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1. Introduction

In signal analysis one seeks for representations of signals that provide at the same
time the amplitude and phase (frequency) information. They are called amplitude-
phase representations, and are with the form

f(t) = ρ(t) cos θ(t), ρ(t) ≥ 0. (1.1)

Such representation, however, is not unique (see [3]). In order to have a determined
amplitude-phase representation one introduces the so called analytic signal associ-
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ated with f(t), defined by

A(f) , f + iHf,

where H is Hilbert transformation on the line. Writing the associated analytic signal
A(f) into its amplitude-phase form, we have

A(f)(t) = ρ(t)eiθ(t).

Thus

f(t) = ρ(t) cos θ(t) (1.2)

with

Hf(t) = ρ(t) sin θ(t),

or

H(ρ(·) cos(·))(t) = ρ(t) sin θ(t).

Use of analytic signals was traced back to Gabor ([5]). We call the above de-
fined representation via the associated analytic signal the analytic amplitude-phase
representation of f. One would further require that θ′(t) exists a.e., and

θ′(t) ≥ 0, a.e. (1.3)

The requirement is justified from its physics meaning. Indeed, frequency is a physics
concept that represents the times of a certain vibration during the unit time interval,
and hence it ought to be non-negative. If (1.3) holds, then we say that the instan-
taneous frequency exists ([2], [10]), and is θ′(t). Only in this case, the instantaneous
amplitude and instantaneous phase are considered to exist and are respectively de-
fined to be ρ(t) and θ(t).

The theory will be available in the parallel two contexts, that is the real line,
R, and the unit circle, ∂D, where D denotes the unit disc. In the unit circle case
the circular Hilbert transformation, denoted by H̃, will be in place of the Hilbert
transformation H on the line. For the definitions and basic properties of H and H̃ we
refer to [6] and [19]. It is known that a complex-valued function, f, in Lp, p ∈ [1,∞],
is the boundary value of a function in the complex Hardy space Hp if and only if its
imaginary part is the Hilbert transform of its real part; and if and only if Hf = −if,

modulo constants in the L∞(R) case; and if and only if the spectrum of the function
is contained in [0,∞). For 1 < p < ∞, the norm ‖Af‖p is equivalent with the norm
‖f‖p. The function Af is, in fact, the boundary value of the Cauchy integral of the
boundary data 2f, while the Cauchy integral itself is one in the Hardy Hp space.
The above mentioned results for the range 1 < p < ∞ are quite standard and may
be referred to [6] and [19]. For the cases p = 1 and p = ∞ there is a treatment
in [12] and [16]. Note that in the present paper we concentrate in the main idea.
Therefore, the function spaces we deal with are restricted to the L2 spaces, i.e. the
spaces of signals of finite energy.
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It is a fact that the non-negativity requirement on analytic phase derivative
(1.3) is not met by general signals. In fact, if f is an outer function in H∞(D) with
analytic extension across the entire boundary ∂D, then its phase derivative is of zero
mean and therefore sometimes positive and sometimes negative ([14]). In relation
to the negative phase derivative phenomenon there have been controversies to the
concept instantaneous frequency among signal analysts. There is a mainstream,
however, to believe that the concept instantaneous frequency is meaningless for
general signals, but only meaningful for those who have non-negative analytic phase
derivative, called mono-components (See the definition below). Those that are not
mono-components, are called multi-components. In accordance with this one seeks
for decompositions of multi-components into mono-components. Precisely, one is to
decompose a given signal f into a series of the form

f(t) =
N∑

k=1

ρk(t) cos θk(t) + rN (t), (1.4)

where rN is a small error term, and for each k, the following three requirements are
met: (i) ρk ≥ 0; (ii) H(ρk cos θk) = ρk sin θk; and (iii) The phase derivative θ′k may
be properly defined and θ′k ≥ 0, a.e.

Remark 1.1. The above required conditions (i) and (ii) are automatically satisfied
by the analytic amplitude ρk and the analytic phase θk, but the condition (iii) may
not be, and turns to be critical. Since the phase derivative θ′k may not exist in the
ordinary derivative sense, the condition (iii) is to be elaborated as follows (see also
[14]). We take the signals f(t) defined on the real line as example, those defined on
the unit circle are similar. In the case f + iHf is the non-tangential boundary limit
of a function F (z), z = t + iy, y > 0, in the Hardy H2(C+) space. For any y > 0,

F (t + iy) = ρy(t)eiθy(t), where θy(t) is well parameterized by t, and θ′y(t), in the
ordinary derivative sense, is well defined. If the non-tangential limit

lim
x+iy→t

θ′y(x)

exists, then we say that θ′(t) exists. If, moreover, the above defined θ′(t) through
non-tangential limit is non-negative a.e., then we say that the condition (iii) is met.
It may be shown that if the analytic function F (t + iy) has analytic continuation
across an open interval I on the line, then on I the above defined derivative as a
non-tangential limit of the same quantity but from inside of the domain coincides
with the derivative θ′(t) in the ordinary sense with the parametrization t on the
boundary.

The proof of Lemma 2.2 below will have to confront with this general definition
of θ′(t) ≥ 0. It can be easily shown that a function in the so called Hardy-Sobolev
space has the above defined general phase derivative θ′(t) (See the proof of Lemma
2.2). Whether it enjoys the non-negative property, however, is another issue.

Remark 1.2. We have used the terminology non-tangential limit. To clarify its
meaning we make the following explanation. The usage of non-tangential is standard
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that means taking limit to a boundary point from inside a truncated cone whose axis
is perpendicular to the tangent line of the boundary curve at the point ([6], [19]).
Below, a limit, as a function, exists amounts to say that limits exist a.e. When we
say that a function is non-zero or non-negative, they mean that the function values
are non-zero a.e. or non-negative a.e.

Definition 1.1. A function ρ(t) cos θ(t) satisfying the above listed three condi-
tions (with Remark 1.1 on condition (iii)) is called a real mono-component or a
mono-component on the line. A complex-valued signal ρ(t)eiθ(t) is a complex-mono-
component if and only if its real part ρ(t) cos θ(t) is a real mono-component. One
similarly defines real mono-component and complex mono-component on the unit
circle through replacing H by H̃.

In the complex-valued case the required condition (ii) in relation to Hilbert trans-
formation is equivalent to the eigen-value condition H(ρ(·)eiθ(·))(t) = −iρ(t)eiθ(t).

An analytic signal Af = ρeiθ that does not satisfy the three conditions is called a
complex multi-component. The associated real-valued signal f is called a real multi-
component. Note that if f is a multi-component, then its analytic amplitude-phase
representation satisfies the conditions (i) and (ii), but not (iii), and its instantaneous
frequency does not exist.

The above definition of mono-components first appeared in [13]. In signal analy-
sis use of the terminology mono-component and multi-component has had a long his-
tory. In [3], and the related literature, complex-valued signals of the form ρ(t)eiθ(t),

where ρ(t) is tacitly assumed to be a Gaussian density and θ a polynomial, are called
“mono-components,” and are studied in great detail. In order to avoid ambiguity
in relation to amplitude-phase representation of real-valued signals some literature
does not concern the concept mono-component for real-valued signals. The refer-
ence [3], for instance, presents a number of paradox arguments in relation to analytic
phase derivative. In Boashash [2] and the related literature mono-components for
real-valued signals are defined through analytic signals in a similar way. The pos-
itivity of the phase derivative is often assumed when deducing their results. They
further require invertibility of the phase derivative. Under these assumptions they
show that the inverse function of the phase derivative coincides in the asymptotic
sense with the function law of group delay. We, however, would insist on the posi-
tivity of the phase derivative. The article [2] also gives a comprehensive historical
review on development of the related concepts.

The Fourier series expansion of f ∈ L2(∂D) is an example of the expansion (1.4).
We note that due to the relations

ak cos kt = |ak| cos
(

kt +
1− sgn(ak)

2
π

)
, bk sin kt = |bk| cos

(
kt− π

2
+

1− sgn(bk)
2

π

)
,

any function of the forms a cos kt and b sin kt is real mono-component. A Fourier
series, however, usually converges slowly. The reason is that they use all the basis
functions in the trigonometric system, some of which are not intrinsic components
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of the signal. An adaptive decomposition (1.4) may achieve fast convergence in a
certain sense. For instance, we may require, for a given ε > 0, to find the min-
imal integer N and, at the same time, N specific mono-components, whose sum
approximates f within an error less than ε in the metric adopted in the space. Or,
alternatively, we can first fix N and seek for N specific mono-components whose
sum provides the best approximation to f in the given metric space. Note that
adaptive decomposition into mono-components is not of uniqueness, but application
dependent (also see Remark 2.1). The composing mono-components may not be or-
thogonal to each other either. As a matter of fact, the totality of mono-components
consists of many more basic functions than what is necessary to form a base, and,
in particular, it contains the trigonometric system. This makes adaptive decom-
position possible. In the present paper we provide theoretical examples for such
decomposition, and show what properties can we expect from such decompositions.
With combined effort of different researchers there have found a large pool of mono-
components in both the real line and the unit circle contexts, including boundary
values of (i) Möbius transforms (Fourier atoms) and finite Blaschke products, in
which the trigonometric functions are particular cases ([10],[11],[12],[15]); (ii) inner
functions, consisting of infinite Blaschke products and singular inner functions [14];
(iii) p-slarlike functions ([13],[17],[22]); and (iv) weighted forms of the Fourier atoms
and their finite products based on various Bedrosian Theorems ([16],[20],[21]).

The analytic amplitude-phase representation of a mono-component gives a time
varying (analytic) instantaneous frequency and a instantaneous amplitude. In sig-
nal analysis such representation are desirable. Indeed, amplitude and frequency
are among the most striking physical properties of a signal. The above decompo-
sition will have the best localization property. We note that each complex mono-
component may be said to be physically realizable as it is the boundary value of an
analytic function.

To the authors, the motivation of the study is the algorithm called Empirical
Mode Decomposition (EMD) , [8]. The EMD algorithm and its variants may be
described as follows. Let f be a given data. Denote by Euf the upper envelop formed
through connecting the consecutive local maximum points of f using splines of, say,
order 3; and Elf the lower envelop formed through connecting the consecutive
local minimum points of f using the same kind of splines. Denote by Mf and Df,

respectively, the operators

Mf =
1
2
(Euf + Elf), Df = f −Mf.

Repeating this iteration up to the n1 step at which we first have Dn1f ≈ Dn1−1f

in accordance with a previously set error threshold. This implies that MDn1−1f =
Dn1−1f −Dn1f ≈ 0. Set f1 = Dn1−1f. To f − f1 repeating the iteration until we
arrive the first n2 at which Dn2(f − f1) ≈ Dn2−1(f − f1). We set f2 = Dn2−1(f −
f1), and to f − f1 − f2 repeat again the same procedure, and so on. With every
subtraction in applying the operator D we eliminate lower frequency components
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and thus finally obtain the component of the highest frequency. Proceeding like this
we consecutively obtain f1, f2, ..., fm, and thus arrive f = f1 + · · ·+ fm + rm. The
iteration process stops running owing to the previously set threshold. The obtained
fk, k = 1, ..., m are called Intrinsic Mode Functions (IMFs). The original signal is
decomposed into a sum of IMFs together with an error term. The IMF functions
fk satisfy Mfk ≈ 0, and between each pair of adjacent local maximum and local
minimum there is a zero crossing. The mentioned properties do not define the IMF
functions but only describe those functions. To judge whether a function is an
IMF associated with an EDM algorithm, the only method is to see whether it is
produced by this particular EMD algorithm. Or, whether an EMD algorithm cannot
further decompose it. The EMD-IMF decomposition has found ample engineering
applications. However, IMFs do not possess the analytic properties of the cosine and
sine functions. The article [18] works out examples showing that there exist IMFs
whose analytic phase derivatives take opposite signs in adjacent open intervals. This
shows that IMFs are not mono-components. The literature [17] provides further
comparisons between mono-components and IMFs. Indeed, it is the algorithm itself
that prevents IMFs from having good analytic properties.

There may be two basic approaches for the adaptive decomposition task (1.4).
First, one can seek for a large pool of mono-components, and then try to com-
pose a given signal by selecting the mono-components in the pool most suitable
for the signal. Along this line the study has mainly been to find various types of
mono-components. While this could be said quite successful, the progress for the
composing part is very little. In the second approach, one would try to design an
algorithm that automatically yields the composing mono-components. In this latter
fold an algorithm like EMD would be ideal. As mentioned, the problem with EMD
is that it does not produce mono-components. The study presented in the paper
is a combination of the mentioned two approaches. It uses some mono-components
in our pool, but it does not involve an effective algorithm like EMD. The study
shows that an adaptive decomposition is theoretically possible. Precisely, for any f

in the underlying space and a given ε > 0, one can identify the smallest integer N

and correspondingly N pairs of mono-components such that the sum of the N pairs
of mono-components approximates f with an error less than ε. Surprisingly, the
smallest integer number N is, as a matter of fact, equal to 1, modulo the constant
mono-components.

Our main results are stated as follows.

Theorem 1.1. Let f ∈ L2(∂D) be real-valued, and εn, n = 1, 2, ..., be a sequence
of positive numbers strictly decreasing to zero. Then there exists a sequence of real
mono-components, T0 = c0, a constant, and T1(eit), T̃1(eit), ..., Tn(eit), T̃n(eit), ...,
such that

‖f − [T0 +
n∑

k=1

(Tk + T̃k)]‖2 ≤ εn, n = 1, 2, ...
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Corollary 1.1. Let f ∈ L2(∂D) be real-valued. For any ε > 0, there exist three real
mono-components T0 = c0, T1(eit) and T̃1(eit) such that

‖f − (T0 + T1 + T̃1)‖2 ≤ ε.

Corollary 1.2. Let f ∈ L2(∂D) be real-valued. If the Fourier series of f satisfies
the condition

∑

k=2

k|ck| < ∞, (1.5)

then f can be expressed as a sum of three real mono-components.

Denote by κ the Cayley transformation that maps the upper-half complex space
C+ conformally onto the unit disc D, and extends to a smooth and one to one
mapping from R to ∂D :

κ : C+ → D, w = κ(z) =
i− z

i + z
, κ(i) = 0, κ(∞) = −1,

and

eit = κ(s) =
i− s

i + s
, t = 2 arctan s,

dt

ds
=

2
1 + s2

.

We will use the correspondence

F (s) = f(κ(s)) = f(eit), (1.6)

and f(eit) is in L2(∂D) if and only if F (s) is in L2(R, ds
1+s2 ) with equal norms in

the respective spaces up to a factor
√

2.
For functions defined on the whole real line we have

Theorem 1.2. Let F ∈ L2(R, ds
1+s2 ) be real-valued. Under Caylay transforma-

tion it corresponds to the function f ∈ L2(D). For a sequence εn, n = 1, 2, ...,

of positive numbers strictly decreasing to zero, let Tk, T̃k be the functions associ-
ated with f defined in Theorem 1.4 and S0 = T0, Sn(s) = Tn(2 arctan s), S̃n(s) =
T̃n(2 arctan s), n = 1, 2, .... Then S0, Sn and S̃n, · · · etc. are real mono-components
in L2(R, ds

1+s2 ), and

‖F − [S0 +
n∑

k=1

(Sk + S̃k)]‖2 ≤ εn.

Correspondingly, we have

Corollary 1.3. Let F ∈ L2(R, ds
1+s2 ) be real-valued. For any ε > 0, there exist three

real mono-components S0, S1, S̃1 such that

‖F − (S0 + S1 + S̃1)‖2 ≤ ε,

where S1 and S̃1 are in L2(R, ds
1+s2 ).

We offer a direct proof, by using Fourier inversion formula, of a set of results
similar to Theorem 1.2 and its corollaries.
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Theorem 1.3. Let F ∈ L2(R) be real-valued, and εn, n = 1, 2, ..., be a sequence of
positive numbers strictly decreasing to zero. Then there exists a sequence of complex
mono-components G1, G̃1, ..., Gn, G̃n, ..., in L2(R, ds

1+s2 ), such that

‖F − Re[e−i(·)
n∑

k=1

(Gk + G̃k)]‖2 ≤ εn.

There are correspondingly the following corollaries.

Corollary 1.4. Let F ∈ L2(R) be real-valued. For any ε > 0, there exist two
complex mono-components G1 and G̃1 in L2(R, ds

1+s2 ) such that

‖F − Re[e−i(·)(G1 + G̃1)]‖ ≤ ε.

The following corollary is based on a set of assumptions inducing the Sobolev-
Hardy spaces.

Corollary 1.5. Let F ∈ L2(R) be real-valued with
∫

|ξ|>1

ξ2|F̂ (ξ)|2dξ < ∞,

∫

|ξ|>1

ξ|F̂ (ξ)|dξ < ∞,

then there exist two complex mono-components G1, G̃1 in L2(R, ds
1+s2 ) such that

F (s) = Re[e−is(G1(s) + G̃1(s))].

2. Proofs of the Results

For an analytic function f : D→ C, writing f(reit) = ρr(t)eiθr(t), r < 1, and taking
derivative to both sides of the equality with respect to t, we obtain that

d

dt
θr(t) = Re[z

f ′(z)
f(z)

]. (2.1)

This result may not be available for general boundary points on |z| = 1, but available
for those across which the function has an analytic continuation. On the boundary
the substitution of the phase derivative is the angular limit or non-tangential limit of
the phase derivative from inside the unit disc ([14]). Recall that a univalent analytic
function f in D is said to be starlike, or 1-starlike, about zero, if f(0) = 0, and

Re[
zf ′(z)
f(z)

] ≥ 0 for 0 6= z ∈ D. (2.2)

Intuitively, a univalent analytic function is starlike if and only if the phase function
θr(t) is increasing in t for any r ∈ (0, 1), and eiθr(t) traverses a full cycle when eit

does so. Generalizations of this concept include p-starlike functions (about zero).
We recall the definition of p-valent starlike function as follows (see [7]).

Definition 2.1. The function f(z), analytic in D, is said to be in the class S(p,m),
or p-starlike about zero, where p and m are positive integers with p ≥ m, if and only
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if
(i) there exists a positive ρ < 1 such that

Re[
zf ′(z)
f(z)

] ≥ 0, ρ < |z| < 1;

(ii)

f(z) = zm + am+1z
m+1 + · · · , |z| < 1; and,

(iii)
∫ 2π

0

Re[
zf ′(z)
f(z)

]dt = 2πp, z = reit, ρ < r < 1

(i.e., f(z) is p-valent in |z| < 1).

In other words, f(z) belongs to S(p,m) if and only if f(z) is p-valent starlike
with respect to the origin and has an m-th order zero at z = 0. There exists the
following factorization of the class S(p,m) :

S(p,m) = [S(1, 1)]m−1S(p−m + 1, 1), 1 < m < p

(see [7]).
We will use the following technical lemma ([9]).

Lemma 2.1. Let f be analytic in D with the Taylor expansion

f(z) = z +
∞∑

k=2

akzk.

If
∞∑

k=2

k|ak| < 1, (2.3)

then f(z) is starlike in D.

For comparison with the proof of its real-line analogue, Lemma 2.2 below, we
cite the simple proof of Lemma 2.1 ([9]).
Proof The inequality (2.3) implies that the winding number of f(reit) is 1 for all
0 < r < 1 and therefore f is univalent. For |z| < 1, we have

|f(z)− zf ′(z)| ≤
∞∑

k=2

(k − 1)|akzk|

< |z| −
∞∑

k=2

|akzk|

≤ |f(z)|.
Dividing the both ends of the above chain of inequalities by |f(z)|, we obtain

|zf ′(z)
f(z)

− 1| < 1, z 6= 0.
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Therefore,

Re[
zf ′(z)
f(z)

] > 0, z 6= 0.

Hence the function f is starlike. The proof is complete.
Proof of Theorem 1.1 Let integers N1 < ... < Nn < Nn+1... be chosen so that
N1 > 1 such that

‖f − (c0 +
∑

1≤|k|≤Nn

ckeik(·))‖2 ≤ εn, n = 1, 2, ...,

where

ck =
1
2π

∫ 2π

0

f(eit)e−iktdt, k ∈ Z.

The fact that f is real implies that c0 is real, and cn and c−n are complex conjugate
to each other. We need to show that for every n ≥ 0, with N0 = 0, the partial sum

∑

Nn+1≤|k|≤Nn+1

ckeikt,

that is real, may be expressed into a sum of two real mono-components. Since the
k > 0 part and the k < 0 part of the partial sum are complex conjugate to each
other, it will suffice to show that

∑

Nn+1≤k≤Nn+1

ckeikt (2.4)

may be written as a sum of two complex mono-components. Their real parts will
be correspondingly defined as 1

2Tk and 1
2 T̃k, respectively, as stated in the theorem

with the required properties. We will prove this by showing that the polynomial
(2.4) is the sum of some two p-starlike functions. In fact, for any n ≥ 0, for a large
constant A > 0, we have the decomposition

∑

Nn+1≤k≤Nn+1

ckzk = zNn


(A + cNn+1)z +

1
2

∑

Nn+1<k≤Nn+1

ckzk−Nn)




+zNn


−Az +

1
2

∑

Nn+1<k≤Nn+1

ckzk−Nn


 .

Choose A so that
1

2(A− |cNn+1|)
∑

Nn+1<k≤Nn+1

(k −Nn)|ck| < 1.

Invoking Lemma 2.1, the above is the sum of some two starlike functions. The proof
is complete.

Taking ε1 = ε, we obtain Corollary 1.1. To prove Corollary 1.2, we only need to
point out that under the assumed condition we can, in the proof of the theorem,
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let the summation upper limit to be ∞. To prove Theorem 1.2 and its corollary
we only need to notice that the mapping between F (s) and f(eit) under Cayley
transformation is an isometric isomorphism with respect to the two respective L2

spaces.

Remark 2.1. The decompositions in the above proved theorems and corollaries do
not possess uniqueness. First, the choice of the increasing integers sequence {Nn} is
not unique. Once the sequence {Nn} is chosen, the technical treatment in the proof
of Theorem 1.4 for decomposing

∑

Nn+1≤k≤Nn+1

ckeikt

can have many variants. For instance, one can, instead, write, for a large constant
A > 0 and 0 ≤ m ≤ Nn − 1, n > 0,

∑

Nn+1≤k≤Nn+1

ckzk =
1
2
zNn−1−m[(Az +

∑

Nn+1≤k≤Nn+1

ckzk−Nn+m+1) +

(−Az +
∑

Nn+1≤k≤Nn+1

ckzk−Nn+m+1)],

and choose

A = An ≥
∑

Nn+1≤k≤Nn+1

(k −Nn + m + 1)|ck|.

In the case, the obtained mono-components Tn and T̃n are in S(p,Nn −m), p ≥
Nn−m. Furthermore, the technique of our decomposition, so far, is based on Lemma
2.1. This is, however, among many other sufficient conditions of starlike functions
(See [13] or [17] for a summary, and also [22]). Being lack of uniqueness, however is
anticipated. It is because of the non-uniqueness that makes the adaptive decompo-
sitions for various purposes possible.

Now we turn to prove Theorem 1.3. Let F (z) be analytic in the upper-half
complex plane. Writing F (s + iy) = ρy(s)eiφy(s), y > 0, and taking derivative to
both sides of the equality with respect to s, we obtain

φ′y(s) = Im[
F ′(z)
F (z)

], when F (z) 6= 0. (2.5)

By Definition 1.1 and Remark 1.1, when a function F (s), originally defined on
the line, may be extended to become a function in the Hardy space of the upper-
half plane, and the non-tangential boundary limit of the phase derivative given
in (2.5) exists on R, then the limit is defined to be the phase derivative on the
line. Furthermore if the limit is non-negative, then the function F (s) is a complex
mono-component.
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We will first prove a lemma analogous to Lemma 2.1. The Fourier transformation
adopted in this paper is defined through

F̂ (ξ) =
∫ ∞

−∞
e−isξF (s)ds.

Under certain conditions we have the Fourier inversion formula

F (s) =
1
2π

∫ ∞

−∞
eisξF̂ (ξ)dξ.

Lemma 2.2. Let F ∈ L2(R) be real-valued and the support of its Fourier transform,
F̂ , is contained in [1,∞). If

∫ ∞

1

ξ2|F̂ (ξ)|2dξ < ∞ (2.6)

and ∫ ∞

1

ξ|F̂ (ξ)|dξ < 1, (2.7)

then

G(s) =
1
2π

(
eis +

∫ ∞

1

eiξsF̂ (ξ)dξ

)
=

1
2π

eis + F (s) (2.8)

is a complex mono-component.

Remark 2.2. When suppF̂ ⊂ [a, b], where −∞ < a < b < ∞, we have suppF̂1 ⊂
[1, b − a + 1], where F1(s) = e−i(a−1)sF (s). If A is large enough, then for 1

AF1 the
conditions (2.6) and (2.7) are automatically satisfied. It is this case that is used in
the following proof of Theorem 1.3. Only the proof of Corollary 1.2 uses the Lemma
2.2 to its greatest potential with the assumptions (2.6) and (2.7) necessary for the
infinite interval [1,∞).

Proof of Lemma 2.2

|G′(z)− iG(z)| ≤ 1
2π

∫ ∞

1

|eiξz(ξ − 1)F̂ (ξ)|dξ

<
1
2π

(
|eiz| −

∫ ∞

1

|eiξzF̂ (ξ)|dξ

)

≤ |G(z)|.
Therefore,

|G
′(z)

G(z)
− i| < 1, z ∈ C+, G(z) 6= 0.

This shows that

Im[
G′(z)
G(z)

] > 0, z ∈ C+, G(z) 6= 0. (2.9)

Now we show that the left-hand-side of (2.9) has a non-tangential boundary limit. In
fact, suppF̂ ⊂ [1,∞] implies that F is in H2(C+) and hence has a non-tangential
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boundary limit. Moreover, the boundary limit of F is non-zero (p 65, [6]). This
will imply that G itself has a non-tangential boundary limit that is non-zero. In
fact, if this were not true, then F (s) = −ieis would hold for s in a set of positive
Lebesgue measure. Note that F̂ is integrable implies that F belongs to H∞(C+).
The function eiz also belongs to H∞(C+). Since they coincided on a set of positive
Lebesgue measure on the boundary, the two H∞ functions then would have to be
identical (p 65, [6]). On the other hand F (z) is in H2(C+), but eiz is not in H2(C+).
This contradiction shows that the boundary limit of G is non-zero. Next we show
that G′(z) has a non-tangential boundary limit. The condition (2.6) implies that
F ′(z) ∈ H2(C+) (That is, F is in the Sobolev-Hardy space). Therefore, F ′(z) has
a non-tangential boundary limit., and so does G′(z). These conclude that the non-
tangential boundary limit of the left-hand-side of (2.9) exists and is non-negative.
To show that G(s) is a mono-component we finally have to show HG = −iG. This
eigenvalue relation, in fact, holds for both eis and F (s), and thus holds for their
sum. The proof of the lemma is complete.
Proof of Theorem 1.3 Since F ∈ L2(R), we have the Hardy space decomposition

F = F+ + F−,

where

F+(z) =
1
2π

∫ ∞

0

eiξzF̂ (ξ)dξ, z ∈ C+,

and

F−(z) =
1
2π

∫ 0

−∞
eiξzF̂ (ξ)dξ, z ∈ C−.

Since F is real-valued on R, we have

F̂ (ξ) = F̂ (−ξ).

Now we consider the F+ part of F, whose spectra are restricted in the right-half of
the real axis. Setting F1(s) = eisF+(s), we introduce a shift of the spectra:

F+(z) =
e−iz

2π

∫ ∞

1

eiξzF̂1(ξ)dξ.

For the given sequence εn strictly decreasing to zero, we can find a strictly increasing
integers sequence 1 = N0 < N1 < · · · such that

‖F+ − e−i(·)

2π

∫ Nn

1

eiξ(·)F̂1(ξ)dξ‖2 ≤ εn

2
, n = 1, 2... (2.10)

To prove the theorem it suffices to show that for each n = 0, 1, 2, ..., there exist two
complex mono-components Gn(z) and G̃n(z) such that

1
2π

∫ Nn+1

Nn

eiξzF̂1(ξ)dξ =
Gn(z)

2
+

G̃n(z)
2

.
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Set, for a positive number An, n = 1, 2, ..., to be determined later,

Gn(z) =
Anei(Nn−1)z

2π

(
eiz +

1
An

∫ Nn+1−Nn+1

1

eiξzF̂1(Nn − 1 + ξ)dξ

)
,

G̃n(z) =
Anei(Nn−1)z

2π

(
−eiz +

1
An

∫ Nn+1−Nn+1

1

eiξzF̂1(Nn − 1 + ξ)dξ

)
.

Choosing

An ≥
∫ Nn+1−Nn+1

1

ξ|F̂1(Nn − 1 + ξ)|dξ,

and using Lemma 2.2, we conclude that Gn/2 and G̃n/2 are two complex mono-
components. It follows from (2.10) and F = 2Re(F+) that

‖F − Re(e−i(·)
n∑

k=1

(Gk + G̃k))‖2 ≤ 2‖Re(F+ − e−i(·)

2π

∫ Nn

1

eiξ(·)F̂1(ξ)dξ)‖2 ≤ εn.

The proof is complete.
The corollaries of Theorem 1.3 may be proved similarly as for those of Corollary

1.1 and Corollary 1.2.

Remark 2.3. We note that in Theorem 1.3 and its corollaries the obtained decom-
positions are not quite into mono-components but with a multiplier e−is. After the
phase modulation by eis the results become decompositions into mono-components.
If 0 /∈ suppF̂ , then we decompose F into a sum of mono-components.

Remark 2.4. In Theorem 1.3 and its corollaries we start from a function in L2(R)
but end up with mono-components not in L2(R), but in a larger space L2(R, ds

1+s2 ).
That is associated with the technique that we use. Precisely, that is because of the
term eiz that we introduce to form the mono-components Gn(z) and G̃n(z).

Remark 2.5. In the EMD decomposition (see [8]) one obtains a sequence of IMF
signals f1, ..., fn, and the algorithm process ceases with a previously set threshold.
As result of the algorithm, the first IMF, viz., f1, is of the highest frequency, consid-
ered to be combined with the noises, and the frequencies of the following IMFs are
consecutively decreasing. In the above decomposition based on Fourier expansion,
the frequencies of the obtained mono-components are consecutively increasing, and
the error term is a combination with the higher order frequencies and the noises.
In engineering applications of EMD one throws away the first IMF and the residue
behind the n-th IMF. In our decomposition the obtained mono-components, Tn and
T̃n, are p-starlike functions. The real part of a p-starlike function has approximately
p maximal and p minimal values. In the case of Theorem 1.1, for instance, each of
Tn or T̃n is the real part of some function in S(p,Nn) with p ≥ Nn (see the proof of
the theorem). The proof of Theorem 1.3 shows that the obtained mono-components
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Gn and G̃n are of frequencies at least as high as eiNnz. We note that if set

gn(eit) = Re
∑

Nn+1≤|k|≤Nn+1

ckeikt

or

gn(s) = Re
∫

Nn<|ξ|<Nn+1

eiξsF̂1(ξ)dξ,

then the gn’s are of higher and higher frequencies, orthogonal to each other, and all
of zero integral means, and they look like IMFs.

3. Examples

Below we provide two examples. The first one is for the compact interval case dealt
with through Theorem 1.1. It is compared with an EMD decomposition. The second
is for the infinite interval case dealt with by Corollary 1.5.

Example 3.1. Let function

f(t) =
cos [2 (t− π)]2 + 5 sin [2 (t− π)]

1 + [2 (t− π)]2

be defined in [−π, π].

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

Figure 1. Left: Original function f(t). Right: Fourier series S25(t) of f(t) up to the 25th order, ||f(t) − S25(t)||2 = 9.1524 × 10−5.
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Figure 2. Decomposition of S25(t) into a sum of four real mono-components, where ε1 = 10−1, ε2 = 10−2,

ε3 = 10−3, ε4 = 10−4, and N1 = 6, N2 = 10, N3 = 18, N4 = 25.
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Figure 3. An EMD decomposition of the original function f(t) into a sum of four IMFs, run by Matlab 7.3

Example 3.2. Consider function

F (s) =
1

1 + s2
− 0.7e

−s2
2

defined on R. Its Fourier transform

F̂ (ξ) = πe−|ξ| − 0.7×
√

2πe−
ξ2

2 ,

and its Hilbert transform

HF (ξ) =
ξ

1 + ξ2
− 0.7×

√
2
π

∫ ∞

0

e−
x2
2 sin (xξ) dx.
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Figure 4. The figure on the right is enlargement of part of the figure on the left.
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Figure 5. Analytic signals associated with the real signals T1(eit), T̃1(eit), T2(eit), T̃2(eit), T3(eit), T̃3(eit), T4(eit) and T̃4(eit), respectively.

They appear like circles. If the scale is made large, then one can see perturbations on the circles of high winding numbers.
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Figure 6. Left: The original function f(t). Right: The associated analytic signal with f(t), i.e. f(t) + iHf(t) that is a multi-component.

It is clear that F (s) is not a real mono-component, but satisfies the requirements
of Corollary (1.11). Accordingly, we have the decomposition F (s) = Re[e−is(G1(s)+
G̃1(s)], where G1, G̃1, are complex mono-components.

G1 (s) =
Aeis

2π
+

1
2π

∫ ∞

1

eisξF̂ (ξ − 1) dξ

G̃1 (s) = −Aeis

2π
+

1
2π

∫ ∞

1

eisξF̂ (ξ − 1) dξ.

Since F̂ (ξ) > 0, the number A in the proof of Theorem 1.3 can be taken to be

A = 3 >

∫ ∞

1

ξF̂ (ξ − 1)dξ =
∫ ∞

1

ξ

(
πe−ξ+1 − 0.7

√
2πe−

(ξ−1)2

2

)
dξ ≈ 2. 329 4.
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Figure 7. Real parts of G1 and G̃1 for s between −10 and 10.
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Figure 8. The analytic signals G1 and G̃1 for s between −10 and 10. They are mono-components.

Finally, we give the figure with the real part of e−is(G1(s) + G̃1(s)),
where max

−10≤sk≤10

∣∣∣F (sk)−Re[e−isk(G1(sk) + G̃1(sk)]
∣∣∣ ≈ 2.2082× 10−4, where sk =

−10 + 0.01k, k = 0, 1, 2, . . . , 2000.
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Figure 9. The real part of e−is(G1(s) + G̃1(s)).

4. Conclusion and Further Expectation

Through the results proved in the previous section we show that theoretical
and practical adaptive decomposition of signals into a small number of mono-
components is available. The mono-components in our decompositions are adaptive
as they depend on sections of the Fourier series or those of the Fourier integral of
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the given signal. The convergence may be made as fast as one can possibly wish.
From the current study there would be some aspects to be improved.

First, the composing mono-components obtained in our decompositions are of
partial orthogonality but not total. Indeed, for instance in Theorem 1.4, any function
in the pair Tk and T̃k will be orthogonal with any function in the pair Tl and T̃l,

where k 6= l. In particular, all Tk and T̃k are orthogonal with T0, that implies that the
system have the integral-zero-mean property. On the other hand, however, Tk and
T̃k are not orthogonal with each other for any k > 0. One would seek for adaptive
decompositions into mono-components of the total orthogonality. The reason why
we cannot make our system to be of total orthogonality is that the constants An

that we choose to construct the composing mono-components are very large and
thus they prevent the obtained mono-components from being orthogonal to each
other. Using a result in [22] may make the constants smaller but still large enough
to prevent the constructed mono-components from being orthogonal to each other
in the respective pairs.

Secondly, the ideal approach of adaptive decomposition into mono-components
would be one similar to the EMD algorithm, but not based on Fourier expansions.
What prevents us, at the present stage of the study, from having an algorithm like
EMD, say, based on suitably adapted M and D operators or likewise, would be that
the mono-component theory has intrinsic connection with conformal mappings. In
the latter boundary interpolation does not directly imply approximation on the
boundary. Algorithms like EMD but for mono-components would require deeper
study in relation to conformal mappings.
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