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This study concerns some new developments of unit analytic signals with
non-linear phase. It includes ladder-shaped filter, generalized Sinc function
based on non-linear Fourier atoms, generalized sampling theorem for non-
bandlimited signals and the notion of multi-scale spectrum for discrete
sequences. We first introduce the ladder-shaped filter and show that the
impulse response of its corresponding linear time-shift invariant system is
the generalized Sinc function as a product of periodic Poisson kernel and
Sinc function. Secondly, we establish a Shannon-type sampling theorem
based on generalized Sinc function for this type of non-bandlimited signal.
We further prove that this type of signal may be holomorphically extended
to strips in the complex plane containing the real axis. Finally, we introduce
the notion of multi-scale spectrums for discrete sequences and develop the
related fast algorithm.

Keywords: Shannon sampling; Fourier atoms; Sinc function; Moebius
transform

1. Introduction

The Hilbert transformation is defined by

Hf ðtÞ ¼
1

�

Z 1
�1

f ðxÞ

t� x
dx,

where the improper integral must converge in a suitable sense. However, the Hilbert
transform is well defined for a broad class of functions, namely those in Lp(R) for
15 p51 and is a bounded linear operator. The domain of the definition of the
Hilbert transform can be extended to the space of bounded functions in L1(R) as
well [1]. It is also possible to define the Hilbert transform on the space of tempered
distributions as well by an approach due to Gel’fand and Shilov [2], but considerably
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more care is needed because of the singularity in the integral. In this article, the

improper integral is considered in the principle value meaning.
The Hilbert transform is an important tool in the field of signal processing where

it is used to derive the analytic representation of a signal in univariate case [3–6].

Throughout the article, we refer a signal to a real-valued (complex-valued) function

but with a real variable. In [7], the author proved that the phase function �a(t)
defined by the boundary value

ei�aðtÞ ¼
eit � a

1� aeit

of the Möbius transform

�aðzÞ ¼
z� a

1� az
, jaj5 1, jzj5 1, ð1:1Þ

satisfies the relations

Hðcos �að�ÞÞðtÞ ¼ sin �aðtÞ ð1:2Þ

and

�0aðtÞ ¼
1� jaj2

1� 2jaj cosðt� taÞ þ jaj
2
¼ 2�paðtÞ, ð1:3Þ

where a ¼ jajeita and pa is the Poisson kernel of the unit circle at a. We further

deduced [8,9] that

�aðtÞ :¼ tþ 2 arctan
jaj sinðt� taÞ

1� jaj cosðt� taÞ
, t 2 R, ð1:4Þ

which is the sum of a linear part and a 2�-periodic part. Since eit corresponds to the

particular case a¼ 0 we have suggested ei�aðtÞ the name non-linear Fourier atom

associated with a and devoted to some studies in [7–10]. Some related study of

Hardy spaces are developed in [11].
The function ei�aðtÞ is an analytic signal (see definition, for instance, in [3–6,12,13]

with the strictly increasing non-linear instantaneous phase �a(t). As already

indicated, the instantaneous frequency of cos �a(t) or ei�aðtÞ is 2�-multiple of the

fundamental periodic Poisson kernel pa. The signal cos �a(t) coincides with the notion

of intrinsic mode function in [14,15].
In this article, we study the product of the two well-known functions of which

one is the Sinc function defined by

SincðtÞ ¼
sin t

t
¼

1

2

Z 1
�1

�½�1,1�ð�Þe
it�d�, ð1:5Þ

where �E stands for the indicator function of the set E in general, and the other is the

periodic Poisson kernel. Both of them are theoretically and practically important

in signal and harmonic analysis.
We first show that, for real number a with jaj51, the function (see also (2.5))

haðtÞ ¼

ffiffiffiffiffiffi
2�
p

2
pa

�

2
t

� �
Sinc

�

2
t

� �
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is an impulse response of a kind of ladder-shaped filtering process. The latter
generalizes the system of ideal low-pass filter. We furthermore prove that the impulse
response function ha is a constant multiple of generalized Sinc function (see Figure 1)
the latter being defined by

SincaðtÞ :¼
sin �aðtÞ

t
, t 2 R: ð1:6Þ

We extend the space of bandlimited signals to a certain kind of non-bandlimited
signal, and establish the corresponding sampling theorem using the generalized Sinc
function. We also prove that the kind of signals can be extended to become analytic
functions in strip-shaped domains containing the real axis in the complex plane.
Finally, we raise the notion of multi-scale spectrum for data and develop its fast
algorithm.

2. Ladder-shaped filter and generalized Sinc functions

We start with a revision for the standard case. We need the definition of the
convolution of two functions f and g

f � gðtÞ :¼

Z 1
�1

f ðt� xÞ gðxÞdx, t 2 R:

The question of existence of convolution may involve different conditions on
f and g. Fortunately, Young’s inequality indicates that, for f 2 Lp (R) and g 2 Lq(R),
the convolution determines an Lr(R) function f � g with 1� p, q, r�1 and
1
pþ

1
q ¼

1
r þ 1.

–15 –10 –5 0 5 10 15
–0.5

0
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Figure 1. Sinc function (connected by ‘–’) and generalized Sinc function (by real line) with
A¼ 0.5.
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For a continuous linear time-invariant (LTI) system with impulse response h(t),

when the input signal is fin, then the output signal fout is the convolution of h and fin,

that is

foutðtÞ ¼

Z 1
�1

finðt� xÞhðxÞdx, t 2 R,

which yields an equivalent equation in the frequency domain

f̂outð�Þ ¼
ffiffiffiffiffiffi
2�
p

f̂inð�Þĥð�Þ, � 2 R,

the Fourier transform being defined by

f̂ ð�Þ ¼
1ffiffiffiffiffiffi
2�
p

Z 1
�1

f ðtÞe�i�tdt, � 2 R:

If, in particular, we choose ĥ(�) to be the indicator function

�½��2, �2�ð�Þ ¼
1, � 2 ½� �

2 ,
�
2�,

0, � 2 R n ½� �
2 ,

�
2�,

�

then the output fout is the truncation of fin at the frequency band ½� �
2 ,

�
2 �, which

keeps the lower frequencies of fin and suppresses the higher frequencies. The

corresponding impulse response, h(t), is

hðtÞ ¼
1ffiffiffiffiffiffi
2�
p

Z 1
�1

�½��2, �2�ð�Þe
it�d� ¼

ffiffiffiffiffiffi
2�
p

2
Sinc

�

2
t

� �
:

This leads to the ideal low-pass filter for the associated discrete LTI system:

hLideal ¼ fh
L
idealðnÞ : n 2 Zg with

hLidealðnÞ ¼

1

2
, n ¼ 0,

0, n ¼ 2k, k 2 Z n f0g,

ð�1Þk

ð2kþ 1Þ�
, n ¼ 2kþ 1, k 2 Z:

8>>>><
>>>>:

ð2:1Þ

The frequency response of the discrete LTI system is

HLðe�i!Þ ¼
X1

n¼�1

hLidealðnÞe
�in!, ! 2 ½��,��:

Through simple calculation, we know that HL(e�it) is the square wave

f sqðtÞ ¼
1, jtj5 �

2 ,

0, �
2 � jtj5�,

�
and f sqðtþ 2�Þ ¼ f sqðtÞ:

It is noted that, for the low-pass filter hLideal (or HL), when the input is the unit

impulse

�½n� ¼
1, n ¼ 0,

0, n 2 Z

�
,
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then the output (discrete impulse response) is the sampling of the continuous impulse

response hðtÞ ¼
ffiffiffiffi
2�
p

2 Sincð�2 tÞ, that is,ffiffiffiffiffiffi
2�
p

hLidealðnÞ ¼ hðnÞ:

Now we introduce the non-bandlimited case associated with the generalized Sinc

function. To this end, we divide the frequency space R into parts of double intervals

In :¼ �
�

2
ðnþ 1Þ, �

�

2
n

h i
[
�

2
n,
�

2
ðnþ 1Þ

h i
, n ¼ 0, 1, . . . :

The Riemann–Legesgue lemma implies that for any integrable signal f the spectrum

value j f̂ ð�Þj in In tends to zero as n tends to 1. In view of this, we propose the

following filtering process: for input signal fin, the output signal fout keeps the

frequency information of fin but with different scales in the different frequency bands

In, namely,

f̂outð�Þ ¼ ð1þ aÞ f̂inð�Þ, � 2 I0,

f̂outð�Þ ¼ að1þ aÞ f̂inð�Þ, � 2 I1,

. . .

f̂outð�Þ ¼ anð1þ aÞ f̂inð�Þ, � 2 In, n ¼ 1, 2, . . . ,

where a2 (�1,1). Correspondingly, the impulse response ha(t) can be represented

in the Fourier domain

ĥað�Þ :¼ anð1þ aÞ, � 2 In, n ¼ 0, 1, 2, . . . , ð2:2Þ

where for a¼ 0, we temporarily set 00¼ 1. In this notation, the function ĥ0 coincides

with the indicator function �½��2, �2�: For general a, the function ĥa is a step function

with ladder shape. Simple calculation provides an alternative form

ĥað�Þ ¼ ð1� a2Þ
X1
n¼1

an�1�½�n
2�,

n
2��
ð�Þ, � 2 R,

from which we get the representation in the time domain

haðtÞ ¼

ffiffiffiffiffiffi
2�
p

2
ð1� a2Þ

X1
n¼1

an�1
sin n�t

2
�t
2

, t 2 R: ð2:3Þ

By recalling the formula

X1
n¼1

rn sin nt ¼
r sin t

1� 2r cos tþ r2
, jrj5 1, ð2:4Þ

we have

haðtÞ ¼

ffiffiffiffiffiffi
2�
p

2

1� a2

1� 2a cos �t2 þ a2
sin �t2
�t
2

, t 2 R: ð2:5Þ

Note that, apart from a constant multiple ha(t) is the product of a dilated Sinc

function and a periodic Poisson kernel.
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On the other hand, the impulse response ha(t) is a constant multiple of �2-dilation

of the general Sinc function.
For any complex b in unit disc, straightforward computation gives

z� b

1� �bz
¼
ðz� bÞð1� b �zÞ

ð1� �bzÞð1� b �zÞ
¼

z� bð1þ jzj2Þ þ b2 �z

1� 2ReðbzÞ þ jbj2jzj2
:

Letting b ¼ jbjeitb and z¼ eit,

eit � b

1� �beit
¼

eit � 2jbjeitb þ jbj2e2itb e�it

1� 2Reðjbjeiðt�tbÞÞ þ jbj2

¼
cos t� 2jbj cos tb þ jbj

2 cosðt� 2tbÞ

1� 2jbj cosðt� tbÞ þ jbj
2

þ i
sin t� 2jbj sin tb � jbj

2 sinðt� 2tbÞ

1� 2jbj cosðt� tbÞ þ jbj
2

:

We obtain that for real numbers a

cos �aðtÞ ¼
ð1þ a2Þ cos t� 2a

1� 2a cos tþ a2

sin �aðtÞ ¼
ð1� a2Þ sin t

1� 2a cos tþ a2

Combing the last relation and Equation (2.5) gives

haðtÞ ¼

ffiffiffi
�

2

r
sin �að

�t
2 Þ

�t
2

, t 2 R, ð2:6Þ

that is a constant mutiplication of the (�/2)-dilated generalized Sinc function

defined in (1.6). Noting (2.2) and (2.6), we know that the Fourier transform

of
ffiffi
�
2

p
Sincað

�
2 �Þ is ĥa.

3. Sampling theorems for non-bandlimited signals

We start our discussion from the well-known Whittaker–Kotelnikov–Shannon

sampling theorem which states that for any bandlimited function f with

suppf̂ � ½��,�� for an arbitrarily positive number �, the signal f can be

reconstructed from its sampling sequence f f ðn �
�
Þ : n 2 Zg with the Nyquist density

�
�, that is,

f ðtÞ ¼
X
n2Z

f n
�

�

� � sinð�t� n�Þ

�t� n�
, t 2 R:

Any bandlimited function f with suppf̂ � ½��,�� is related to a 2�-periodic function

Mf,�ðtÞ :¼

ffiffiffiffiffiffi
2�
p

2�

X
n2Z

f n
�

�

� �
e�i

�
�nt: ð3:1Þ

The function Mf,�, however, is well defined not only for �-bandlimited functions,

but also for any function of sufficient decay rate at 1, namely the sequence

f f ðn �
�
Þ : n 2 Zg belongs to l2. It is easy to see that, for any �-bandlimited signal f,

908 Q. Chen and T. Qian
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the compactly supported function f̂ is a pulse in [��,�] of the 2�-periodic function

Mf,�. This suggests us to define the space

B� :¼ f f 2 L
2
ðRÞ : f̂ ð�Þ ¼Mf,�ð�Þ�½��,��ð�Þg: ð3:2Þ

By the Whittaker–Kotelnikov–Shannon sampling theorem, we know that, f is

bandlimited signal with suppf̂ � ½��,�� if and only if f 2 B�.
Next we will extend the space B� of bandlimited signals to certain spaces of non-

bandlimited signals. For any function f 2 L
2(R) we know that Mf,� is well defined.

We define the function Ga
f,� by

Ga
f,�ðtÞ ¼

ð1� aÞMf,�ðtÞ, jtj 2 ½0,�Þ

að1� aÞMf,�ðtÞ, jtj 2 ½�, 2�Þ

. . . , . . .

anð1� aÞMf,�ðtÞ, jtj 2 ½n�, ðnþ 1Þ�Þ, n ¼ 0, 1, 2, . . . :

8>>><
>>>:

ð3:3Þ

The condition jaj51 ensures that

lim
jtj!þ1

Ga
f,�ðtÞ ¼ 0:

For any a2 (�1,1), denote by B
a
� the space of signals

B
a
� :¼ f f 2 L

2
ðRÞ : f̂ ð�Þ ¼ Ga

f,�ð�Þ, � 2 Rg: ð3:4Þ

For a¼ 0,

G0
f,�ðtÞ ¼Mf,�ðtÞ�½��,�ÞðtÞ, t 2 R,

and B
0
� is the space of bandlimited signal with suppf̂ � ½��,�Þ, i.e. B

0
� ¼ B�. We

establish the following sampling theorem for the space B
a
� of non-bandlimited signals.

THEOREM 3.1 A sufficient and necessary condition for a signal f belonging to B
a
� is

f ðtÞ ¼
1� a

1þ a

X
n2Z

f n
�

�

� �
Sinca � t� n

�

�

� �� �
, t 2 R ð3:5Þ

where the generalized Sinc function Sinca(t), t2R, is defined by (1.6), and the

convergence is in both the L2-norm and the pointwise sense.

Remark We should point out that the function Sinca(��) is not cardinal. For sam-

pling purpose, we need to normalize it such that 1�a
1þa Sincað��Þ is a cardinal function.

Proof We first prove the necessity. By the definition of the space B
a
�, we know that

any f 2B
a
� has the following representation in the frequency domain

f̂ ð�Þ ¼ Ga
f,�ð�Þ ¼

X1
l¼0

Ga
f,�ð�Þð�½�ðlþ1Þ�,�l��ð�Þ þ �½l�,ðlþ1Þ��Þð�Þ

¼
1� a

1þ a

X1
l¼0

al ð1þ aÞMf,�ð�Þð�½�ðlþ1Þ�,�l��ð�Þ þ �½l�,ðlþ1Þ��ð�ÞÞ

¼

ffiffiffiffiffiffi
2�
p

2�

1� a

1þ a

X
n2Z

f n
�

�

� �
e�i

�
�n�
X1
l¼0

ð1þ aÞalð�½�ðlþ1Þ�,�l��ð�Þ þ �½l�,ðlþ1Þ��ð�ÞÞ:

Applicable Analysis 909
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Combing this with the equation

X1
l¼0

ð1þ aÞal ð�½�ðlþ1Þ�,�l��ð�Þ þ �½l�,ðlþ1Þ��ð�ÞÞ ¼ ð1� a2Þ
X1
l¼1

al�1�½�l�,l��ð�Þ

leads to

f̂ ð�Þ ¼
1� a

1þ a

X
n2Z

f n
�

�

� �
e�i

�
�n�

ffiffiffiffiffiffi
2�
p

2�
ð1� a2Þ

X1
l¼1

al�1�½�l�,l��ð�Þ:

Applying the inverse Fourier transform to both side of the above equation, noting

that the integral

1ffiffiffiffiffiffi
2�
p

Z 1
�1

e�i
�
�n��½�l�,l��ð�Þe

i�td� ¼
2�ffiffiffiffiffiffi
2�
p

sinðl�ðt� �
�
nÞÞ

�ðt� �
�
nÞ

,

we have

f ðtÞ ¼
1� a

1þ a

X
n2Z

f n
�

�

� �
ð1� a2Þ

X1
l¼1

al�1
sinðl�ðt� �

�
nÞÞ

�ðt� �
�
nÞ

:

Note that the Equations (2.6) and (2.3) imply that

sin �aðtÞ ¼ ð1� a2Þ
X1
l¼1

al�1 sin lt:

We therefore obtain

f ðtÞ ¼
1� a

1þ a

X
nZ

f n
�

�

� � sin �að�ðt� �
�
nÞÞ

�ðt� �
�
nÞ

, t 2 R,

that ends the proof of necessity.
Reversing the above process, we get the proof of the sufficiency part. The

L2-convergence is due to the fact that the system fSincað�ð� � n �
�
ÞÞ : n 2 Z g is

orthogonal in L2(R). The proof is complete. g

The following theorem asserts that if f 2 B
a
�, 05 jaj5 1, then f may be

holomorphically extended to a strip containing the real axis. This is in contrast with

bandlimited functions. According to Paley–Wiener Theorem, the latter may be

analytically extended to become entire functions in the whole complex plane.

THEOREM 3.2 If f belongs to B
a
�, then f may be holomorphically extended to the strip

z ¼ xþ iy

���� log jaj

�
5 y5 �

log jaj

�
, �15 x51

� �
,

and, inside the strip, the extended function satisfies the estimate

j f ðxþ iyÞj �
C�,a

1� e2ðlog jajþ�j yjÞ
,

where C�,a is a constant depending on � and a.
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Proof Consider the possible complex numbers z that make the following two

integrals fþ(z) and f�(z) both well defined

fþðzÞ ¼
1ffiffiffiffiffiffi
2�
p

Z 1
0

eiz�Ga
f,�ð�Þd�, f�ðzÞ ¼

1ffiffiffiffiffiffi
2�
p

Z 0

�1

eiz�Ga
f,�ð�Þd�:

Since Mf,� is 2�-periodic, by the definition of Ga
f,�, Ga

f,�ð2n�þ �Þ ¼ a2nGa
f,�ð�Þ,

� 2 ½0, 2�Þ. Writing log a¼ log jaj þ i arg a, we have

fþðzÞ ¼
1ffiffiffiffiffiffi
2�
p

Z 2�

0

X1
n¼1

a2ðn�1Þei ½2ðn�1Þ�þ��zGa
f,�ð�Þd�

¼
1ffiffiffiffiffiffi
2�
p

Z 2�

0

ei�z
X1
n¼1

e2ðn�1Þðlog jajþi arg aþi�zÞGa
f,�ð�Þd�

¼
1ffiffiffiffiffiffi
2�
p

Z 2�

0

ei�zBa
z,�G

a
f,�ð�Þd�,

where Ba
z,� represents the geometric series in the integral, namely,

Ba
z,� ¼

X1
n¼1

e2ðn�1Þðlog jajþi arg aþi�zÞ:

For z¼xþ iy, due to the relation

je2ðlog jajþi arg aþi�zÞj � e2ðlog jaj��yÞ,

for

y4
log jaj

�
,

the geometric series is absolutely convergent to

Ba
z,� ¼

1

1� e2ðlog jajþi arg aþi�zÞ
:

The function Ba
z,� is bounded by

1

1� e2ðlog jaj��yÞ
:

The factor Ba
z,� may be moved out of the integral while Ga

f,�ð�Þ is integrable and ei�z is

bounded in the domain of integration. Therefore fþ is well defined through the

integral in the in the half-plane y4 log jaj
�

with

j fþðzÞj �
C�,a

1� e2ðlog jaj��yÞ
:

To show that fþ is holomorphic in the half-plane, we first write out the difference-

quotient

fþðzþ DznÞ � fþðzÞ

Dzn
¼

1ffiffiffiffiffiffi
2�
p

Z 2�

0

ei�z
ei�DznBa

zþDzn,�
� Ba

z,�

Dzn
Ga

f,�ð�Þd�

¼
1ffiffiffiffiffiffi
2�
p

Z 2�

0

ei�z��,a,�,zðDznÞGa
f,�ð�Þd�
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with

��,a,�,zðDznÞ ¼
1

ð1� e2ðlog jajþi arg aþi�zÞÞð1� e2i�Dzne2ðlog jajþi arg aþi�zÞÞ

�
ei�Dzn � 1

Dzn
þ
e2i�Dzn � ei�Dzn

Dzn
e2ðlog jajþi arg aþi�zÞ

� 	
:

For �2 [0, 2�] the two functions

ei�Dzn � 1

Dzn
and

e2i�Dzn � ei�Dzn

Dzn

are uniformly bounded as Dzn! 0. Note that

lim
Dzn!0

��,a,�,zðDznÞ ¼
i� þ ið2�� �Þe2ðlog jajþi arg aþi�zÞ

ð1� e2ðlog jajþi arg aþi�zÞÞ
2

¼ ið� � 2�þ 2�Ba
z,�ÞB

a
z,�:

The dominated convergence theorem gives

ð fþÞ0ðzÞ ¼
iBa

z,�ffiffiffiffiffiffi
2�
p

Z 2�

0

ei�zð� � 2�þ 2�Ba
z,�ÞG

a
f,�ð�Þd�:

We therefore conclude that the function fþ is holomorphic and bounded above any

line {tþ iy j �15 t51} for y4 log jaj
�

.
Similarly,

j f�ðzÞj �
C�,a

1� e2ðlog jajþ�yÞ

for

y5
� log jaj

�
,

and the function f� is holomorphic and bounded below any line {tþ iy j �15
t51} for y5 � log jaj

�
.

It follows that restricted in the strip

log jaj

�
5 y5

� log jaj

�
,

the function f (z)¼ fþ(z)þ f�(z) is holomorphic and satisfies the estimate

j f ðzÞj �
C�,a

1� e2ðlog jajþ�j yjÞ
: g

The following theorem extends the sampling formula (3.5) to the strip where

f 2 B
a
� is holomorphic.

THEOREM 3.3 If f 2 B
a
�, then for any z¼ t þ iy, log jaj

�
5 y5 � log jaj

�
,

f ðzÞ ¼
1� a

1þ a

X
n2Z

f n
�

�

� �
Sinca � z� n

�

�

� �� �
, ð3:6Þ

where the convergence is in both the L2-norm and the pointwise sense.
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Proof We show that the generalized Sinc functions in (1.6) may be holomorphically

extended to the strip z¼ t þ iy j �15 t51, log jaj
�

5 y5 � log jaj
�

, and, for n large

enough, there holds

Sinca � z� n
�

�

� �� ���� ��� � C�,a

n
: ð3:7Þ

We are reduced to proving

sin �að�z� n�Þ
�� �� � C�,a,�, y 2

log jaj

�
þ �,
� log jaj

�
� �

� 	
, ð3:8Þ

where � is a small positive number satisfying 05 �5 � log jaj
�

. The relation (3.8) is easy

to be verified by using the explicit expression of the function sin �a in terms of

Möbius transform. Now as a result of Theorem 3.2 the left-hand side (3.6) may be

holomorphically extended to the strip, while each entry on the right-hand side can be

holomorphically extended to the same strip, too. Invoking the Cauchy–Schwarz

inequality and taking into account the estimate (3.7) and the L2-convergence of the

series f f ðn �
�
Þg, the series on the right-hand side uniformly converges in the narrower

strips defined through the restricted �. This shows the pointwise convenience. The

L2-convergence, again, is based on the orthogonality of the entries on the right-hand

side. The proof is complete.
If for functions in B

a
�, a 6¼ 0, one uses the ordinary Shannon sampling, then there

is an non-zero error. According to [16] (also see [17]) the L1-norm of the error is

of the quantity O(e�d/h), where h is the Nyquist density and d is half of the width of

the strip. In our case h ¼ �=�, d ¼ � log jaj=�, and O(e�d/h)¼O(elog jaj) which is

consistent with Shannon sampling as a! 0 implies O(elog jaj)! 0.
Finally we consider the corresponding discrete LTI system, for which, we hope

that the discrete impulse response is the sampling of the impulse response

haðtÞ ¼
ffiffiffiffi
2�
p

2

sin �að
�
2tÞ

�
2t

for the continuous LTI system. For this discrete LTI system, the

filter is c¼ {cn : n 2 Z} with

cn ¼

1

2

1þ a

1� a
, n ¼ 0,

0, n ¼ 2k, k 2 Z n f0g,

1� a2

1þ a2
ð�1Þk

ð2kþ 1Þ�
, n ¼ 2kþ 1, k 2 Z:

8>>>>><
>>>>>:

The frequency response is

Hðe�i!Þ ¼
1

2

1þ a

1� a
þ
1� a2

1þ a2

X
k2Z

ð�1Þk

ð2kþ 1Þ�
e�ið2kþ1Þ!, ! 2 ½��,��:

It is easy to establish the relationship between H(e�i!), !2[��,�], and the

frequency response HL(e�i!), !2[��,�] of the LTI system with the ideal low-pass

filter, that is,

Hðe�i!Þ ¼
að1þ aÞ

ð1� aÞð1þ a2Þ
þ
1� a2

1þ a2
HLðe�i!Þ, ! 2 ½��,��:

Applicable Analysis 913

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
2
0
0
7
 
-
2
0
0
8
-
2
0
0
9
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
c
a
u
]
 
A
t
:
 
0
4
:
4
4
 
2
6
 
N
o
v
e
m
b
e
r
 
2
0
0
9



Simple calculation gives

Hðe�i!Þ ¼

ð1þ aÞð1� aþ a2Þ

ð1� aÞð1þ a2Þ
, ! 2 ð� �

2 ,
�
2Þ,

að1þ aÞ

ð1� aÞð1þ a2Þ
, ! 2 ½��, � �

2� [ ½
�
2 ,��:

8>>><
>>>:

4. Multi-scale spectrum of sequence and implementation

In this section, we introduce a new type of spectrum for sequences, referred to multi-
scale spectrum. Different from the traditional Fourier spectrum for sequences, which
is essentially suitable for only bandlimited signals, multi-scale spectrum is specifically
designed for signals in B

a
�. Although Fourier spectrum is only suitable for narrow

band signal, we apply it to any kind of data. This gives misleading results as we
mainly deal with short time signal which is naturally not narrow band signal. We
now provide a simple explanation about the difference between Fourier spectrum
and multi-scale spectrum. Suppose that we are investigating a continuous signal f(t),
t2R. For computer implementation, we actually deal with adigital signal of
length N, namely, (d1, d2, . . . , dN). By fast Fourier transform (FFT) algorithm, we get

the spectrum data ðd̂1, d̂2, . . . , d̂NÞ of f(t) with the same length as the time domain
data. Essentially, in FFT algorithm, we are considering the signal f(t) both time-
limited and bandlimited. But the bandwidth of a time-limited signal is infinite. Thus
N Fourier spectrum data is not enough to represent the signal f(t) since we cannot
get the higher frequency information of f(t) when f(t) has small duration. We can
obtain the higher frequency data unless we extend the length of the time domain data
of the signal f(t) under study.But by multi-scale spectrum algorithm, we can easily
obtain high-frequency information at any band from N data in the time domain.

4.1. Discrete Fourier transform and FFT revisited

The definition of multi-scale spectrum is closely connected with sampling theorem
of non-bandlimited signals. We need to review some issues related to the definition of
discrete Fourier transform (DFT) for sampling data {x(n4} of continuous signal f(t)
with Nyquist density 1

M
¼ �

� in classic setting. Sampling theorem suggests engineers
to define Fourier spectrum for discrete signal {x(n4)} as

x̂ð�Þ ¼
X
n

xðnMÞe�inM�, � 2 �
�

M
,
�

M

h i
: ð4:1:1Þ

The re-constructional formula is given by

xðnMÞ ¼
M

2�

Z �
M

��
M

x̂ð�ÞeinM�d�:

When the discrete signal {x(n4)} is of length N, that is,

fxðnMÞg ¼ fxð0Þ, xðMÞ, . . . , xððN� 1ÞMÞg,

914 Q. Chen and T. Qian

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
2
0
0
7
 
-
2
0
0
8
-
2
0
0
9
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
c
a
u
]
 
A
t
:
 
0
4
:
4
4
 
2
6
 
N
o
v
e
m
b
e
r
 
2
0
0
9



for the purpose of computer implementation, we need to make the spectrum defined

in (4.1.1) discrete. This leads to the DFT

x̂ð�mÞ ¼
XN�1
n¼0

xðnMÞe�inm
2�
N , with �m ¼

2�

NM
m, m ¼ 0, 1, . . . ,N� 1

and the inverse formula

xðnMÞ ¼
1

N

XN�1
m¼0

x̂ð�mÞe
inm2�

N , with �m ¼
2�

NM
m, n ¼ 0, 1, . . . ,N� 1:

It is known that the DFT is an o(N2) computational procedure. In 1965, Cooley and

Tukey [18] raised an algorithm, named the Cooley–Tukey FFT algorithm, which

breaks the DFT into smaller DFTs in order to reduce the computational complexity.

The Cooley–Tukey FFT algorithm re-expresses the DFT of an arbitrary composite

size N¼N1N2 in terms of smaller DFTs of sizes N1 and N2 recursively and thus

reduce the computation time to o(N logN ).

4.2. Multi-scale spectrum

It is time to define the notion of multi-scale spectrum for discrete sequence. In the

last section, we have shown that, for any non-bandlimited signal f 2 B
a
� the

generalized sampling theorem holds:

f ðtÞ ¼
1� a

1þ a

X
n

f ðnMÞ
sin �að

�
M
t� n�Þ

�
M
t� n�

, t 2 R:

If we define the ladder-shaped function ga,D (see Figure 2) by

ga,Mð�Þ ¼
1� a

1þ a

1þ a, � 2 ½� �
M
, �
M
Þ

að1þ aÞ, � 2 ½� 2�
M
, ��

M
Þ [ ½�

M
, 2�
M
Þ

. . . . . .

anð1þ aÞ, � 2 ½� ðnþ1Þ�
M

, � n�
M
Þ [ ½n�

M
, ðnþ1Þ�

M
Þ

. . . . . .

8>>>>>><
>>>>>>:

ð4:2:1Þ

which has two useful alternative forms

ga,Mð�Þ ¼
X1
n¼0

anð1� aÞ �
½�
ðnþ1Þ�
M

,�n�
M
Þ
ð�Þ þ �

½n�
M
, ðnþ1Þ�
M
Þ
ð�Þ

� �

and

ga,Mð�Þ ¼ ð1� aÞ2
X1
n¼1

an�1�½�n�
M
, n�
M
Þð�Þ, � 2 R,

we get that f 2 B
a
� if and only if

f̂ ð�Þ ¼Mf,Mð�Þ gað�Þ:
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It is easy to see that the spectrum of the function f 2 B
a
� has the following

characteristic property: its high-frequency spectrum is a copy but an exponential-

weight compressing of its low-frequency spectrum. We are therefore inspired to

define the multi-scale spectrum for the sequence {x(n4)}

x̂newð�Þ ¼
X
n

xðnMÞe�inM�ga,Mð�Þ, � 2 R: ð4:2:2Þ

THEOREM 4.1 The function x̂new defined in (4.2.2) has the following properties:

(i) The function x̂new is neither compactly supported nor periodic;
(ii) Riemann–Lebesgue property:

lim
j�j!1

x̂newð�Þ ¼ 0;

(iii) Inverse formula:

xðnMÞ ¼
M

2�ð1� aÞ

Z �
M

��
M

xnewð�ÞeinM�d�, n 2 Z: ð4:2:3Þ

Proof The results (i) and (ii) are a direct conclusion of the definition of the

filter ga,4(�). To obtain (iii), multiply by eim4 on both sides of (4.2.2), integrate over

the interval ½� �
M
, �
M
� and utilize the orthogonality of trigonometric polynomials and

the definition of ga,4(�) to conclude the formula (4.2.3). g

–15 –10 –5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A ladder-shaped filter with a =0.5 and Δ=2 

Frequency

Figure 2. Plot of text color 1l00, 0a00, 0d00 ladder-shaped filter with parameter a¼ 0.5
and 4¼ 2.
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The inverse formula states that {x(n4} can be reconstructed from its spectrum
of low frequencies. Certainly {x(n4} can also be obtained by spectrum of high
frequencies f� : j�j 2 ½n�

M
, ðnþ1Þ�

M
Þg in different scale n.

4.3. Fast algorithm for multi-scale spectrum

It is now right to consider the numerical implementation of multi-scale spectrum
for discrete signal {x(0),x(4), . . . , x((N�1)4)}. We only need to consider the non-
negative spectrum since x̂newð�Þ is of the Hermitian property x̂newð�Þ ¼ x̂newð��Þ. Set
N1 ¼ ½

Nþ1
2 � and

�m ¼
2�

NM
m, m ¼ 0, 1, 2, . . . :

Note that, for k¼ 0, 1, 2, . . . ,

�m 2
2k�

M
,
2k�þ �

M


 	
, m ¼ Nk,Nkþ 1, . . . ,NkþN1 � 1

and

�m 2
2k�þ �

M
,
2k�þ 2�

M


 	
, m ¼ NkþN1,NkþN1 þ 1, . . . ,NkþN� 1:

Decomposition algorithm

The spectrum in the low-frequency interval ½0, 2�
M
Þ (corresponding to k¼ 0) is

defined by

x̂newð�mÞ ¼ ð1� aÞ
XN�1
n¼0

xðnMÞe�inm
2�
N , m ¼ 0, 1, . . . ,N1 � 1

x̂newð�mÞ ¼ að1� aÞ
XN�1
n¼0

xðnMÞe�inm
2�
N , m ¼ N1,N1 þ 1, . . . ,N� 1:

8>>>><
>>>>:

ð4:3:1Þ

The k level detail spectrum (� 2 ½2k�
M
, 2k�þ2�

M
Þ) is

x̂newk ð�mÞ ¼ akx̂newð�m�NkÞ, m ¼ Nk,Nkþ 1, . . . ,NkþN� 1: ð4:3:2Þ

Here we denote that x̂new0 ¼ x̂new:

Synthesis algorithm

We now consider the inverse formula. We show that {x(n4)} can be reconstructed
from low frequency spectrum. In fact, by setting

ym ¼
1

1� a
x̂newð�mÞ, m ¼ 0, 1, . . . ,N1 � 1

ym ¼
1

að1� aÞ
x̂newð�mÞ, m ¼ N1,N1 þ 1, . . . ,N� 1,

we obtain

xðnMÞ ¼
1

N

XN�1
m¼0

yme
inm2�

N : ð4:3:3Þ
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5. Conclusion

The impulse response of the LTI system corresponding to the ladder-shaped filter is
a constant multiplication of the periodic Poisson kernel and Sinc function, from
which we define the generalized Sinc function. For any signal whose Fourier
transform is the multiplication of an interpolating period function and the ladder-
shaped filter, the generalized Shannon-type sampling theorem holds. These kind of
signals are non-bandlimited and their high-frequency spectrum are obtained from
copying and compressing their low-frequency spectrum. These kind of signals are
restrictions on the real line of certain analytic functions in the strip domains parallel
to the real axis in the complex plane.

Fourier spectrum for discrete sequences is only suitable for bandlimited signals.
For signals of short duration (certainly not bandlimited), FFT algorithm can offer
finite frequency information. In practice, however, FFT is mistakenly used to all
kinds of signals and thus it may give misleading results [14] . This reason has been
stimulating scientists to look for other tools of time-frequency analysis for transient
signals such as windowed Fourier transform, Wigner distribution and wavelet,
etc. [19]. Multi-scale spectrum is designed for certain non-bandlimited signals
characterized by the generalized sampling theorem. Different from Fourier spectrum
for discrete sequences, we can obtain frequency information at any band of the
original signal. The fast algorithm for multi-scale spectrum is derived based on FFT.

We remark that the associated analytic signal essentially corresponds to the
Fourier multiplier �Rþ

and the associated Hardy function corresponds to the Fourier
multiplier e�yj�j�Rþ

: In contrast, the two-sided filter ga,4 gives rise to the par-
bandlimited signal induced from the original signal that can be holomorphically
extended to the strips. We note that lim4!1

sin �að4tÞ
t ¼ ð1þ aÞ�ðtÞ in the sense of

tempered distribution.
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