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Intrinsic mono-component decomposition
of functions: An advance of Fourier theory
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We propose a function decomposition model, called intrinsic mono-component decomposition (IMD). It is a continuation
of the recent study on adaptive decomposition of functions into mono-components (MCs). It is a further improvement
of two recent results of which one is adaptive decomposition of functions into modified inner functions, and the other
is decomposition by using adaptive Takenaka-Malmquist systems. The proposed new decomposition model is of less
restriction and thus gains more adaptivity. The theory is valid to both the unit circle and the real line contexts. Copyright
© 2009 John Wiley & Sons, Ltd.
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1. Introduction

Let s(t) be a real-valued signal of finite energy on the line. The canonical phase-amplitude representation s(t)=�(t)cos �(t), t∈R, is
obtained through its associated analytic signal, As(t)=s(t)+ iHs(t)=�(t)ei�(t), where H stands for the Hilbert transformation on the
line. It is a temptation to define instantaneous frequency of s(t) as the analytic phase derivative �′(t) in the canonical representation
of the signal (see [1]). From the physics point of view, however, only if �′(t)�0, a.e., then the analytic phase derivative �′(t) can
be considered as a qualified instantaneous frequency function [2]. Examples show that analytic phase derivatives �′(t) are not
always non-negative functions. In this sense, a signal may not have (non-negative) instantaneous frequency. What we can do is to
decompose a signal into a sum of basic ones called mono-components of which each has a well-defined instantaneous frequency
function. The definition is as follows.

Definition 1.1 (Mono-component)
Let s(t)=�(t)cos�(t) (or s(t)=�(t)ei�(t)) be the analytic phase-amplitude representation of s(t), that is

H(�cos�)=�sin� (or H(�ei�)=−i�ei�)

where ��0. If, moreover, there holds �′�0, then s is said to be a real (or a complex) mono-component on the line. Using the
circular Hilbert transformation, still denoted by H, one can define mono-components on the unit circle in the same way. The word
mono-component is abbreviated as MC.

Although occasionally Lp and Hp spaces are concerned, the main results of the paper will be on signals (functions) in L2

and H2. Physically realizable signals are those having only non-negative Fourier spectrum identical with the complex Hardy H2

functions. We will identify a function in the Hardy space with its non-tangential boundary limit. The theories in the two contexts,
namely, the unit circle and the real line, are parallel. In this Introduction section we feel free to switch from one of the contexts to
the other. Each of the two following sections will be devoted to one of the contexts.

Based on the notion of MC just introduced, we seek for decomposition of real-valued signals into the form

s(t)=
N∑

k=1
�k(t)cos�k(t)+rN(t) (1)
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where for each k the basic signal �k cos�k is an MC and rN is the remainder. It would be natural to regard the main composing
MCs as the intrinsic MCs of the signal, and first extract them out. That should imply fast convergence.

Note that the classical Fourier series expansion is a particular case of (1). It usually converges slowly, for it uses all the Fourier
coefficients and the ones of larger energy may come later. To the author the motivation of the study is the engineering algorithms
called empirical mode decomposition (EMD) by Huang et al. [3]. By applying the EMD algorithm a signal is adaptively decomposed
into a number of basic signals called intrinsic mode functions (IMFs). The series expansion of a signal into its IMF components
resulted from one implementation of the EMD is called an Hilbert-Huang transform (HHT). The EMD algorithm and its variations
have been used by some engineers. Below we give a brief description of the (original) EMD algorithm.

Denote by f a data function and Euf the upper-envelope of f made by cubic splines connecting all its local maximal points, and El f
the lower-envelope of f made by cubic splines connecting all its local minimal points. Denote by Af the averaging operator, defined
as Af = (Euf +El f ) / 2. Denote by Sf the sifting operator or EMD sifting process, where Sf = f −Af . Now repeat the sifting process many
enough times to reach Sn1+1f ≈Sn1 f under a threshold previously set. The latter relation is equivalent with ASn1 f ≈0 under the
threshold. We call Sn1 f the first IMF, denoted by f1. Let g1 = f −f1, and to g1 apply the multiple sifting process up to the stage when
ASn2 g1 ≈0 under the threshold, and let f2 =Sn2 f1 to be the second IMF, and so on. In such a way we obtain the so-called HHT, that is

f = f1 +f2 +·· ·+fn +rn

where rn is the remainder that collects all the information left out in the procedure. Denoting by I the identity operator, then

Sn1 f = (I−A)n1 f

= f −Cn1
1 Af +Cn1

2 A2f +·· ·+(−1)n1 An1 f

= f +
n1∑

k=1
(−1)k Cn1

k Akf

where Cn
k are binomial coefficients. Therefore, the first IMF, Sn1 f , is composed by all the ‘higher frequencies’ of the signal together

with noises. In contrast, the latter IMFs, namely fk, k =2, 3,. . ., made from

f −Sn1 f =
n1∑

k=1
(−1)k+1Cn1

k Akf

with gradually decreasing ‘frequencies’, all are made from the averaging operation and thus bear the nature of the curves (in our
case, the splines) from which the envelopes are made. As consequence, it is the nature of the envelope curves that determine the
nature of the latter IMFs.

From the adaptation point of view, the EMD method may be said to be quite successful, and owing to that, the method becomes
popular to some extent among engineers. On the other hand, there is no mathematical foundation for it, and the involved concepts
are algorithm dependent. In particular, IMFs are EMD dependent. The only way to exam whether a function is an IMF of a certain
EMD is to apply the EMD to it: if it cannot be decomposed by the EMD, then it is an IMF of the EMD. In an EMD algorithm there are
many variables, including the type of the envelope cures and the threshold. Further analysis on the produced IMFs is impossible.
The inventors, in particular, expected that their IMFs were, as a matter of fact, the above defined MCs. Assuming that they are
MCs, then they a priori assert that IMFs are ‘well behaved’ with Hilbert transformation. Taking this for granted, the decomposition
is called HHT. It has been proved that, in general, IMFs are not MCs. It is shown in [4] that there exist IMFs whose analytic phase
derivatives change sign in adjacent intervals. The spline structure of the envelops does not support monotonicity of analytic phase
functions. HHT, therefore, does not have any relation with Hilbert, and should not be called HHT. They also expected that the IMFs
obtained through a single implementation of the EMD are orthogonal to each other. One can construct two non-orthogonal IMFs,
f1, f2, and apply the EMD algorithm to decompose the sum f1 +f2 and get back f1 and f2 as the first and the second composing
IMFs. This disproves the orthogonality.

As a trend of contemporary signal analysis, a mathematical foundation of EMD has been being sought. It motivates to finding
the genuine adaptive MC decompositions of signals. Regardless the variations, modifications and further developments of the EMD
algorithm in the engineering applications, in relation to mono-component adaptive decomposition the theory has to be unique.
So far a number of approaches based on the notion of mono-component have been explored whose algorithms are no longer
EMD. In this paper we propose a decomposition method with the name intrinsic mono-component decomposition including (IMD)
a particular type called the Takenaka-Malmquist-type IMD. They in each type and each context decompose a given function into
orthogonal MCs with high adaptivity, and the corresponding algorithms are much simpler (see Remark 4.1, 4.2, 4.4). Fourier series
is a particular case of the proposed decomposition.

The theory of mono-components has roots in complex Hardy spaces and conformal mappings. The most simple but non-trivial
case is Möbius transform that conformally maps the unit disc to the unit disc, and the unit circle to the unit circle. It is therefore
a function in the complex Hardy H∞ space, and, in particular, in the disc algebra. Because of the orientation preserving property
the phase on the boundary is an increasing function and, therefore, its derivative is non-negative, being a qualified instantaneous
frequency. The phase derivative, apart from a constant multiple, is, in fact, the Poisson kernel [5]. This positivity property of the
analytic phase derivative can be extended to products of finite many Möbius transforms, viz. finite Blaschke products. The same
object but for the upper-half complex plane was studied by [2]. So far one finds that the class of mono-components is rather large,
including Blaschke products of finite and infinite zeros, singular inner functions [6], the modified unimodular forms in relation to
generalized Bedrosian Theorems [7--10], starlike and p-starlike functions [11], etc.
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One of the latest results on mono-components concerns non-tangential boundary values of inner functions. We note that although
the boundary value ei�(t) of an inner function, F, is defined, the phase function �(t) itself is not uniquely defined. With an abuse of
notation (as �(t) is not defined) the phase derivative �′(t) may be defined through the limit of �′

r(t) as r →1−, where F(reit)=�r(t)ei�r (t).
It is shown in [6] that for any inner function the non-tangential limit of the phase derivative �′

r(t), defined inside the unit disc, exists
almost everywhere on the unit circle, and moreover, is non-negative. That is,

lim
r→1−�′

r(t)= lim
r→1− Re

reitF′(reit)

F(reit)
�0 a.e. (2)

Essentially, existence of the limits together with the positivity are nothing more than the content of the classical Julia–Wolff–
Carathéodory Theorem [6]. If an inner function happens to have analytic continuation cross an interval on the boundary, then the
above-defined phase derivative coincides with the traditional phase derivative �′(t) on the interval. With this generalized notion of
phase derivative we have

Theorem 1.1
Assume that �(t) is a measurable function. Then

H(cos�)=sin� (3)

if and only if ei�(t) is the non-tangential boundary limit of an inner function. In the case, there holds �′(t)�0 a.e. where the derivative
is defined by the limit procedure cited in (2).

In [12] we work with the inner functions

Nn = In(z)zn−1
n−1∏
j=1

⎡
⎣( z−aj

1−ajz

)dj

Ij(z)

⎤
⎦ , n=1, 2,. . . (4)

and the modified inner functions

Mn = z

1−anz
Nn = 1

1−anz
In(z)zn

n−1∏
j=1

⎡
⎣( z−aj

1−ajz

)dj

Ij(z)

⎤
⎦ , n=1, 2,. . . (5)

where Ij ’s are inner functions, dj ’s are positive integers, and aj ’s are complex numbers in the unit disc D. The points in the sequence
{aj} will be consecutively chosen according to the function to be decomposed. We show that for any sequence {aj} the functions
in the combined sequence N1, M1, N2, M2,. . . are all MCs, and are mutually orthogonal. As inner functions, Nn’s being MCs is a
conclusion of Theorem 1.1. To see that Mn’s are MCs we note that the weight functions z / (1−anz) are linear fractional transforms
that map the unit disc centered at the origin onto discs containing the origin, preserving the orientation of the boundary. Therefore,
they are starlike functions about the origin, and thus have increasing phase functions.

The mono-components Nn and Mn are obtained from a recurrence process by using the Nevanlinna factorization Theorem to
functions in Hp(D), 1�p�∞. In each of the recurrence steps we subtract a linear function from an outer function so that the latter
is no longer outer but with at least two factors, z and z−ai , and hopefully with a non-trivial inner function factor, Ii , too. The linear
functions subtracted are of a certain maximal norm property. We thus obtain, for any positive integer n,

F(z) = Rn(z)+(�nNn +�nMn)+·· ·+(�1N1 +�1M1)

= Rn(z)+Sn(z) (6)

where Rn(z)=On+1Nn+1, On+1 is an outer function, Ni ’s and Mi ’s are, respectively the types of inner and modified inner functions
in (4) and (5), Sn stands for the n-th partial sum, �i =Oi(0), �i is chosen so that Oi(z)−�i −(�iz) / (1−aiz) has a zero at z =ai , that is

�i =
{

O′
i (0) if ai =0

a−1
i (1−|ai |2)[Oi(ai)−Oi (0)] if ai �=0

di =
{

0 if O′
i (0)=0

1 if ai �=0
(7)

The above process is applicable for all p. In what follows, however, we will restrict ourselves to the case p=2. For p=2 there is an
easy optimal selection criterion for ai . In fact, one can show that there exists a point ai ∈D such that

∫ �

−�

∣∣∣∣∣Oi(e
it)−�i −

�ie
it

1−aieit

∣∣∣∣∣
2

dt= min
a∈D

∫ �

−�

∣∣∣∣∣Oi(e
it)−�i −

�aeit

1−aeit

∣∣∣∣∣
2

dt (8)

where the relation between �a and a is the same as that between �i and ai given in (7).
The selection criterion for ai to satisfy (8) is: Choose ai ∈D so that the value

2�(1−|ai |2)
|Fi(ai)|2
|ai|2

=max

{
2�(1−|a|2)

|Fi(a)|2
|a|2 : a∈D

}

where Fi(z)=Oi(z)−�i . It is shown that such ai is attainable at an interior pint of D (see [12]).
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The convergence of the series in (6) is independent of particular choices of {ak}. We can prove ([12])

Theorem 1.2
For F ∈H2(D) and any choice of the sequence {ak} in D, we have

lim
n→∞Sn =F

in the H2(D) convergence sense.

The proof is based on a comparison with Fourier series. Since both the sequences {Nn} and {Mn} are with monomial factors
of increasing powers, zn, the corresponding decomposition falls, in essence, into the Takenaka-Malmquist type, satisfying the
condition (10) as cited below. In fact, in the decomposition, along with the adaptively chosen ak ’s, not necessarily meeting
the requirement (10), there are already infinitely many a=0 corresponding to the zn terms in the sequence. In that sense all
the zeros, other than those in the inner functions Ij ’s, already satisfy (10). The sequence {Nn} and the sequence {Mn} play
different roles. The former may be considered as an outcome of introducing the factor zn, and, thanks to it, the decom-
position is forced to converge. As a result of the selection of {an}, the sequence {Mn} enables to gain more adaptivity
that results in faster convergence. A result in the same direction announced by Daubechies in an HHT conference held in
December 2008 in Guangzhou (http://home.sysu.edu.cn/sc/HHT/) corresponds to the particular case of our Theorem 1.2 in which
F is restricted to be a polynomial and all �i are taken to be zero. The classical Fourier series expansion is a more particular case
where all �i =0 and at each recurrence step no inner factors but only the factor z is factorized out (see Remark 4.4). The advantage
of the present study is to get rid of the sequence {Nn} and the factors zn. The comparison with Fourier series is no longer needed.
This new program has less restriction and thus gains more adaptivity. The technical approach that we will adopt is a combination of
the Nevanlinna factorization used in [12], and the techniques used in our study on adaptive Takenaka-Malmquist systems in [13].

The work [13] on adaptive Takenaka-Malmquist systems is in spirit of greedy algorithm [14]. It is, however, not a greedy algorithm,
for it does not involve a standard dictionary of basic functions. By a Takenaka-Malmquist system or a standard Takenaka-Malmquist
system we mean an orthonormal system under the inner product defined by (14)

Bn(z)=
√

1−|an|2
1−anz

n−1∏
k=0

z−ak

1−akz
, n=0, 1, 2,. . . (9)

together with the condition

∞∑
k=1

(1−|ak |)=∞, {an}⊂D (10)

Taking a0 =0 in (9), we obtain a particular orthonormal system

B̃0 =1, B̃n(z)=z

√
1−|an|2
1−anz

n−1∏
k=1

z−ak

1−akz
, n=1, 2,. . . (11)

If we further take all an =0, then we have the Fourier system {1, z,. . . , zn,. . .}. Laguerre basis and the ‘two-parameter Kautz’ basis are
also particular cases of (9). These systems and their variations have long been interested in many areas of applied mathematics,
including control theory, signal processing and system identification, and they have been well studied [15, 16]. All the previous
studies are based on (10). What we do in [13] is to propose the notion of, and the method for adaptive Takenaka-Malmquist systems.
An adaptive Takenaka-Malmquist system is solely a function system (11) but without a priori the assumption (10). Instead, the
involved complex numbers an are dependent on the function to be decomposed. Under the adaptive procedure, a function is
expressed as a linear combination of mono-components in the (11) case, and of pre-mono-components in the (9) case (by definition,
an analytic signal is called a pre-mono-component if it becomes a mono-component after being multiplied by eimt, where m is a
positive constant). The selection criterion for each an is solely dependent on the function F to be decomposed. For instance, in the
(9) case, we have, specifically,

Theorem 1.3
For any F ∈H2(D) we have, in the H2(D) convergence sense,

F = lim
k→∞

Sk, Sk =
k−1∑
l=0

<F, Bl>Bl (12)

where ak ∈D is chosen so that

(1−|ak |2)

∣∣∣∣∣Fk(ak)
k−1∏
l=0

1−alak

ak −al

∣∣∣∣∣
2

=max

⎧⎨
⎩(1−|a|2)

∣∣∣∣∣Fk(a)
k−1∏
l=0

1−ala

a−al

∣∣∣∣∣
2

: a∈D

⎫⎬
⎭ (13)

where

Fk =F−Sk

and ak is attainable at an interior point of D.

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009
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The expression (13) does not have singularity as it is sown that the function Fk has zeros a0,. . . , ak−1 with the multiplicities being
counted.

Practically, the adaptive Takenaka-Malmquist system is an ideal substitution for the EMD decomposition and its variations. The
adaptive Takenaka-Malmquist system has a solid mathematical foundation; and, like EMD, it can be used to various practical
problems. From the function decomposition point of view, however, it has a draw back. It decomposes a function into modified
finite Blaschke products of a fixed form. In contrast, in [12], we at each recursion step factorize out an inner function factor of
the reminder function, that produces intrinsic components of higher and higher frequencies. In the present work, the Nevanlinna
factorization process in [12] is combined with the techniques used in [13] so to produce an ideal decomposition into intrinsic
components of the function of higher and higher instantaneous frequencies.

2. The unit disc case

We denote by D the unit disc and �D its boundary. If F is a real-valued function in L2(�D), then its projection into the H2(D),
denoted by F+, is given by

F+(z)=
∞∑

k=0
ckzk

where the coefficients ck are the Fourier coefficients of F of non-negative indices. Alternatively,

F+(z)= 1

2�i

∫
�D

F(�)

�−z
d�

Owing to the relation

F(eit)=2ReF+(eit)−c0

it suffices to decompose F+. By the Nevanlinna Factorization Theorem, F+ can be decomposed into a product of its outer function
and inner function parts, namely F+ =OI. According to Theorem 1.1, the inner function I is of non-negative analytic instantaneous
frequencies. The outer factor O does not have zero in the unit disc, and its phase derivative usually changes sign [6]. In order to
further decompose O with fast convergence, we need to subtract a mono-component of certain type of the largest energy among
all those is possible. We adopt the usual inner product with the normalized Lebesgue measure on �D, viz.

<F, G>=
∫ 2�

0
F(eit)G(eit)

dt

2�
(14)

The task is to find a function of unit norm of the form

e{a0}(z)=B0(z)=
√

1−|a0|2 1

1−a0z

such that

|<O, e{a0}>|=sup{|<O, e{a}>| : a∈D} (15)

We will show that such a0 is attainable at an interior point of D in Lemma 2.1 below.
The good thing is, for any a∈D, a is a zero of the difference

G=O−<O, e{a} >e{a} =O−<O, B0 >B0

In fact,

<O, e{a}> =
√

1−|a|2
∫ 2�

0
O(z)

1

1−az

dt

2�

=
√

1−|a|2O(a) (16)

Therefore,

G(a)=O(a)−
√

1−|a|2O(a)e{a}(a)=0

Denoting O=O0, I= I0, and

G0 =O0 −<O0, e{a0}>e{a0} =O0 −<O0, B0>B0

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009
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With the choice a=a0 satisfying (15) we have that G0(z)(1−a0z) / (z−a0) is a holomorphic function, and moreover, it belongs
toH2(D). We have

F+(z) = O0(z)I0(z)

= G0(z)I0(z)+<O0, B0>B0(z)I0(z)

= O1(z)
z−a0

1−a0z
I1(z)I0(z)+<O0, B0>B0(z)I0(z)

where O1, I1 are, respectively, the outer and inner function factors of G0(z)(1−a0z) / (z−a0) in view of the Nevanlinna Factorization
Theorem.

We call the process from O0 to O1 an ‘analytic sifting’ process, or ‘sifting’ process in short. To justify existence of such a0 ∈D, we
have following lemma (see [13]).

Lemma 2.1
For any function Q∈H2(D) there exists a0 ∈D such that

|<Q, e{a0}>|=sup{|<Q, e{a}>| : a∈D} (17)

To make the paper self-contain we include its proof from [13] with minor modifications.

Proof
It suffices to show

lim
|a|→1−

‖Q−<Q, e{a}>e{a}‖=‖Q‖ (18)

Let Pr denote the Poisson kernel for the unit circle, r ∈ (0, 1). For �>0, we can choose r sufficiently close to 1 so that, by the
L2-approximation property of the Poisson kernel, there holds

‖Q‖ � ‖Q−<Q, e{a}>e{a}‖
� ‖Pr ∗(Q−<Q, e{a}>e{a})‖
� ‖Pr ∗Q‖−|<Q, e{a}>|‖Pr ∗e{a}‖
� (1−�)‖Q‖−‖Q‖‖Pr ∗e{a}‖ (19)

Now with the fixed r, since e{a} ∈H∞(D), there holds (corollary 3.2, p58, [5])

Pr ∗e{a}(eit)=e{a}(z), z = reit

Since the integral of Poisson kernel is identical to 1, we have

‖Pr ∗e{a}‖2 =
∫ 2�

0

1−|a|2
|1−areit|2

dt

2�

= 1−|a|2
1−r2|a|2

∫ 2�

0

1−r2|a|2
|1−|ra|eit|2

dt

2�

= 1−|a|2
1−r2|a|2

When |a| is close to 1, the inequality (19) gives

‖Q‖�‖Q−<Q, e{a}>e{a}‖�(1−2�)‖Q‖

This concludes the desired limit (18). The proof is complete. �

Thanks to Lemma 2.1 and the computation result in (16), the selection criterion for a0 is: Choose a0 ∈D so that√
1−|a0|2|O0(a0)|=max{

√
1−|a|2 |O0(a)| : a∈D}

Next we repeat the sifting process, from O1 to get O2, and so on. After n times of the sifting, we arrive

F+(z)=On(z)
n−1∏
l=0

z−al

1−alz

n∏
l=0

Il(z)+
n−1∑
i=0

<Oi, e{ai}>Bi(z)
i∏

l=0
Il(z), n=1, 2,. . . (20)

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009
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where Oi’s are outer functions, Il ’s are inner functions, and

Bi(z)=B{a0 ,. . .,ai} =
√

1−|ai |2
1−aiz

i−1∏
l=0

z−al

1−alz
(21)

Now we are in the position to prove

Theorem 2.2
For any F+ ∈H2(D), by consecutively applying the sifting process, we have

F+(z)=
∞∑

i=0
<Oi, e{ai}>Bi(z)

i∏
l=0

Il(z) (22)

in the H2(D) convergence sense.

We will first prove a Lemma.

Lemma 2.3
If {bn} is contained and has an accumulation point in D, then the system

{e{bn}}=
{√

1−|bn|2
1−bnz

}
(23)

is dense in H2(D).

Proof
As is shown in (16), for any G∈H2(D)

<G, e{bn}>=
√

1−|bn|2G(bn)

So, if for all n<G, e{bn}>=0, then, as a holomorphic function, G must be identical with zero. The proof is complete.
�

Proof of Theorem 2.2
We prove the theorem by introducing a contradiction. Assume that

G(z)=F(z)−
∞∑

i=0
<Oi, e{ai}>Bi(z)

i∏
l=0

Il(z) �=0

Since G∈H2(D), by Lemma 2.3, there exists b∈D such that

|<G, e{b}>|=	>0

We may, in particular, choose b �=an for all n.
We note that in (20) all the entries in the summation for the index i, together with the first entry as well, are mutually orthogonal.

This can be verified by using the Cauchy theorem in the computation of the inner products between any two above-mentioned
entries. In fact, a such inner product reduces to the evaluation of the higher-order entry at one of its zeros. Denote by

Fk(z) = F(z)−
k−1∑
i=0

<Oi, e{ai}>Bi(z)
i∏

l=0
Il(z)=Ok (z)

k−1∏
l=0

z−al

1−alz

k∏
l=0

Il(z)

Hk = −
∞∑

i=k
<Oi, e{ai}>Bi(z)

i∏
l=0

Il(z)

We have G=Fk +Hk . As consequence of the orthogonality

‖G‖2 =‖Fk‖2 +
∞∑

i=k
|<Oi, e{ai}>|2 (24)

and thus

lim
i→∞

|<Oi, e{ai}>|=0 (25)

Owing to (24), when k is large,

|<Hk, e{b}>|�‖Hk‖‖e{b}‖<	 / 2
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Hence

|<Fk, e{b}>|+	 / 2>|<Fk, e{b}>+<Hk, e{b}>|=	

or

|<Fk, e{b}>|>	 / 2

On the other hand, the evaluation

<Fk, e{b}>=
k−1∏
l=0

b−al

1−alb

k∏
l=0

Il(b)<Ok, e{b}>

This, together with the fact that the module of any inner functions is bounded from above by 1, implies that

|<Ok, e{b}>|�|<Fk, e{b}>|>	 / 2

In view of (25), this, however, is contrary to the selection criterion of ai , for in that case for any large enough i�k, we would have
chosen ai =b. But b �=ai for any i. This contradiction proves the theorem. �

3. The upper-half complex plane case

The theory on the real line is a close analogy with what we have for the circle. Suppose that F is real-valued and F ∈L2(R). Then
its projection into H2(C+), where C+ is the upper-half complex plane, is given by

F+(z)= 1

2�i

∫ ∞

−∞
F(t)

t−z
dt

Denote its non-tangential boundary limit by F+(t), then F(t)=2ReF+(t). It will suffice to decompose F+. Now we are to present the
replacements of what we have in the circle case.

We adopt the usual inner product

<F, G>=
∫ ∞

−∞
F(t)G(t)dt

The Cauchy Theorem and the Cauchy formula will take the following forms. For any function F ∈H1(C+), denoting by F(s) its
non-tangential boundary limit, we have ∫ ∞

−∞
F(s)ds=0

and

F(z)= 1

2�i

∫ ∞

−∞
F(s)

s−z
ds, z ∈C+

(see [5]).
The Takenaka-Malmquist system in the upper-half plane is

Dn(z)=
√

�n

�

1

z−an

n−1∏
l=0

z−al

z−al
, an =�n + i�n ∈C+, n=0, 1. . . , z ∈C+ (26)

where

∞∑
l=0

�n

1+|an|2 =∞, Im �n>0 (27)

Our decomposition is based on the function sequence (26) while the points an’s will be adaptively chosen in the upper-half plane
not necessarily satisfying the condition (27).

As in the unit disc case, in the upper-half complex plane we also have an inner and outer functions theory and a corresponding
Nevanlinna Factorization Theorem. By repeating a similar sifting process we can inductively obtain a decomposition in the pattern
of (20), that is, for F ∈H2(C+),

F(z)=On(z)
n−1∏
l=0

z−al

z−al

n∏
l=0

Il(z)+
n−1∑
i=0

<Oi, f{ai}>Di(z)
i∏

l=0
Il(z), n=1, 2,. . . (28)

where Oi’s are outer functions, Il ’s are inner functions, and e{eai } in section 2 is replaced by f{ai} defined by f{ai} =
√

�i / �1 / (z−ai),

and Di(z) is given in (26).
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For each i the point ai is chosen so that ai ∈C+ and

|<Oi, f{ai}>|= max
a∈C+ |<Oi, f{a}>|

To justify existence of such ai , we show, by a Poisson kernel argument as in Lemma 2.1, that for any Q∈H2(C+),

lim
Ima→0

‖Q−<Q, f{a}>f{a}‖=‖Q‖

and thus

lim
Ima→0

<Q, f{a}>=0

The selection criterion for ai is: Choose ai ∈C+ so that

|<Oi, f{ai}>|= max
a∈C+

{∣∣∣∣∣
∫ ∞

−∞
Oi(s)

√
�

�

1

s−a
ds

∣∣∣∣∣
}

=2 max
a∈C+{

√
��|Oi(a)|}

Then we have

Theorem 3.1
For any F ∈H2(C+), by consecutively applying the sifting process, we have

F(z)=
∞∑

i=0
<Oi, e{ai}>Di(z)

i∏
l=0

Il (z) (29)

in the H2(C+) convergence sense.

The theorem is proved by using the same techniques as in the proof of Theorem 2.2 while the technical Lemma 2.3 is replaced by

Lemma 3.2
If {bn} is contained and has an accumulation point in C+ , then the system

{e{bn}}=
{√

Imbi

�

1

z−bn

}
(30)

is dense in H2(C+).

4. Discussions and remarks

We first give some definitions.

Definition 4.1
For a given function F ∈L2 or F ∈H2 on either the unit circle or the real line, we call a decomposition given by (20) or (28), or
its limit form in Theorem 2.2 or 3.1, an intrinsic mono-component decomposition, abbreviated as IMD, of the function. Each of the
entries

<Oi, e{ai}>Bi(z)
i∏

l=0
Il(z)

or

<Oi, f{ai}>Di(z)
i∏

l=0
Il(z)

is called an intrinsic mono-component, abbreviated as IMC, of the function. Note that by this definition some IMCs in the disc case
may be pre-mono-components.

Note that the decomposition processes in Sections 2 and 3 under the selection criteria will still work if at every sifting process
we do not factorize out the inner function Ij . In the case we are led to decompositions without the inner function factors. The
decompositions then are of the form

F+(z)=On(z)
n−1∏
l=0

z−al

1−alz
+

n−1∑
i=0

<Oi, e{ai}>Bi(z), ai ∈D, n=1, 2,. . . (31)
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and

F+(z)=On(z)
n−1∏
l=0

z−al

z−al
+

n−1∑
i=0

<Oi, f{ai}>Di(z), ai ∈C+, n=1, 2,. . . (32)

in respectively the two contexts. Their limit forms corresponding to Theorem 2.2 (also see [13]) and Theorem 3.1 also hold.

Definition 4.2
For a given function F ∈L2 or F ∈H2 on either the unit circle or the real line, we call a decomposition given by (31) or (32),
or its limit form in Theorems 2.2 or 3.1 a Takenaka-Malmquist type intrinsic mono-component decomposition, abbreviated as
Takenaka-Malmquist type IMD, of the function. Each of the entries

<Oi, e{ai}>Bi(z)

or

<Oi, f{ai}>Di(z)

is called a Takenaka-Malmquist type intrinsic mono-components, abbreviated as Takenaka-Malmquist type IMC, of the function.
Note that by this definition some Takenaka-Malmquist type IMCs in the disc case may be pre-mono-components.

Remark 4.1
The IMC functions resulted from an IMD, of which each is of a product form, gain more and more inner function factors. This is
a feature gained from the consecutive sifting processes, interpreted as having more and more frequencies. Since the Nevanlinna
factorization is unique, and the choice of an is optimal, the decomposition exhibits the intrinsic structure. The decomposition
is unique provided that in the selection of an there is only one point an in D (or in C+) providing the maximal inner product
module |<On, e{an}>| (or |<On, f{an}>|). In case there are multiple choices of such an, then the strategy of choice and the sense of
uniqueness need to be further explored.

Remark 4.2
The proposed IMD and IMC, or Wlash type IMD and Takenaka-Malmquist type IMC, are ideal replacements of the engineering EMD
and IMF. In the theory aspect IMCs and Takenaka-Malmquist type IMCs are mono-components or pre-mono-components that have
well-defined analytic instantaneous frequencies. In practice the associated algorithms of IMD and Takenaka-Malmquist type IMD
are much simpler. Only one sifting is required in order to produce an IMC or a Takenaka-Malmquist type IMC. In contrast, in EMD
a multiple sifting process is required in order to produce an IMF. The remainders in IMD and Takenaka-Malmquist type IMD are
explicit and the computation in relation to threshold is easy. IMCs or Takenaka-Malmquist IMCs from a single implementation of
the algorithm are mutually orthogonal.

Remark 4.3
Both IMD and Takenaka-Malmquist type IMD are constructive. The latter is straightforward. The former is constructive due to the
fact that the outer function part of F ∈H2 depends only on the module of F. In the unit circle case, for instance, the outer and the
inner function factors are given, respectively, by

O(z)=e
∫ 2�

0
eit+z
eit−z

log |F+(eit)|dt
and I(z)=F+(z) / O(z)

Owing to the simplicity of its algorithm, the Takenaka-Malmquist type IMD is even better. The obtained Takenaka-Malmquist type
IMCs run from the lowest frequency to all the higher ones. The omitted error terms in an application are those with higher frequencies
combined with noises. In the unit circle case, a general IMD algorithm gives rise to intrinsic pre-mono-components. If, in particular,
we take a0 =0, then all the obtained Takenaka-Malmquist type IMCs are mono-components. The decomposition corresponding to
the choice a0 =0 is equivalent to decomposing (F+(z)−c0) / z in the general IMD setting, where c0 is the average of the function.
In comparison, in the upper-half plane case all IMDs and Takenaka-Malmquist type IMDs give rise to IMCs.

Remark 4.4
The Fouries series or power series expansion may be obtained by a similar sifting process as follows. Assume that F ∈H2(�D). Then
F−c0 has z =0 as a zero, and so F−c0 =zF1(z), where c0 is the average of F, and F1 is a function in H2(�D). Repeating the process
we get

F(z)=c0 +c1z+zF2(z)

where c1 is the average of F1, and F2(z)=F1(z)−c1, and so on. In such way we obtain

F(z)=c0 +c1z+c2z2 +·· ·+cnzn +znFn(z)

where cn is the average of Fn and Fn(z)=Fn−1(z)−cn−1.
The following is an approach only involving finite Blaschke products. Let F(z) be a function in H2(�D). Then we first factorize

out the Blaschke product factor B0 of F to get F =B0F0, where F0 is the product of its singular inner function and its outer function
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parts, and then repeat. There follows:

F(z) = B0(z)F0(z)

= B0(z)[c0 +(F0(z)−c0)]

= c0B0(z)+zB0(z)B1(z)F1(z)

= c0B0(z)+c1zB0(z)B1(z)+z2B0(z)B1(z)B2(z)F2

= ·· ·

=
n∑

k=0
ckzkB0(zl. . . Bk(z)+zn+1B0(z) · · ·Bn(z)Bn+1(z)Fn+1(z)

=
n∑

k=0
ckzkB0(z). . . Bk(z)+An(z)

= (Sn(z)+Nn(z))+An(z)

where for each k, ck is the average of Fk , Bk is a Blaschke product, Fk is the product of a singular inner function and an outer
function, Sn(z) is n-th the partial sum of F(z) collecting all the terms of the form akzk with k�n in the Fourier expansion of Tn(z),
where

Tn(z)=Sn(z)+Nn(z)=
n∑

k=0
ckzkB0(z) · · ·Bk(z)

where Nn collects all the terms of the form akzk with k>n in the expansion of Tn(z). The orthogonality between Sn and Nn and that
between Tn and An are obvious. We further show that the partial sum converges to F in the H2 sense. Due to the orthogonality,
we have

‖F‖2 =‖Sn‖2 +‖Nn‖2 +‖An‖2

The fact

lim
n→∞Sn =F

implies

lim
n→∞(‖Nn‖2 +‖An‖2)=0

A fortiori,

lim
n→∞‖An‖2 =0

The last relation is equivalent to

lim
n→∞Tn =F

This shows that this model is already an advance of Fourier series.
If F(z) is restricted to be a polynomial, say, of degree m, then we can show

F(z)=Tm(z)

In fact, assuming

F(z)=Tm(z)+Am(z)=Sm(z)+Nm(z)+Am(z)

we have

‖F‖2 =‖Sm‖2 +‖Nm‖2 +‖Am‖2

Since

‖F‖2 =‖Sm‖2

we have

‖Nm‖2 +‖Am‖2 =0
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As consequence,

Nm =Am =0

The above examples show that both the Fourier series and the Daubechies et al. model are particular cases or variations of the
type of sifting process proposed in this study.
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