n−1

.

( 2π |α| )
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Proof. Note that α̂i = |α| + 1 for i � r, and the remaining n − r ones are given by α̂i = |α|. Without loss of generality, we
assume r = 0, and the general case can be argued similarly. It follows from (3.9) that

|α|! =
( |α|

e

)|α|√
2π |α|ed|α| =

(
n|α|

e

)n|α|√
2πn|α|ed|α| ,

and

α̂i ! =
(

α̂i

e

)α̂i √
2πα̂ie

dα̂i =
( |α|

e

)|α|√
2π |α|ed|α| .

Then we have(
α̂

α̂1, . . . , α̂n

)
= |α̂|!

α̂1! . . . α̂n! = |α|!
α̂1! . . . α̂n!

=
(

n|α|
e

)n|α|√
2πn|α|ed|α| ·

[(
e

|α|
)|α| 1√

2π |α|
e−d|α|

]n

= nn|α|

(
√

2π )n−1

√
n|α|√|α|n ed|α|−nd|α|

= n|α|+ 1
2

(
√

2π |α| )n−1
e

1
12|α| − n

12|α|+1

� n|α|+ 1
2

(
√

2π |α| )n−1
,

where the last exponential factor is uniformly dominated by 1. �
Now we can complete the proof of Lemma 3.2. In fact, the upper bound of Cn,α in (3.4) follows from (3.5), (3.8),

Lemmas 3.3 and 3.4. �
We will directly use

Lemma 3.5. (See [4, p. 40].) {ςα: |α| � 0} is a set of orthogonal basis of Fn(Cn) with the coefficient constants∫
Cn

ςαςαe−|ς |2 dς = πnα!. (3.11)

Next we will show

Lemma 3.6. B(Vα)(ς) = C2
n,αςα ; A(ςα)(x) = πnα!Vα(x).

Proof. From Remark given immediately after Lemma 3.1, we can exchange the order of integration and summation, and
have

B(Vα)(ς) =
∫

Rn+1

∞∑
k=0

∑
|β|=k

Vβ(x)ςβ Vα(x)e−n|x|2 dx

=
∫

Rn+1

Vα(x)Vα(x)e−n|x|2 dxςα

= C2
n,αςα.

Similarly, |e(x,ς)| has the estimate (3.4) too. The similar reasoning together with Lemma 3.5 gives

A
(
ςα

)
(x) =

∫
Cn

∞∑
k=0

∑
|β|=k

Vβ(x)ςβςαe−|ς |2 dς

=
∫
Cn

Vα(x)ςαςαe−|ς |2 dς

= πnα!Vα(x). �
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Theorem 3.7. The integral operator B is a linear bounded operator from M2(R
n+1) to F2(C

n) with a bound to be

√
2

n+1
2 π

n+ 1
2

n
n
2

.

Proof. The Hilbert space theory implies that f ∈ M2(R
n+1) has L2-convergent Fourier series

f (x) =
+∞∑
k=0

∑
|α|=k

fα Vα(x), (3.12)

where fα are complex constants, and

‖ f ‖2
M =

+∞∑
k=0

∑
|α|=k

C2
n,α | fα |2 < ∞. (3.13)

The fact e(·, ζ ) ∈ M2(R
n+1) and continuity of the inner product (1.4) imply

B f (ς) =
∫

Rn+1

+∞∑
k=0

∑
|α|=k

fαe(x, ς)Vα(x)e−n|x|2 dx =
+∞∑
k=0

∑
|α|=k

fαC2
n,αςα.

And hence,

‖B f ‖2
F =

+∞∑
k=0

∑
|α|=k

| fα |2C4
n,αα!πn <

2
n+1

2 πn+ 1
2

n
n
2

+∞∑
k=0

∑
|α|=k

| fα |2C2
n,α = 2

n+1
2 πn+ 1

2

n
n
2

‖ f ‖2
M ,

where the estimate in Lemma 3.2 was used. �

Theorem 3.8. The integral operator A is a linear bounded operator from F2(C
n) to M2(R

n+1) with a bound to be

√
2

n+1
2 π

n+ 1
2

n
n
2

.

Proof. F ∈ F2(C
n) has the Fourier representation

F (ς) =
+∞∑
k=0

∑
|α|=k

Fαςα, (3.14)

where Fα are complex-valued constants. We have

‖F‖2
F =

+∞∑
k=0

∑
|α|=k

|Fα |2πnα! < ∞. (3.15)

The fact that e(x, ·) ∈ F (Cn) and continuity of the inner product (1.6) imply

(AF )(x) =
+∞∑
k=0

∑
|α|=k

Vα(x)Fαα!πn.

Then,

‖AF‖2
M =

+∞∑
k=0

∑
|α|=k

C2
n,α

(
πnα!)2|Fα |2 <

2
n+1

2 πn+ 1
2

n
n
2

‖F‖2
F ,

where the estimate in Lemma 3.2 was used. �
Theorem 3.9. AB is a bounded linear operator from M2(R

n+1) to M2(R
n+1) with the integral kernel

KM(x, y) =
∫
Cn

e(x, ς)e(y, ς)e−|ς |2 dς =
+∞∑
k=0

∑
|α|=k

α!πn Vα(x)Vα(y), (3.16)

where the series is convergent uniformly in any bounded domain of R
n+1 × R

n+1 .
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Proof. Using the Fourier expansion of B f in the proof of Theorem 3.7, and the Fourier expansion of AF in the proof of
Theorem 3.8, we have

(AB f )(x) =
+∞∑
k=0

∑
|α|=k

fαC2
n,αα!πn Vα(x),

and

‖AB f ‖2
M =

+∞∑
k=0

∑
|α|=k

| fα |2C6
n,α

(
α!πn)2

<

(
2

n+1
2 πn+ 1

2

n
n
2

)2 +∞∑
k=0

∑
|α|=k

| fα |2C2
n,α =

(
2

n+1
2 πn+ 1

2

n
n
2

)2

‖ f ‖2
M ,

i.e., (AB f )(x) ∈ M2(R
n+1). The boundedness of AB can, of course, be obtained just by composing the bounded operators A

and B, and the above bound is the product of the bounds of A and B obtained in Theorems 3.7 and 3.8, respectively.
Recalling the estimate for the exponential functions in Lemma 3.1 (and Remark afterwards), Fubini’s Theorem allows us

to exchange the order of integration, and obtain

(AB f )(x) =
∫
Cn

e(x, ς)

( ∫
Rn+1

e(y, ς) f (y)e−n|y|2 dy

)
e−|ς |2 dς

=
∫

Rn+1

( ∫
Cn

e(x, ς)e(y, ς)e−|ς |2 dς

)
f (y)e−n|y|2 dy. (3.17)

So, the kernel function of AB is

KM(x, y) =
∫
Cn

e(x, ς)e(y, ς)e−|ς |2 dς. (3.18)

For fixed x and y, denote the nth partial sums of the series expansions of F = e(x, ς) and G = e(y, ς) in ζ and ζ by Fn

and Gn , respectively. Continuity of the inner product (1.6) implies

[Fn, Gn] → [F , G]
that concludes the series expansion for the kernel

KM(x, y) =
+∞∑
k=0

∑
|α|=k

α!πn Vα(x)Vα(y), (3.19)

where the convergence is uniform in any bounded domain of R
n+1 × R

n+1.
Because of the estimates of |Vα(x)| and Vα(y) (see Lemma 3.1), we further obtain a bound of the kernel function by

∣∣KM(x, y)
∣∣ � πn

+∞∑
k=0

∑
|α|=k

α! 1

α!α!
(
x2

1 + x2
0

)α1/2
. . .

(
x2

n + x2
0

)αn/2(
y2

1 + y2
0

)α1/2
. . .

(
y2

n + y2
0

)αn/2

= πn
+∞∑
k=0

1

k!
(√(

x2
1 + x2

0

)(
y2

1 + y2
0

) + · · · +
√(

x2
n + x2

0

)(
y2

n + y2
0

) )k

= πne

√
(x2

1+x2
0)(y2

1+y2
0)+···+

√
(x2

n+x2
0)(y2

n+y2
0)

. �
Theorem 3.10. BA is a bounded linear operator from F2(C

n) to F2(C
n) with the reproducing kernel

K F (ς ′, ς) =
∫

Rn+1

e(x, ς ′)e(x, ς)e−|x|2 dx =
+∞∑
k=0

∑
|α|=k

C2
n,α(ς ′)αςα, (3.20)

where the series is uniformly convergent in any bounded domain in C
n × C

n.

Proof. Assume that F ∈ Fn(Cn) has the representation (3.14) with the norm (3.15), then

(BAF )(ς) =
+∞∑ ∑

C2
n,αα!πn Fαςα, (3.21)
k=0 |α|=k
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and

‖BAF‖2
F =

+∞∑
k=0

∑
|α|=k

C4
n,α

(
α!πn)3|Fα |2 �

(
2

n+1
2 πn+ 1

2

n
n
2

)2 +∞∑
k=0

∑
|α|=k

α!πn|Fα |2 =
(

2
n+1

2 πn+ 1
2

n
n
2

)2

‖F‖2
F ,

i.e., (BAF )(ς) ∈ Fn(Cn).
The same reasoning based on Fubini’s Theorem gives

(BAF )(ς ′) =
∫

Rn+1

e(x, ς ′)
( ∫

Cn

e(x, ς)F (ς)e−|ς |2 dς

)
e−n|x|2 dx =

∫
Cn

( ∫
Rn+1

e(x, ς ′)e(x, ς)e−n|x|2 dx

)
F (ς)e−|ς |2 dς.

Continuity of the inner product (1.4) implies

K F (ς ′, ς) =
∫

Rn+1

e(x, ς ′)e(x, ς)e−n|x|2 dx =
∫

Rn+1

+∞∑
k=0

∑
|α|=k

Vα(x)Vα(x)(ς ′)αςαe−n|x|2 dx =
+∞∑
k=0

∑
|α|=k

C2
n,α(ς ′)αςα

which is uniformly convergent in any bounded domain in C
n × C

n .

Since C2
n,α � 2

n+1
2 π

n+ 1
2

n
n
2

, we further obtain a bound of the kernel by

K F (ς ′, ς) � 2
n+1

2 πn+ 1
2

n
n
2

+∞∑
k=0

1

|α|!
∑
|α|=k

∣∣ς ′
1ς1

∣∣α1
. . .

∣∣ς ′
nςn

∣∣αn

<
2

n+1
2 πn+ 1

2

n
n
2

+∞∑
k=0

1

k!
(∣∣ς ′

1ς1
∣∣ + · · · + ∣∣ς ′

nςn
∣∣)k

� 2
n+1

2 πn+ 1
2

n
n
2

e|ς ′
1ς1|+···+|ς ′

nςn |. �

Remark 3.11. Since 2
n+1

2 π
n+ 1

2

n
n
2

is less than 1 for n big enough, for such n the integral operators A, B the composed operators

from them are all compress operators.
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