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1. Introduction

There has been a continuing study on zeroes of polynomials in quaternions and octonions.

Niven in [3, 4] first studied zeroes of quaternionic polynomials. The fundamental theorem

of algebra for quaternionic polynomials was established by Eilenberg and Niven in [5].

Ever since then the theorem has been re-proved by using a number of different methods.

In [6], the authors use a constructive method to prove it. In [7], the authors introduce a

regular multiplication in order to prove the theorem and also give factorization of regular

functions. In [8], structure of zeroes of polynomials is studied and a topological proof of

the fundamental theorem for both quaternionic and octonionic variables is given. Besides

those, multiplicity of zeroes of quaternionic polynomials is studied in [9]. In [10] the

authors study zeroes of quaternionic and octonionic Laurent series with real coefficients

using a geometrical method. To the authors knowledge, in the Clifford algebra setting for

higher dimensions, there have been no so similar results. In [13] the authors independently

study zeros of Clifford polynomials. Using a technical method, [13] introduces a one-to-one

correspondence between Clifford polynomials of real-coefficients with complex polynomials

of real-coefficients. They further extend the results to Laurent series with real coefficients

in [14]. Algorithms of zeros are actually given in [13] and [14].

In [11, 12], the authors introduce slice monogenic functions that include polynomials

and power series in the Clifford algebra setting as particular cases. Fundamental properties

of zeroes of Clifford power series on a special class of domains are studied.

1This project sponsored by the National Natural Science Funds for Young Scholars (No. 10901166)
and by Research Grant of University of Macau on Applications of Hyper-Complex Analysis (cativo: 7560),
the FDCT project on Clifford and Harmonic Analysis (014/2008/A1)
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By adopting the setting of slice monogenic functions, in the present work, structure

of zeroes of slice monogenic functions is studied. Some of the results are overlap with

the above mentioned literature but with different methodology for the proofs. As main

contributions of this work we obtain sufficient and necessary conditions for slice monogenic

functions with paravector-valued coefficients to have zeros, and we have practical methods

to find the zeroes if they exist.

We first give some basic knowledge in relation to Clifford algebra ([1,2]). Let e1, ..., em

be basic elements satisfying eiej + ejei = −2δij, where δij = 1 if i = j; and δij = 0

otherwise, i, j = 1, 2, · · · ,m. Let

Rm = {x = x1e1 + · · ·+ xmem : xj ∈ R, j = 1, 2, · · · ,m}

be identical with the usual Euclidean space Rm, and

Rm
1 = {x = x0e0 + x : x0 ∈ R, x ∈ Rm}, where e0 = 1.

An element in Rm is called a vector, and an element in Rm
1 is called a paravector. A

paravector x ∈ Rm
1 consists of a scalar part and a vector part. We use the denotions

x0 = Sc(x), x = Vec(x).

The real (or complex) Clifford algebra generated by e1, e2, · · · , em, denoted by R(m) (or

C(m)), is the associative algebra generated by e1, e2, · · · , em over the real (or complex)

field R (or C). A general element in R(m) (or C(m)), therefore, is of the form x =∑
S xSeS, where eS = ei1ei2 · · · eil , xS ∈ R (or C), and S runs over all the ordered subsets

of {1, 2, · · · ,m}, namely

S = {1 ≤ i1 < i2 < · · · < il ≤ m}, 1 ≤ l ≤ m.

We use [x]0 to denote the scalar part of a Clifford number x ∈ R(m).

We define the conjugation of eS to be eS = eil · · · ei1 , ej = −ej. This induces the Clifford

conjugate x = x0 − x of a paravector x = x0 + x.

The product between x and y in Rm
1 , denoted by xy, is split into three parts: a scalar

part, a vector part and a bivector part, that is

xy = (x0y0 + x · y) + (x0y + yox) + x ∧ y,

where

x · y = −
m∑

i=1

xiyi,

x ∧ y =
m∑

i=1

m∑

j=i+1

(xiyj − xjyi)eiej.

In particular,

xx = x0
2 −

m∑

i=1

xi
2 + 2x0x = 2x0x− |x|2,
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where

|x|2 = xx =
m∑

i=0

xi
2.

It is easy to see that |xn| = |x|n.

In Clifford analysis, the differential operator

∂

∂x
=

m∑

n=0

∂

∂xn

en

called the Cauchy-Riemman operator, is used to define monogenic functions (regular

functions) in higher dimensions. In the Clifford algebra setting, the fundamental tools

such as Cauchy theorem, Cauchy integral formula, Taylor and Laurent series all exist.

However, some basic functions such as polynomials are not monogenic. In order to modify

this, H. Leutwiler studied the modified quaternionic analysis and its higher dimensional

extensions in [17]. Another way is inspired by C. G. Cullen in [18]. G. Gentili and D. C

Struppa offered an alternative definition for regular functions and then studied the theory

in [19, 20]. It is now further extended to higher dimensions by F. Colombo, I. Sabadini

and D. C Struppa. Under this new setting, a similar fundamental theory also exists. For

details, please see [11, 12].

In order to give the definition of slice monogenic function, we use Sm−1 to denote the

(m− 1)−dimensional unit sphere in Rm. That is, Sm−1 = {I ∈ Rm, I2 = −1}. Denote

LI = {α + βI ∈ Rm
1 , α, β ∈ R, I ∈ Sm−1}.

and

Re[α + βI] = α, Im[α + βI] = β.

Definition 1.1[12] Let U ⊆ Rm
1 be an open set and f : U → R(m) be a real differentiable

function. Let I ∈ Sm−1 and fI be the restriction of f to the complex plane LI = R + IR.

We say that f is a left slice monogenic function (in short slice monogenic function) if for

every I ∈ Sm−1,
1

2
(

∂

∂u
+ I

∂

∂v
)fI(u + Iv) = 0.

Note 1.1 Similarly, we can define right slice monogenic functions if fI(u + Iv)1
2
( ∂

∂u
+

I ∂
∂v

) = 0.

Since for all I ∈ Sm−1, we have

1

2
(

∂

∂u
+ I

∂

∂v
)(u + vI)n = 0.

Hence xn is slice monogenic. Similarly, polynomials and power series in its convergent set

are also slice monogenic.
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For slice monogenic functions, a notion of derivative of f has been introduced.

Definition 1.2[12] Let U ⊆ Rm
1 be an open set in Rm

1 and f be a left slice monogenic

function in U . It slice monogenic derivative is defined by

∂f

∂x
(x) = ∂If(x), x = u + Iv, v 6= 0; or ∂uf(u), u ∈ R,

where ∂I = 1
2
( ∂

∂u
− I ∂

∂v
).

Theorem 1.1[12] Let f : B(0, R) → R(m) be a slice monogenic function. It can be

represented in power series

f(x) =
∞∑

n=0

xn 1

n!

∂nf

∂un
(0)

converging on B(0, R).

In the following the so-called Clifford-Heaviside functions

P±(x) =
1

2
(1± i

x

|x|)

will play an important role (see [15] and [16]). Introducing spherical coordinates in Rm,

we have x = rI, r = |x| ∈ [0,∞), I ∈ Sm−1. Thus,

P±(I) =
1

2
(1± iI).

They are self adjoint mutually orthogonal primitive idempotents:

P+(I) + P−(I) = 1, P+(I)P−(I) = P−(I)P+(I) = 0, (P±(I))2 = P±(I).

Furthermore, we have P±(I)(x0 + rI) = P±(I)(x0 ∓ ir).

Acknowledgement: The authors would like to express their sincere thanks to Prof

I. Sabadini and Prof F. Vlacci for providing us their recent papers on the related studies.

2. Structure of the Zeroes of slice monogenic functions

In this section, we will consider the zeroes of slice monogenic function

f(x) =
∞∑

n=0

xnan, an ∈ R(m).

In [13], we computed that if x = x0 + x ∈ Rm
1 , then

xn = An(x)x + Bn(x), n = 1, 2, · · ·
where An and Bn are real-valued functions of x defined by the recusive formulas:

An+1(x) = 2x0An(x)− |x|2An−1(x)

Bn+1(x) = −|x|2An(x),
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where

A1(x) = 1

A2(x) = 2x0

B1(x) = 0

B2(x) = −|x|2.
Denoting A0(x) = 0, B0(x) = 1, therefore,

f(x) =
∞∑

n=0

[An(x)x + Bn(x)]an

= x

[ ∞∑

n=0

An(x)an

]
+

[ ∞∑

n=0

Bn(x)an

]

= xA(x) + B(x).

Note 2.1 As we have known in [13], given any x ∈ Rm
1 , Ai(x) and Bi(x) can be expressed

as functions of its scalar part x0 and the modulus of its vector part |x|. Thus, we have

Proposition 2.1 Let w1 = α + βI1 and w2 = α + βI2 be two different paravectors,

then Ai(w1) = Ai(w2), Bi(w1) = Bi(w2) and hence A(w1) = A(w2), B(w1) = B(w2).

Particularly, we have A(w) = A(w), B(w) = B(w).

Definition 2.1[13] Let w1 = α + βI1 and w2 = α + βI2 be two different paravectors, then

they are said to be spherical conjugate to each other.

Let

f(x) =
∞∑

n=0

xnan(an ∈ R(m)) (1)

be a slice monogenic function converging in B(0, R). Using the Proposition 2.1, we can

obtain the following result that has been proved in [11] by a different way.

Theorem 2.1[11] Let f(x) be slice monogenic as given in (1). Assume that w1 = α+βI1

and w2 = α +βI2 are two different zeroes of f(x), where I1, I2 ∈ Sm−1 and α2 +β2 < R2.

Then any paravector w = α + βI for all I ∈ Sm−1 being spherical conjugate to w1 is also

a zero of it.

Proof If f(w1) = 0 and f(w2) = 0, then we have

f(w1) = w1A(w1) + B(w1) = 0, (2)

and

f(w2) = w2A(w2) + B(w2) = 0, (3)

using Proposition 2,1, we have A(w1) = A(w2), B(w1) = B(w2). Using (2)− (3), we have

(w1 − w2)A(w1) = β(I1 − I2)A(w1) = 0.
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thus A(w1) = 0 and then B(w1) = 0.

For any w = α + βI, using Proposition 2,1, we have A(w) = A(w1), B(w) = B(w1).

Therefore, f(w) = wA(w) + B(w) = wA(w1) + B(w1) = 0. This completes the proof.

Definition 2.2 Let f(x) be slice monogenic as given in (1), then any of its zeroes gen-

erating a family of zeroes that are spherical conjugate to each other is called a spherical

zero.

From Theorem 2,1, we know that

Corollary 2.1 Let f(x) be slice monogenic as given in (1). Then α + βI is a spherical

zero of f(x) if and only if α± βI, β 6= 0 are zeroes of it.

Theorem 2.2 Let f(x) be slice monogenic as given in (1) and I1, I2 be two different

units. If an ∈ LI1 , n = 0, 1, · · · , and α + βI2 (β 6= 0) is a zero of f(x). Then α + βI is a

spherical zero of it.

Proof For f(x) = xA(x) + B(x), we have

f(α + βI2) = (α + βI2)A(α + βI2) + B(α + βI2)

= [αA(α + βI2) + B(α + βI2)] + [βI2A(α + βI2)].

Noting that an ∈ LI1 , n = 0, 1, · · · , we have

A(x) =
∞∑

n=0

An(x)an ∈ LI1

B(x) =
∞∑

n=0

Bn(x)an ∈ LI1 .

Letting

A(α + βI2) = x1 + y1I1

B(α + βI2) = x2 + y2I1,

we have

f(α + βI2) = [αA(α + βI2) + B(α + βI2)] + [βI2A(α + βI2)]

= [αx1 + x2 + βy1I2 · I1] + [αy1I1 + βx1I2 + y2I1] + βy1I2 ∧ I1

= 0,

implying

αx1 + x2 + βy1I2 · I1 = 0

αy1I1 + βx1I2 + y2I1 = 0

βy1I2 ∧ I1 = 0.
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Since β 6= 0, it is easily to obtain y1 = 0. Then y2 = 0, x1 = 0 and x2 = 0. Hence

A(α + βI2) = B(α + βI2) = 0.

For all I ∈ Sm−1, we have

f(α + βI) = (α + βI)A(α + βI) + B(α + βI)

= (α + βI)A(α + βI2) + B(α + βI2)

= 0.

This completes the proof.

Corollary 2.2 Let f(x) be slice monogenic as given in (1). If an = un + vnI1 ∈ LI1 , n =

0, 1, · · · , and f has non-spherical and non-real zeroes, then the zeroes must belong to LI1.

Furthermore, there exists a one-to-one correspondence between the zero α + βI1 of f(x)

and the zero α + iβ of f1(z), where

f1(z) =
∞∑

n=0

(un + ivn)zn.

Proof: The first assertion is concluded from Theorem 2.2. To prove the second part, for

x = α + βI1, using the properties of P±, we have

f(α + βI1) = 0 ⇐⇒ [P+(I1) + P−(I1)]f(α + βI1) = 0

⇐⇒ P+(I1)f1(α + iβ) + P−(I1)f1(α + iβ) = 0

⇐⇒ P+(I1)f1(α + iβ) = 0 and P−(I1)f1(α + iβ) = 0.

⇐⇒ f1(α + iβ) = 0.

Theorem 2.3 Let f(x) be a slice monogenic function as given in (1). If f(LI1) ⊆ LI1

and f(LI2) ⊆ LI2, where I1, I2 ∈ Sm−1 are two different units, then the coefficients of

f(x) are real-valued.

Proof According to Theorem 1.1, for x = u + vI, we have

f(x) =
∞∑

n=0

xnan,

where an = 1
n!

∂nf
∂un (0). If f(LI1) ⊆ LI1 , then ∂nf

∂un (0) ∈ I1. Hence an ∈ I1. Similarly, if

f(LI2) ⊆ LI2 , then an ∈ I2. While I1 6= I2, we have an ∈ R. This completes the proof.

In [14], we discussed the zeroes of Laurent series with real coefficients and we obtained

a one-to-one correspondence relationship between the zeroes of f(x) and those of f(z).

That is:

Theorem 2.4[14] Let f(x) =
∑∞

n=−∞ anx
n, (r < |x| < R), be a Laurent series with real

coefficients. Then there is a one-to-one correspondence between the zeroes of α ± iβ of

f(z) and the spherical zero α + βI of f(x).
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Particularly, if f has paravector valued coefficients, we have the isolated zero principle:

Theorem 2.5 Let f(x) : B(0, R) → R(m) be a slice monogenic function with paravector

valued coefficients. If f has a accumulation zero point in B(0, R), then f ≡ 0 in B(0, R).

We will prove it in next section.

Corollary 2.5 Let f(x), g(x) : B(0, R) → R(m) be slice monogenic functions with par-

avector valued coefficients. If there exists a subset T ∈ B(0, R) having an accumulation

point such that f = g on T , then f ≡ g in B(0, R).

Remark: In [12], the identity principle of slice monogenic functions with Clifford algebra-

valued coefficients has been given. But it needs extra conditions.

3. Computation of the zeroes of f (x)

In this section, we mainly discuss how to solve the zeroes of slice monogenic function

f(x) =
∑∞

n=0 xnan with paravector-valued coefficients.

Firstly, we introduce the function:

f c(x) = f(x̄) =
∞∑

n=0

anx
n.

Definition 3.1 Define

F (x) = f(x) ∗ f c(x) =
∞∑

n=0

xncn,

where cn =
∑n

k=1 akan−k for all n.

Lemma 3.1

(I) Let f(x) = xA(x) + B(x), then f c(x) = A(x̄)x + B(x̄) = A(x)x + B(x).

(II) F (x) is a slice monogenic function with real coefficients.

(III) f(x) ∗ f c(x) = f c(x) ∗ f(x).

(IV) F (z) = f(z)f c(z), while F (x) 6= f(x)f c(x).

We have F (z) = f(z)f c(z) by a direct calculation. On the other hand,

F (z) = f(z)f c(z)

= [zA(z) + B(z)][A(z)z + B(z)]

= |A(z)|2z2 + [A(z)B(z) + B(z)A(z)]z + |B(z)|2.

So another form of F (x) is:

F (x) = |A(x)|2x2 + [A(x)B(x) + B(x)A(x)]x + |B(x)|2.
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While

f(x)f c(x) = [xA(x) + B(x)][A(x)x + B(x)]

= |A(x)|2x2 + [xA(x)B(x) + B(x)A(x)x] + |B(x)|2.

Therefore,

F (x) = f(x)f c(x) ⇐⇒ xA(x)B(x) = A(x)B(x)x. (4)

For f(x) =
∑∞

n=0 xnan, an ∈ Rm
1 and x = x0 + |x|I, we have

P±(I)f(x)f c(x)P±(I) = P±(I)f(x0 ∓ i|x|)f c(x0 ∓ i|x|)P±(I)

= P±(I)F (x0 ∓ i|x|)P±(I).

Therefore,

f(x) = 0 =⇒ P±(I)f(x)f c(x)P±(I) = 0

=⇒ P±(I)F (x0 ∓ i|x|)P±(I) = 0

=⇒ F (z) = 0.

Note 3.1 Note that F (z) = 0 is an equation of real coefficients. It, therefore, has

complex conjugate roots.

From the above discussion, we can obtain the conclusion as follows:

Proposition 3.1 If α + βI, β > 0, is a zero (spherical zero or non-real zero) of f(x),

then α± iβ are solutions of F (z) = 0.

Proof of Theorem 2.5 Suppose xn+ynIn, (n = 1, 2, · · ·) are a sequence of non-spherical

conjugate zeroes of f(x) and they have an accumulation point x + yI. Then xn ± iyn are

a sequence of conjugate zeroes of F (z) and which have an accumulation point x± iy. By

the isolate zero principal, we know that F (z) ≡ 0. Then the coefficients cn =
∑n

k=1 anan−k

of F vanish. This induces the coefficients an of f vanish. Hence f ≡ 0. These completes

the proof.

Remark: In above discussion, if f(x) =
∑∞

n=0 xnan, an ∈ R(m), then from f(x0 + |x|I) =

0 we cannot get F (x0 ∓ i|x|) = 0. We only obtain [F (x0 ∓ i|x|)]0 = 0 which is an

equation of real coefficients. So if f(x) has non-spherical conjugate zeroes which have an

accumulation zero, then [F (z)]0 has an accumulation point. Thus [F (z)]0 ≡ 0. But from

[F (z)]0 ≡ 0, we cannot derive f(x) ≡ 0.

Next, we will discuss the relationship between the zeroes of F (z) and those of f(x).

First we need a Lemma.

Lemma 3.2 Let f(x) be slice monogenic as given in (1). Then the zeroes of f(x) is in

one-to-one correspondence with those of f c(x).
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Proof a) If w = α + βI is a spherical zero of f(x), then we have f(w) = wA(w) +

B(w) = 0. According to Corollary 2.1, we also have f(w) = wA(w) + B(w) = 0. Noting

A(w) = A(w), B(w) = B(w), we have A(w) = B(w) = 0.

Hence f c(w) = A(w)w + B(w) = 0.

b) If w1 = α+βI1 ( β can be zero ) is a zero of f(x), then f(w1) = w1A(w1)+B(w1) = 0.

Hence f c(w1) = A(w1)w1 + B(w1) = w1A(w1) + B(w1) = 0. This completes the proof.

Next, we will discuss the following cases:

Case I. If F (α) = 0, α ∈ R, then

F (α) = f(α)f c(α) = f(α)f(ᾱ) = f(α)f(α) = |f(α)|2 = 0.

Hence, f(α) = 0.

Case II. If α±iβ are zeroes of F (z), according to Theorem 2.4, we have F (α+βI) = 0

for all I ∈ Sm−1. If α + βI satisfies (4), that is

(α + βI)A(α + βI)B(α + βI) = A(α + βI)B(α + βI)(α + βI),

we have F (α+βI) = f(α+βI)f c(α+βI) = 0. Therefore f(α+βI) = 0 or f c(α+βI) = 0.

Adding to Lemma 3.2 we obtain that f(α + βI) = 0 for all I ∈ Sm−1.

On the other hand, if f(α + βI) = 0 for all I ∈ Sm−1, then f(α + βI)f c(α + βI) = 0 =

F (α + βI). Hence α + βI satisfies (4).

Case III. If α± iβ are zeroes of F (z), and for I1 ∈ Sm−1, α+βI1 satisfies (4), then we

have F (α+βI1) = f(α+βI1)f
c(α+βI1) = 0. Therefore f(α+βI1) = 0 or f c(α+βI1) = 0.

Adding to Lemma 3.2 we obtain that f(α + βI1) = 0 or f(α− βI1) = 0.

On the other hand, if f(α + βI1) = 0 or f(α− βI1) = 0, then α + βI1 satisfies (4).

Case IV. If α ± iβ are zeroes of F (z) and for all I ∈ Sm−1, α + βI does not satisfy

(4), then f(x) has no non-real zeroes.

In all, we have

Theorem 3.1 Let f(x) =
∑∞

n=0 xnan, an ∈ Rm
1 , be a slice monogenic function in B(0, R).

Then a set of sufficient and necessary conditions for f to have a zero α + βI (β can be

zero) is that α± iβ are zeroes of F (z) and α + βI satisfies (4).

Note 3.2 If A(α + βI)B(α + βI) ∈ Rm
1 , then we can choose I1 parallel to Vec[A(α +

βI)B(α + βI)] ( denoted by I1 ‖ Vec[A(α + βI)B(α + βI)] ) such that α + βI1 satisfies

(4). According to Case III, we have f(α + βI1) = 0 or f(α− βI1) = 0.

Theorem 3.2 Assume that f(x) =
∑∞

n=0 xnan, an ∈ Rm
1 , is a slice monogenic function

in B(0, R) and α± iβ are two conjugate zeroes of F (z). If

A(α + βI)B(α + βI) ∈ Rm
1 ,
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then α + βI1 or α− βI1 is a zero of f(x), where I1 ‖ Vec[A(α + βI)B(α + βI)].

Note 3.3 In the quaternionic space H, it is paravector-valued algebra. For any poly-

nomial P (q) = qnan + qn−1an−1 + · · · + qa1 + a0, an ∈ H, F (z) = P (z)P c(z) always has

zeroes and A(q)B(q) ∈ H. Therefore, any polynomials P (q) always have zeroes. In [7],

they use the similar methods to prove the fundamental theorem for quaternions.

Noting that A(x) = a1 + A2(x)a2 + · · ·+ An(x)an + · · · , B(x) = a0 + B2(x)a2 + · · ·+
Bn(x)an + · · ·, we have:

Corollary 3.1 Assume that f(x) =
∑∞

n=0 xnan, an ∈ Rm
1 , is a slice monogenic function

in B(0, R) and α ± iβ are two conjugate zeroes of F (z). If a0 ∈ Rm
1 and a1, a2, · · · ∈ R,

then α + βI1 or α− βI1 is a zero of f(x), where I1 ‖ Vec(a0).

Corollary 3.2 Assume that f(x) =
∑∞

n=0 xnan, an ∈ Rm
1 , is a slice monogenic function

in B(0, R) and α±iβ are two conjugate zeroes of F (z). If a1 ∈ Rm
1 and a0, a2, a3, · · · ∈ R,

then α + βI1 or α− βI1 is a zero of f(x), where I1 ‖ Vec(a1).
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