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Abstract The paper reviews some recent progress on adaptive signal decom-
position into mono-components that are defined to be the signals of non-negative
analytic phase derivatives.
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1 Introduction

In 1998, Huang et al ([7]) developed an engineering algorithm to represent signal
data, called “empirical mode decomposition” (EMD), with which a complicated
data can be decomposed into a sum of finite number, and often a small number
of “intrinsic mode functions” (IMFs). Since the decomposition is based on the
local characters of the data, it is, in particular, applicable to nonlinear and
non-stationary processes.

Instantaneous amplitude, phase and frequency are essential concepts in sig-
nal processing and time-frequency analysis for non-linear and non-stationary
signals. These concepts are defined via analytic signal. The associated ana-
lytic signal Af(t) of a real signal f(t) € LP(R),1 < p < o0, is defined by
Af(t) = f(t) +iHf(t), where Hf(t) is the Hilbert transform of f(t) defined by
the principal value integral

Hf(t) :p.v.l h ﬂds. (1)

T) ot —3S

As a counterpart, for periodic functions f(t) € L? [0, 2}7], 1 < p < o0, the asso-
ciated analytic signal is defined by Af(t) = f(t) + iH f(t) where Hf(t) is the
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Circular Hilbert transform
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Hf(t) =pv.— Cot(T)f(s)ds (2)
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The Fourier transform of Af(¢) vanishes at negative frequencies. The analytic
signal Af(t) can be written in the polar form Af(t) = a(t)e?® where a(t) is
the amplitude and 6(t) the phase. The phase derivative w(t) = %(tt) is usually
called the instantaneous frequency. This definition for instantaneous frequency,
however, causes a lot of controversies. In fact, many do not agree with it, for,
from the physics point of view, a quatity must firstly be non-negative and then
may be called “frequency”. Unfortunately, instantaneous frequency such defined
is not always non-negative. The simplest counter examples include the mappings
F(e) =1+ pe, where —1 < p < 1. For a fixed such p the mapping F(e®) is
the analytic signal of the real-valued signal f(e*') = 1+ pcost whose boundary
phase derivative is a continuous function larger than zero and less than zero,
respectively, in adjacent intervals for the t-variable. To see this we note that the
conformal mapping F(z) maps the unit disc centered at the origin onto a disc
centered at 1 that does not contain the origin. Thus the phase function on the
boundary is not monotone. For signals like this we should not regard the phase
derivative as a well defined “instantaneous frequency”. The concerned concept
is physically meaningful only when the analytic phase derivative is non-negative
almost everywhere.

It was expected ([7]) that IMFs resulted from EMD would have well defined
instantaneous frequency functions, or, in other words, non-negative analytic
phase derivatives. In 2006, Sharpley and Vatchev constructed examples to show
that there exist IMFs whose analytic phase functions are not monotone ([9]).
As consequence, physically meaningful analytic instantaneous frequency cannot
be defined for general. Practically an IMF is associated with a certain EMD
determined by the type of envelops and the thresholds that are in use: If a basic
function cannot be further decomposed by the EMD, then it is called an IMF
for that EMD. An IMF may not remain to be an IMF any more if, for instance,
the threshold changes.

Motivated by Huang et al’s algorithm EMD and the related decompositions
there have been studies in relation to what we call by mono-components (see
below) and the related adaptive decompositions. The present paper is a survey
on the main results in this later trend of study but not on the original EMD
and its related decompositions. Comparatively, EMD algorithms have very best
localization properties but the resulted basic signals, IMF's, are lack of global
property: Being of a non-negative analytic instantaneous frequency function is
a global property related to conformal mappings. Our approach, being of the
global property, does not have promising local properties, and in particular,
like Fourier series, is of Gibbs phenomenon. This is no wonder, as the theory
of mono-components stretches its roots into analytic function theory. The de-
scribed situation is as what is stated in the traditional Chinese philosophy: One
cannot get fish and bear’s paw at the same time (Mencius).



We make what is expected a mathematical object called mono-component
defined as follows.
Definition If real-valued f = pcosf € LP(R), 1 < p < oo, where p,0 are
measurable functions with the properties

H(pcosf) = psiné
p =2 0
g > 0

then f is called a real mono-component (MC)([15]).

One can similarly defines complex mono-component on the line and real
(complex)-mono-components on the unit circle ([15]). In the future, we call all
the different types of mono-components just mono-components. This simplifi-
cation does not cause any confusion. Instead of the unrealistic desire that every
analytic signal would have instantaneous frequency we seek for decomposition
of signals into the basic pieces of well defined instantaneous frequency, viz, the
mono-components.

2 Bedrosian Identity

The classical Bedrosian theorem is established in 1963 ([1]).

Theorem 2.1. Assume that f(t) and g(t) are complez-valued signals of finite
energy and F and G are, respectively, their Fourier transforms. If

(1)F(w) =0 for |w| > a and G(w) =0 for |w| < B, where 8 > a > 0; or
(1))F(w) =0 for w < —a and G(w) =0 for w < 3, where 8 > a > 0,

then H(fg)(t) = —if(t)g(t) = f(t)Hg(t).

Bedrosian identity may simplify computations of Hilbert transforms of prod-
ucts of functions. In practice, the amplitude-frequency representation of a signal
often satisfies the assumptions of the Bedrosian theorem. In fact, amplitude is
usually of low-frequencies. The recent study of Bedrosian identity is motivated
by the purpose of constructing non-unimodular mono-component.

Below, we briefly list the main results in this study.

Yuesheng Xu and Dunyan Yan in ([21]) investigate a necessary and sufficient
condition for Bedrosian identity. The classical Bedrosian theorem is a particular
case of the sufficient part of the theorem. If restricted to real signals, use of the
theorem, however, is reduced to the case delt with in the classical Bedrosian
theorem.

Bo Yu and Haizhang Zhang in ([22]) characterize a class of functions satisfy-
ing the classical Bedrosian identity or the circular Bedrosian identity by certain
homogeneous semi-convolution equations. The structure of solutions of these
equations is then studied by using translation invariant subspaces of Hardy
spaces and additive positive definite kernels. The results obtained provide some
insights into the Bedrosian identity and are used to construct what they call
“intrinsic mode functions”.



Tao Qian, Yuesheng Xu, Dunyan Yan, Lixin Yan, and Bo Yu ([14]) char-
acterize in terms of Fourier spectrum the boundary values of functions in the
complex Hardy spaces HP(C*),1 < p < oco. As application they extend the
Bedrosian identity, originally stated for square-integrable functions, to the LP
and L7 cases. Several sufficient conditions for f € LP and g € L? giving rise to
the Bedrosian identity are given.

Through a different approach based on the characterization of real Hardy
spaces in recent harmonic analysis studies, Lihua Yang and Haizhang Zhang
([23]) also proved the Bedrosian identity for 1 < p,q < oco. They establish a
necessary and sufficient condition for f € H? and g € H? with p~! +¢~! < 1 to
satisfy the Bedrosian identity. As application, they give a characterization of f
to satisfy the identity when g is a finite linear combination of complex sinusoids.
They also show that if f is of low Fourier frequencies then it is necessary for g
to have high Fourier frequencies in order to satisfy the Bedrosian identity.

Lately, Lihui Tan et al ([19], [20]) studied Bedrosian identity by using com-
plex analysis methods, especially the Nevanlinna factorization theorem and the
backward shifting operator. While all the previous studies are based on Fourier
transformation, their different methodology provides more insightful informa-
tion and contributes new understanding to the question.

3 Unimodular cases

The Bedrosian identity method to produce new mono-component is based on
the unimodular cases. By definition ([8]) phase signals are real signals f(t) =
acos f(t), where a is a constant and e**®) is an analytic signal. For such signals
all the information is contained in the phase function. The condition that e?® is
an analytic signal requires special properties on 6(t). To the authors’ knowledge,
Picinbono would be the first person who systematically studied finite Blaschke
products as mono-components on the line ([8]).
Tao Qian, Qiuhui Chen, Luoqing Li ([11],[12]) systematically studied peri-
odic analytic phase signals on the line.
The simplest and nontrivial case is Mobius function. Let a be a complex
zZ—a

number in the unit disc D, and 7,(z) = = be the corresponding Mé&bius

az

transform. Then the unimodular function 7,(e®),t € [0,27], is a unimodular
analytic signal, and, moreover, a mono-compent. Note that 7, conformally maps
the unit disc to the unit disc, and the unit circle to the unit circle, and keeps
the anti-clockwise rotation. Thus the boundary function 7,(e?’) is a mono-
component.

This result can be extended to finite or infinite Blaschke products. A finite
Blaschke product is a function B, (z) = []r_; ik, where ax € D. A infinite
Blaschke product has the form B(z) = ¢[] ot {=a where ¢ is a unimodular
constant, a, € D and B(z) converges if and only if the zeros a, satisfy the
condition Y (1 — |ayn|) < co. For some time, it was an open question whether

boundary values of infinite Blaschke products are mono-components.




Qian shows, in ([16]), that if ¢?(*) is the non-tangential boundary value of an
inner function, including infinite Blaschke product and singular inner function
as particular cases, then the phase derivative 6'(t) > 0, where ¢’ is defined as
the non-tangential boundary value of the same quantity inside the region. The
proof is a direct application of the Julia-Wolff-Caratheodory theorem in one
complex variable. In other words, all phase signals are mono-components.

4 More Nonunimodular cases

Boundary values of starlike and p—starlike functions are more general mono-
components ([15],[17]).

Definition A domain Q is said to be starlike, if 0 € Q and tz € Q wherever
0<t<1landzef A univalent and holomorphic function f: D — f(D) is
said to be starlike, if f(D) is starlike and f(0) = 0.

Closely related are convex domains and convex functions. In particular, a
convex domain is a starlike domain, and a convex function is a starlike function.
For a survey on starlike and convex functions in relation to mono-components,
we refer to ([15]). A more general concept is p—starlike functions ([17]).

Definition The function f(z), analytic in D, is said to be in the class
S(p,m), or p-starlike about zero, where p and m are positive integers with
p > m, if and only if
(i) there exists a positive p < 1 such that

zf'(z
Rl )z 0. pclal <
(i)
f(2) = 2"+ apmprz™ +---, |2| < 1; and,

(iii)

2 /

/ Re[zf (2)]dt =2mp, z=re p<r<l1
0 f(2)

(i.e., f(2) is p-valent in |z| < 1).

Moébius transform and finite Blaschke products are special cases of starlike
and p-starlike functions. General starlike functions have both time-varying in-
stantaneous frequencies and amplitudes. Starlike-type mono-components are
more intrinsic in signal’s imbedded structures.

5 Adaptive decomposition of signals into Mono-
components
Our task is to adaptively decompose a given signal into a sum of mono-components.

It seems that there are two approaches to achieve it. First, one would try to
obtain a decomposition only based on the signal itself. In the second approach,



one can seek for a large pool of mono-components and then try to decompose
a signal by using the mono-components in the pool. In our practice, these two
approaches are mixed together.

Theorem 5.1. ([17]) Given f € L*(dD),e,, | 0, then

15y = ¢, 51,51, ..., Sn, Sy all mono-components,such that
| f = So—=> 51 (Sk+ Sk)ll2 < en where the pairs {Sk, Sk} are mutually orthog-
onal.

As a direct consequence, we have

Corollary 5.2. Given f € L?>(0D),Ve > 0, then

ElSo,Sl,EI, all mono-components, such that

If = S0 —S1— Si|l2 <e.

The theorem and corollary show that a given signal may be decomposed into
a mono-component series that converges as fast as one could desire.
The Hardy HP space theory supplies the following decomposition: ([6])

feLl*oD)= f=f"+[" (3)
f*eH*D),f~ € H*(C\D) (4)

Since f* € H?(D), the Nevanlinna factorization theorem guarantees that
[T =011, (5)

where O; is an outer function, and I is an inner function. We further have the
following programme:

ff = 0L

(O1 — My)I + My I

205151, + My I,

= 2(0y — My) L1, + zMoIoI; + My Iy

= 22031311, + zMo oI + M1,

= 23041511 + 22 MsIsIo Iy + Mol I + My I,

where every M, is itself a mono-component or a sum of mono-components, I, are
inner functions, Oy are outer functions. Fast convergence of such decomposition
is proved through comparison with the Fourier series of f* ([18]).
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