
B-Splines of Blaschke Product Type

Qiuhui Chen ∗ Tao Qian† Guangbin Ren‡ and Yi Wang §

Abstract

In this note we construct a class of new splines related to a Blaschke product. They
emerge naturally when studying the filter functions of a class of linear time-invariant
systems which are related to the boundary values of a Blaschke product for the purpose
of sampling non-bandlimited signals using nonlinear Fourier atoms. The new splines
generalize the well-known symmetric B-splines. We establish their properties such as
integral representation property, a partition of unity property, a recurrence relation and
difference property. We also investigate their random behavior. Lastly, our numerical
experiments confirm our theories.

Keywords: B-spline, Blaschke product, Fourier transform, sinc function, central limit theorem.

1 Introduction

Recently the problem of defining meaningful instantaneous frequency of a real signal, and the
interpretation of that quantity have attracted substantial attentions. One common approach,
for example see [7], is that the instantaneous frequency is defined to be the derivative of the
phase function of a companion analytic signal xa given by the formula

xa := x+ iy,

where y = Hx represents the Hilbert transform of a signal x which is defined for t ∈ R, where
R is the set of real numbers, as

(Hx)(t) :=
1

π
p.v.

∫
R

x(s)

t− s
ds.
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Questions have been raised about the existence of analytic signals with positive instan-
taneous frequencies. Specifically, for what kind of signals is the above defined instantaneous
frequency meaningful in physics? These kind of signals are often called mono-components in
engineering. Many literatures address this problem, see for example, [1], [2], [7], [12] and [13].

Some examples of mono-components with a strictly increasing nonlinear phase were recently
given in [14]. The starting point for this observation is the introduction of an analytic signal,
called a nonlinear Fourier atom, which is essentially defined by the boundary value of a Blaschke
product of order one associated with a parameter a ∈ R with |a| < 1 as

eiθa(t) :=
z − a

1− az

∣∣∣∣
z=eit

.

The phase function θa has the following explicit decomposition

θa(t) = t+ 2arctan
|a| sin t

1− |a| cos t
, t ∈ R,

which indicates that it can be decomposed into a linear part and a periodic part. Moreover,
the signal cos θa is a mono-component, as substantiated by the formula

H (cos θa) = sin θa, t ∈ R. (1.1)

Its instantaneous frequency ωins is given at t ∈ R explicitly in terms of the Poisson kernel pa
defined by

ωins(t) = pa(t) :=
1− a2

1− 2a cos t+ a2
, a, t ∈ R, |a| < 1,

which shows that ωins(t) > 0 for t ∈ R.
We point out that this kind of mono-component nonlinear Fourier atoms coincide with

the notion of intrinsic mode functions used in empirical mode decompositions of non-stationary
signals [10]. Therefore, there is a trend to use mono-components to represent signals rather than
the usual Fourier basis with linear phase. In a recent paper [4], the authors related nonlinear
Fourier atoms to a continuous linear time-invariant (LTI) system by allowing the output signal
to keep the scaled frequency information of the input signal in different frequency bands. The
LTI system has the impulse response function 1√

2π(1+a)
sinca(·) with

sinca(t) :=
sin θa(t)

t
, t ∈ R,

the so-called generalized sinc function that admits a Shannon type sampling theorem for non-
bandlimited signals. This LTI system has the piecewise constant function

Ha := a⌊|·|⌋

as its filter function, where ⌊t⌋ is the greatest integer that is no more than the real number t.
The function Ha, due to its shape, is called a ladder-shaped filter. A LTI system with a filter
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function associated with a two-parameter Blaschke product was considered in [5], and more
generally, a LTI system with a filter function that is an arbitrary spline, in particular, a spline
associated with an arbitrary finite order Blaschke product was considered in [3]. Note that Ha

and the function 1√
2π(1+a)

sinca(·) form a Fourier transform pair. Here for a function f ∈ L2(R),
the Fourier transform is defined by

f̂(ξ) = Ff(ξ) :=
1√
2π

∫
R
f(x)e−ixξ dx, ξ ∈ R.

It is not hard to see that the ladder-shaped filter Ha can also be written into a series as

Ha(t) = (1− a)
∑
k∈N

ak−1χ(−k,k)(t), t ∈ R. (1.2)

Here χA denotes the characteristic function of a given set A and N denotes the set of natural
numbers.

Noting that Ha(2·) is a generalization of the ideal low-pass filter, which is the first order
symmetric B-spline β0

1 := χ(− 1
2
, 1
2
), we write

βa
1 (t) := Ha(2t) = a⌊|2t|⌋, t ∈ R

and subsequently the n-th convolution of βa
1 by

βa
n(t) :=

∫
R
βa
n−1(t− y)βa

1 (y) dy, t ∈ R.

The function βa
n can be regarded as a class of generalized B-splines related to the parameter a

since it is well-known that the n-fold convolution of β0
1 leads to the n-th symmetric B-splines,

which play important roles in the theory of numerical calculation, wavelet and approximation
[6, 8, 11, 9].

In this paper, we extend the above idea to a more generalized B-spline that relates to a m-
fold Blaschke product. Here, the m-fold Blaschke product for a real vector a⃗ := (a1, . . . , am) ∈
[0, 1)m with pairwise distinct components is defined by

Bm(z) := B{a1,...,am}(z) =
∏
j∈Nm

z − aj
1− ajz

, z ∈ C, (1.3)

where, the index set Nm := {1, 2, . . . ,m}, and C denotes the set of complex numbers. For
convenience, a normalization constant αm associated with the m-th order Blaschke product is
defined by

αm := Bm(1)−Bm(0) = 1− (−1)m
∏
j∈Nm

aj.

Definition 1 The ladder-shaped filter of Blaschke type is the piecewise constant function

βa⃗
1 (t) =

1

αm

∑
j∈Nm

a
⌊|2t|⌋
j

(1− aj)B′
m(aj)

, t ∈ R. (1.4)
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Definition 2 : The n-th B-spline of Blaschke type (BB-spline) is defined recursively by

βa⃗
n(t) :=

∫
R
βa⃗
n−1(t− y)βa⃗

1 (y) dy, t ∈ R. (1.5)

Throughout the paper, we require that a⃗ ∈ [0, 1)m in order to ensure that βa⃗
1 can be treated

as a density of certain random variable.
The writing plan is as follows. In Section 2, we introduce some basic formulae which are

important for the proof of our main results. Section 3 is dedicated to investigating the properties
of the B-spline of Blaschke product type. Section 4 focuses on the limiting probability behavior
of the BB-spline βa⃗

n by using the central limit theorem. Section 5 confirms our theories by
numerical experiments.

2 Preliminaries

As in [3] by using the boundary value on the unit circle of the Blaschke product Bm, we define
the value of the phase function θa⃗ at t ∈ R through

eiθa⃗(t) := Bm(e
it). (2.1)

We remark that θa⃗(t) is related to the phase functions of scalar case by

θa⃗(t) :=
∑
j∈Nm

θaj(t), t ∈ R. (2.2)

The function pa⃗ is defined as the derivative of θa⃗, that is,

pa⃗(t) :=
d

dt
θa⃗(t), t ∈ R.

The phase function θa⃗ is associated with the generalized sinc function

sinca⃗(t) :=
sin θa⃗(t)

t
, t ∈ R. (2.3)

We will need some properties of Blaschke products. Direct calculation gives us that

B′
m(z) =

∑
l∈Nm

1− |al|2

(1− alz)2

( ∏
k∈Nm,k ̸=l

z − ak
1− akz

)
, (2.4)

and, consequently,

B′
m(aj) =

1

1− |aj|2
∏

k∈Nm,k ̸=j

aj − ak
1− akaj

.

The following two formulae are related to the rational decomposition of a Blaschke product.
The first one decomposes Bm into partial fractions as:

Bm(z) =
1

Bm(0)
+
∑
j∈Nm

1

ajB′
m(aj)

1

1− ajz
. (2.5)
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The second represents Bm as a linear combination of Möbius transforms of various parameters
in the form of

Bm(z) =
1 + (−1)m

2
+
∑
j∈Nm

τaj(z)

(1− a2j)B
′
m(aj)

, (2.6)

where τaj(z) =
z−aj
1−ajz

, j ∈ Nm. In particular, formulae (2.5) and (2.6) yield∑
j∈Nm

1

B′
m(aj)

aj
(1− aj)4

=
1

2

(
d2

dz2
Bm

)
(1) +

1

6

(
d3

dz3
Bm

)
(1) (2.7)

and

sin θa⃗(t) =
∑
j∈Nm

sin θaj(t)

(1− a2j)B
′
m(aj)

. (2.8)

We need the following formulae∑
k∈N

ak−1 sin(kx) =
1

1− a2
sin θa(x), (2.9)

∑
k∈N

kak−1 cos(kx) =
1

1− a2
pa(x) cos θa(x), (2.10)

and

lim
t→0

sinca⃗(t) =
∑
j∈Nm

1

(1− aj)2B′
m(aj)

= B′
m(1), (2.11)

It can be checked that βa⃗
1 has the decomposition

βa⃗
1 (t) =

1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

χ(− k
2
, k
2
)(t), t ∈ R. (2.12)

To end this section, we consider the Fourier transform of βa⃗
n.

Lemma 2.1 The Fourier transform of βa⃗
n is(

βa⃗
n

)∧
(ξ) =

1√
2π

1

αn
m

(sinca⃗(ξ/2))
n . (2.13)

Proof: It suffices to check that

(βa⃗
1 )

∧(ξ) =
1√
2π

1

αm

sinca⃗(ξ/2)

since
(
βa⃗
n

)∧
(ξ) = (2π)

n−1
2

(
(βa⃗

1 )
∧(ξ)

)n
. Applying Fourier transform to both sides of (2.12) gives

(
βa⃗
1 (·)
)∧

(ξ) =
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
χ(− k

2
, k
2
)(·)
)∧

(ξ)

=
1√

2παm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
sin(kξ/2)

ξ/2

)
.
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Using the formula (2.9), it follows that(
βa⃗
1 (·)
)∧

(ξ) =
1√

2παm

∑
j∈Nm

1

(1− a2j)B
′
m(aj)

sin θaj(ξ/2)

ξ/2
.

Combining this with the formula (2.8), we conclude (2.13) for the case n = 1 and then (2.13)
for any n ∈ N. 2

3 Properties

This section is concerned with the properties of βa⃗
n. Obviously, the spline function βa⃗

n is sup-
ported in R, positive and even.

Next, we will investigate other important properties of βa⃗
n. To this end, we introduce the

following notations. For the vector k ∈ Nn, we denote k := (k1, . . . , kn) with each kr ∈ N
for each r ∈ Nn, and denote |k| =

∑
r∈Nn

kr. Define An := {a1, . . . , am}n, and the vector

γ := (γ1, . . . , γn) ∈ An. We also use the multi-index notation γk := γk1
1 . . . γkn

n . We also make
the convention that 00 = 1.

Theorem 3.1 For any f ∈ L2(R) and n ∈ N, the identity holds∫
R
f(s)βa⃗

n(s) ds =
1

αn
m

∑
γ∈An

∑
k∈Nn

k1 · · · knγk−1

B′
m(γ1) · · ·B′

m(γn)

∫
(− 1

2
, 1
2
)n
f(k · t) dt, (3.1)

where the inner product k · t = k1t1 + · · · + kntn. Specifically, when m = 1, this formula has a
simple form ∫

R
f(s)βa

n(s) ds =
∑
k∈Nn

(1− a)nk1 · · · kna|k|−n

∫
(− 1

2
, 1
2
)n
f(k · t) dt

and certainly ∫
R
f(s)β0

n(s) ds =

∫
(− 1

2
, 1
2
)n
f(t1 + · · ·+ tn) dt.

Proof: We adopt induction. In the case n = 1, Eq. (3.1) can be concluded from the calculation
below by involving the formula (2.12) and the Lebesgue dominated convergence theorem. We
have ∫

R
f(s)βa⃗

1 (s) ds =

∫
R
f(s)

1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

χ[− k
2
, k
2
)(s) ds

=
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

∫
[− k

2
, k
2
)

f(s) ds

=
1

αm

∑
j∈Nm

∑
k∈N

kak−1
j

B′
m(aj)

∫
(− 1

2
, 1
2
)

f(kt) dt.
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Now we show that the induction hypothesis (the case of n − 1) implies (3.1). By noting the
definition of βa⃗

n and Fubini’s theorem, we get∫
R
f(s)βa⃗

n(s) ds =

∫
R
f(s)

∫
R
βa⃗
n−1(s− y)βa⃗

1 (y) dy ds

=

∫
R
βa⃗
1 (y)

∫
R
f(s)βa⃗

n−1(s− y) ds dy

=

∫
R
βa⃗
1 (y)

∫
R
f(s+ y)βa⃗

n−1(s) ds dy.

The induction hypothesis leads to∫
R
f(s)βa⃗

n(s) ds

=

∫
R
βa⃗
1 (y)

1

αn−1
m

∑
γ∈An−1

∑
k∈Nn−1

k1 · · · kn−1γ
k−1

B′
m(γ1) · · ·B′

m(γn−1)

∫
(− 1

2
, 1
2
)n−1

f(k · t+ y) dt dy

=
1

αn−1
m

∑
γ∈An−1

∑
k∈Nn−1

k1 · · · kn−1γ
k−1

B′
m(γ1) · · ·B′

m(γn−1)

∫
(− 1

2
, 1
2
)n−1

∫
R
f(y + k · t)βa⃗

1 (y) dy dt

=
1

αn−1
m

∑
γ∈An−1

∑
k∈Nn−1

k1 · · · kn−1γ
k−1

B′
m(γ1) · · ·B′

m(γn−1)

∫
(− 1

2
, 1
2
)n−1

1

αm

∑
j∈Nm

∑
ℓ∈N

ℓaℓ−1
j

B′
m(aj)∫

(− 1
2
, 1
2
)

f(ℓx+ k · t) dx dt

=
1

αn
m

∑
γ∈An

∑
k∈Nn

k1 · · · knγk−1

B′
m(γ1) · · ·B′

m(γn)

∫
(− 1

2
, 1
2
)n
f(k · t) dt.

2

The next theorem transfers the integral of smooth functions with Ba
n to a n-fold symmetric

difference. For t ∈ R, define the difference operator ∆t by ∆tf(x) := f(x+ t
2
)− f(x− t

2
). For

tj ∈ R, j ∈ Nn, the operator ∆t1...tn := ∆t1 · · ·∆tn stands for the composition of ∆tj , j ∈ Nn.
We point out that ∆t1...tn is independent of the order of the operators ∆tj , j ∈ Nn.

Theorem 3.2 For any f ∈ Cn(R), the following equation holds∫
R
f (n)(x)βa⃗

n(x) dx =
1

αn
m

∑
γ∈An

∑
k∈Nn

γk−1

B′
m(γ1) · · ·B′

m(γn)
∆k1...knf(0). (3.2)

The scalar case corresponds to∫
R
f (n)(x)βa

n(x) dx =
∑
k∈Nn

(1− a)na|k|−n∆k1...knf(0)

and ∫
R
f (n)(x)β0

n(x) dx = ∆n
1f(0) =

∑
j∈Nn

(−1)n−j

(
n
j

)
f(j − n

2
).
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Proof: We adopt induction again. By using (3.1), we know that∫
R
f ′(t)βa⃗

1 (t) dt =
1

αm

∑
j∈Nm

∑
k∈N

kak−1
j

B′
m(aj)

∫
(− 1

2
, 1
2
)

f ′(kt) dt

=
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

∫
(− k

2
, k
2
)

f ′(x) dx

=
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
f(

k

2
)− f(−k

2
)

)

=
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

∆kf(0),

which concludes (3.2) in the case n = 1. Suppose that (3.2) is true for the case n− 1. We now
verify the case n. By the definition of βa⃗

n and direct calculation, it follows∫
R
f (n)(t)βa⃗

n(t) dt

=

∫
R
f (n)(t)

∫
R
βa⃗
n−1(t− y)βa⃗

1 (y) dy dt

=

∫
R
βa⃗
1 (y)

∫
R
(f ′)

(n−1)
(t)βa⃗

n−1(t− y) dt dy

=

∫
R
βa⃗
1 (y)

∫
R
(f ′)

(n−1)
(t+ y)βa⃗

n−1(t) dt dy.

The induction assumption implies∫
R
f (n)(t)βa⃗

n(t) dt

=

∫
R
βa⃗
1 (y)

1

αn−1
m

∑
γ∈An−1

∑
k∈Nn−1

γk−1

B′
m(γ1) · · ·B′

m(γn−1)
∆k1...kn−1f

′(y) dy

=
1

αn−1
m

∑
γ∈An−1

∑
k∈Nn−1

γk−1

B′
m(γ1) · · ·B′

m(γn−1)

∫
R
(∆k1...kn−1f)

′(y)βa⃗
1 (y) dy

=
1

αn−1
m

∑
γ∈An−1

∑
k∈Nn−1

γk−1

B′
m(γ1) · · ·B′

m(γn−1)

1

αm

∑
j∈Nm

∑
ℓ∈N

aℓ−1
j

B′
m(aj)

∆ℓ

(
∆k1...kn−1f

)
(0)

=
1

αn
m

∑
γ∈An

∑
k∈Nn

γk−1

B′
m(γ1) · · ·B′

m(γn)
∆k1...knf(0).

2

The next theorem indicates that βa⃗
m satisfies the Strang-Fix condition of order 1.
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Theorem 3.3 The 1-periodic function

Fn(t) :=
αn
m

(B′
m(1))

n

∑
k∈Z

βa⃗
n(t− k) = 1

for any n ∈ N and t ∈ R.

Proof: It suffices to show that, for any n ∈ N, the Fourier coefficients cj(Fn) = δj,0. Here δ
denotes the Krönecker symbol. We will adopt induction. By using (2.12), we have

cj(F1) =

∫
(− 1

2
, 1
2
)

αm

B′
m(1)

∑
k∈Z

βa⃗
1 (t− k)e−ij2πt dt

=

∫
(− 1

2
, 1
2
)

αm

B′
m(1)

∑
k∈Z

1

αm

∑
λ∈Nm

∑
l∈N

al−1
λ

B′
m(aλ)

χ(− l
2
, l
2
)(t− k)e−ij2πt dt

=
1

B′
m(1)

∑
k∈Z

∑
λ∈Nm

∑
l∈N

al−1
λ

B′
m(aλ)

∫
(− 1

2
, 1
2
)

χ(− l
2
, l
2
)(t− k)e−ij2πt dt

=
1

B′
m(1)

∑
λ∈Nm

∑
l∈N

∑
k∈Z

al−1
λ

B′
m(aλ)

∫
(− 1

2
−k, 1

2
−k)

χ(− l
2
, l
2
)(t)e

−ij2πt dt.

Using the orthonormality of {ei2πj· : j ∈ Z} leads to

cj(F1) =
1

B′
m(1)

∑
λ∈Nm

∑
l∈N

∑
k∈Z

al−1
λ

B′
m(aλ)

∫
(− 1

2
−k, 1

2
−k)∩(− l

2
, l
2
)

e−ij2πt dt

=
1

B′
m(1)

∑
λ∈Nm

∑
l∈N

al−1
λ

B′
m(aλ)

∑
− l−1

2
≤k≤ l−1

2

δj,0

=
δj,0

B′
m(1)

∑
λ∈Nm

1

B′
m(aλ)

∑
l∈N

lal−1
λ .

Noting that ∑
k∈N

kak−1 =
1

(1− a)2

and (2.11), we get

cj(F1) =
δj,0

B′
m(1)

∑
λ∈Nm

1

(1− aλ)2B′
m(aλ)

= δj,0.
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Now, suppose that cj(Fn−1) = δj,0. We want to verify that cj(Fn) = δj,0, which can be done by

cj(Fn) =

∫
(− 1

2
, 1
2
)

αn
m

(B′
m(1))

n

∑
k∈Z

βa⃗
n(t− k)e−ij2πt dt

=
αn
m

(B′
m(1))

n

∫
(− 1

2
, 1
2
)

∑
k∈Z

∫
R
βa⃗
n−1(t− k − y)βa⃗

1 (y) dy e−ij2πt dt

=
αn
m

(B′
m(1))

n

∫
R
βa⃗
1 (y)

∫
(− 1

2
, 1
2
)

∑
k∈Z

βa⃗
n−1(t− k − y) e−ij2πt dt dy

=
αm

B′
m(1)

∫
R
βa⃗
1 (y)

∫
(− 1

2
, 1
2
)

αn−1
m

(B′
m(1))

n−1

∑
k∈Z

βa⃗
n−1(t− k − y) e−ij2πt dt dy

=
αm

B′
m(1)

∫
R
βa⃗
1 (y)

∫
(− 1

2
−y, 1

2
−y)

αn−1
m

(B′
m(1))

n−1

∑
k∈Z

βa⃗
n−1(t− k) e−ij2πt dte−i2πjy dy

=
αm

B′
m(1)

∫
R
βa⃗
1 (y)cj(Fn−1) e

−ij2πy dy

= δj,0
αm

B′
m(1)

√
2π(βa⃗

1 )
∧(2πj)

= δj,0
1

B′
m(1)

sinca⃗(πj).

Finally, using (2.11) again, we conclude that cj(Fn) = δj,0. 2

Next theorem states that the derivative of βa⃗
n equals to the weighted sum of the symmetric

difference of βa⃗
n−1.

Theorem 3.4 For any t ∈ R, the following identity holds

d

dt
βa⃗
n(t) =

1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

∆kβ
a⃗
n−1(t). (3.3)

The scalar case leads to
d

dt
βa
n(t) =

∞∑
k=1

(1− a)ak−1∆kβ
a
n−1(t)

and
d

dt
β0
n(t) = ∆1β

0
n−1(t).

10



Proof: Using Eq. (2.12), the dominated convergence theorem, and the direct calculation below

d

dt
βa⃗
n(t) =

d

dx

∫
R
βa⃗
n−1(t− y)βa⃗

1 (y) dy

=

∫
R
(βa⃗

n−1)
′(t− y)

1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

χ(− k
2
, k
2
)(y) dy

=
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

∫
(− k

2
, k
2
)

(βa⃗
n−1)

′(t− y) dy

=
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

∫
(− k

2
, k
2
)

(βa⃗
n−1)

′(t+ y) dy

=
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

∫
(− k

2
, k
2
)

(
βa⃗
n−1(t+ y)

)′
dy

=
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
βa⃗
n−1(t+

k

2
)− βa⃗

n−1(t−
k

2
)

)
,

we conclude (3.3). 2

The following theorem states that βa⃗
n can be alternatively defined by a recursive formula.

Theorem 3.5 For n ≥ 2 and n ∈ N, βa⃗
n and βa⃗

n−1 satisfy the recursive relation for every t ∈ R,

βa⃗
n(t) =

1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
t+ nk

2

n− 1
βa⃗
n−1(t+

k

2
) +

nk
2
− t

n− 1
βa⃗
n−1(t−

k

2
)

)
. (3.4)

In scalar case, the formula becomes

βa
n(t) =

∑
k∈N

(1− a)ak−1

(
t+ nk

2

n− 1
βa
n−1(t+

k

2
) +

nk
2
− t

n− 1
βa
n−1(t−

k

2
)

)

and in particular,

β0
n(t) =

t+ n
2

n− 1
β0
n−1(t+

1

2
) +

n
2
− t

n− 1
β0
n−1(t−

1

2
).

Proof: We note the functions on both sides of Eq. (3.4) are continuous for n ≥ 2. It suffices
to prove this identity by showing the Fourier transform of left-hand side equals to that of the

11



right-hand side. By using (2.13), we obtain

√
2παn−1

m F
(
·βa⃗

n−1(·+
k

2
)− ·βa⃗

n−1(· −
k

2
)

)
(ξ)

= i
d

dξ

(
ei

k
2
ξ

(
sinca⃗(

ξ

2
)

)n−1

− e−i k
2
ξ

(
sinca⃗(

ξ

2
)

)n−1
)

= −2
d

dξ

(
sin

kξ

2

(
sinca⃗(

ξ

2
)

)n−1
)

= −2

(
k

2
cos

kξ

2

(
sinca⃗(

ξ

2
)

)n−1

+ (n− 1) sin
kξ

2

(
sinca⃗(

ξ

2
)

)n−2
d

dξ

(
sinca⃗(

ξ

2
)

))

= −2

(
sinca⃗(

ξ

2
)

)n−1
(
k

2
cos

kξ

2
+ (n− 1) sin

kξ

2

ξ
2

sin θa⃗(
ξ
2
)

d

dξ

(
sinca⃗(

ξ

2
)

))

= −2

(
sinca⃗(

ξ

2
)

)n−1
(
k

2
cos

kξ

2
+

n− 1

2
sin

kξ

2

ξ
2

sin θa⃗(
ξ
2
)

cos θa⃗(
ξ
2
)pa⃗(

ξ
2
) ξ
2
− sin θa⃗(

ξ
2
)

( ξ
2
)2

)

= −
(
sinca⃗(

ξ

2
)

)n−1
(
k cos

kξ

2
+ (n− 1) sin

kξ

2

(
cos θa⃗(

ξ
2
)pa⃗(

ξ
2
)

sin θa⃗(
ξ
2
)

− 1

ξ/2

))
.

Using the formulae (2.9) and (2.10), it follows

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
k cos

kξ

2
+ (n− 1) sin

kξ

2

(
cos θa⃗(

ξ
2
)pa⃗(

ξ
2
)

sin θa⃗(
ξ
2
)

− 1

ξ/2

))

=
∑
j∈Nm

1

B′
m(aj)

(
paj(

ξ
2
) cos θaj(

ξ
2
)

1− a2j
+ (n− 1)

sin θaj(
ξ
2
)

1− a2j

(
cos θa⃗(

ξ
2
)pa⃗(

ξ
2
)

sin θa⃗(
ξ
2
)

− 1

ξ/2

))
.

Differentiating Eq. (2.8) results in

pa⃗(t) cos θa⃗(t) =
∑
j∈Nm

paj(t) cos θaj(t)

(1− a2j)B
′
m(aj)

. (3.5)

Consequently, Eqs. (2.8) and (3.5) yield

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
k cos

kξ

2
+ (n− 1) sin

kξ

2

(
cos θa⃗(

ξ
2
)pa⃗(

ξ
2
)

sin θa⃗(
ξ
2
)

− 1

ξ/2

))

= pa⃗(
ξ

2
) cos θa⃗(

ξ

2
) + (n− 1) sin θa⃗(

ξ

2
)

(
cos θa⃗(

ξ
2
)pa⃗(

ξ
2
)

sin θa⃗(
ξ
2
)

− 1

ξ/2

)
= npa⃗(

ξ

2
) cos θa⃗(

ξ

2
)− (n− 1)sinca⃗(

ξ

2
).

12



Therefore the Fourier transform of the right-hand side of Eq. (3.4) is

F

(
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
·

n− 1
βa⃗
n−1(·+

k

2
)− ·

n− 1
βa⃗
n−1(· −

k

2
)

))
(ξ)

= − 1√
2π

1

αn
m

(
sinca⃗(

ξ

2
)

)n−1(
n

n− 1
pa⃗(

ξ

2
) cos θa⃗(

ξ

2
)− sinca⃗(

ξ

2
)

)
.

On the other hand, by using (2.10) again, the Fourier transform of the right-hand side of Eq.
(3.4) is

F

(
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

nk

2(n− 1)

(
βa⃗
n−1(·+

k

2
) + βa⃗

n−1(· −
k

2
)

))
(ξ)

=
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

nk

2(n− 1)

1√
2π

1

αn−1
m

(
ei

kξ
2 + e−i kξ

2

)(
sinca⃗(

ξ

2
)

)n−1

=
1√

2παn
m

n

(n− 1)

(
sinca⃗(

ξ

2
)

)n−1 ∑
j∈Nm

1

B′
m(aj)

∑
k∈N

kak−1
j cos

kξ

2

=
1√

2παn
m

n

(n− 1)

(
sinca⃗(

ξ

2
)

)n−1 ∑
j∈Nm

1

B′
m(aj)

1

1− a2j
paj(

ξ

2
) cos θaj(

ξ

2
)

=
1√

2παn
m

n

(n− 1)

(
sinca⃗(

ξ

2
)

)n−1

pa⃗(
ξ

2
) cos θa⃗(

ξ

2
).

Finally, we conclude that

F

(
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
·+ nk

2

n− 1
βa⃗
n−1(·+

k

2
) +

nk
2
− ·

n− 1
βa⃗
n−1(· −

k

2
)

))
(ξ)

= F

(
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

(
·

n− 1
βa⃗
n−1(·+

k

2
)− ·

n− 1
βa⃗
n−1(· −

k

2
)

))
(ξ)

+F

(
1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

nk

2(n− 1)

(
βa⃗
n−1(·+

k

2
) + βa⃗

n−1(· −
k

2
)

))
(ξ)

= − 1√
2π

1

αn
m

(
sinca⃗(

ξ

2
)

)n−1(
n

n− 1
pa⃗(

ξ

2
) cos θa⃗(

ξ

2
)− sinca⃗(

ξ

2
)

)
+

1√
2παn

m

n

(n− 1)

(
sinca⃗(

ξ

2
)

)n−1

pa⃗(
ξ

2
) cos θa⃗(

ξ

2
)

=
1√
2π

1

αn
m

(
sinca⃗(

ξ

2
)

)n

= (βa⃗
n)

∧(ξ).

2
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4 Probability Behavior

Define
p(t) =

αm

B′
m(1)

βa⃗
1 (t), t ∈ R.

The function p can be considered as a density since p(t) ≥ 0 for any t ∈ R and
∫
R p(t) dt = 1.

In fact, by noting (2.11), we have∫
R
p(t) dt =

αm

B′
m(1)

∫
R

1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

χ(− k
2
, k
2
)(t) dt

=
1

B′
m(1)

∑
j∈Nm

∑
k∈N

kak−1
j

B′
m(aj)

=
1

B′
m(1)

∑
j∈Nm

1

(1− aj)2B′
m(aj)

= 1.

Let X be a random variable with density p. We first calculate the expected value E(X) and
the variance D(X) of X.

Lemma 4.1 The expectation and variance of X are as follows

E(X) = 0, D(X) = E(X2) = σ2
0 :=

1

12
+

B
(2)
m (1)

4B′
m(1)

+
B

(3)
m (1)

12B′
m(1)

.

In scalar case, we have σ2
0 = 1

12
+ a

2(1−a)2
.

Proof: The vanishingness of the first moment of X is due to the evenness of the density p. Thus
D(X) = E(X2). Using the definition of the density p, we obtain that

σ2
0 =

∫
R
t2p(t) dt

=
αm

B′
m(1)

∫
R
t2

1

αm

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

χ(− k
2
, k
2
)(t) dt

=
1

B′
m(1)

∑
j∈Nm

∑
k∈N

ak−1
j

B′
m(aj)

∫
(− k

2
, k
2
)

t2 dt

=
1

12B′
m(1)

∑
j∈Nm

1

B′
m(aj)

∑
k∈N

k3ak−1
j .

Using the equation ∑
k∈N

k3ak−1 =
a2 + 4a+ 1

(1− a)4

14



and the two identities (2.11) and (2.7), we have

σ2
0 =

1

12B′
m(1)

∑
j∈Nm

1

B′
m(aj)

a2j + 4aj + 1

(1− aj)4

=
1

12B′
m(1)

∑
j∈Nm

1

B′
m(aj)

(
1

(1− aj)2
+

6aj
(1− aj)4

)
=

1

12
+

1

2B′
m(1)

∑
j∈Nm

1

B′
m(aj)

aj
(1− aj)4

=
1

12
+

B
(2)
m (1)

4B′
m(1)

+
B

(3)
m (1)

12B′
m(1)

,

which completes the proof of this lemma. 2

Let Xn, n ∈ N be a sequence of independent and identically distributed (iid) random vari-
ables with density p. Denote by Yn =

∑n
j=1 Xj. The density pYn of Yn is as follows

pYn(t) = p ∗ · · · ∗ p︸ ︷︷ ︸
n

(t) =

(
αm

B′
m(1)

)n

βa⃗
n(t), t ∈ R.

Normalize the random variable Yn by

Zn =
Yn − E(Yn)√

D(Yn)
=

Yn√
nσ0

.

The density of Zn is

pZn(x) =
√
nσ0pYn(

√
nσ0x) =

√
nσ0

(
αm

B′
m(1)

)n

βa⃗
n(
√
nσ0x), x ∈ R.

The central limit theorem tells us that the limiting distribution of Zn is the normalized Gaussian
distribution. We therefore obtain the asymptotic formula for the spline βa⃗

n.

Theorem 4.2 There hold the following two asymptotic formulae for spline βa⃗
n in time domain

and frequency domain, respectively,

lim
n→∞

√
nσ0

(
αm

B′
m(1)

)n

βa⃗
n(
√
nσ0t) =

1√
2π

e−
t2

2 , t ∈ R (4.1)

and

lim
n→∞

1√
2π

(
1

B′
m(1)

)n(
sinca⃗

(
ξ

2
√
nσ0

))n

=
1√
2π

e−
ξ2

2 , ξ ∈ R. (4.2)

Moreover, the limit in (4.1) is uniformly convergent in R in the pointwise sense and convergent
in the Lq(R) sense for any q ∈ [2,∞], while the convergence in (4.2) is both in the pointwise
sense and in the Lp(R) sense for any p ∈ [1,∞).
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Proof: Noting that pa⃗(0) = B′
m(1), p

′
a⃗(0) = 0 and the Taylor formula of sin θa⃗

sin θa⃗(t) = pa⃗(0)t+
p
(2)
a⃗ (0)− p3a⃗(0)

3!
t3 +O(t4)

for any t in certain neighborhood of the origin, we get

1

B′
m(1)

sin θa⃗(t) = t+
p
(2)
a⃗ (0)− p3a⃗(0)

3!B′
m(1)

t3 +O(t4)

and

1

B′
m(1)

sinca⃗(t) = 1−
p3a⃗(0)− p

(2)
a⃗ (0)

3!B′
m(1)

t2 +O(t3).

Noting that
p
(2)
a⃗ (0) = p3a⃗(0)−

(
B(3)

m (1) + 3B(2)
m (1) +B′

m(1)
)
,

it follows

1

B′
m(1)

sinca⃗(t) = 1− B
(3)
m (1) + 3B

(2)
m (1) +B′

m(1)

3!B′
m(1)

t2 +O(t3)

= 1− 2σ2
0t

2 +O(t3),

which yields

1

B′
m(1)

sinca⃗(
t

2σ0

√
n
) = 1− 1

2n
t2 +O

(
t3√
n3

)
.

The above equation holds for any t ∈ R since sinca⃗ is real analytic (The convergence radius of
its Taylor series is infinite). Therefore

lim
n→∞

[
1

B′
m(1)

sinca⃗

(
t

2σ0

√
n

)]n
= e−

t2

2 ,

which implies the pointwise convergence in (4.2).
Lemma 2 in [15] shows that, for any t ∈ R and for any n ∈ N \ {1},

sinc

(
t√
n

)
≤
(
1− rect

[
t

2

])
2

(πt)2
+ e−t2 ,

where sinct := sin t/t. Noticing that

1

B′
m(1)

sinca⃗(t) =
1

B′
m(1)

pa⃗(t)sinc(t),

we find that
(

1
B′

m(1)
sinca⃗

(
·

2σ0
√
n

))n
is dominated by a Lp(R) function for any n ∈ N \ {1} and

for any given p ∈ [1,∞). This proves the Lp(R) convergence of (4.2) for p ∈ [1,∞) by the
Lebesgue dominated convergence theorem.

16



−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

BB Spline of order 1

−5 0 5
0

0.1

0.2

0.3

0.4
BB Spline of order 2

−5 0 5
0

0.1

0.2

0.3

0.4
BB Spline of order 3

−5 0 5
0

0.1

0.2

0.3

0.4
BB Spline of order 4

−5 0 5
0

0.1

0.2

0.3

0.4
BB Spline of order 5

−5 0 5
0

0.1

0.2

0.3

0.4
BB Spline of order 6

Figure 5.1: Normalized BB splines of various orders with a⃗ = [.2, .3, .5, .7] converging to the
standard Gaussian. Solid (blue) line: BB-splines; Dash-dotted (red) line: standard Gaussian.

Since the Fourier transformation is a bounded linear operator from Lp(R) to Lq(R) for any
p ∈ [1, 2] and p−1 + q−1 = 1, the Lq(R) convergence with q ∈ [2,∞] in (4.1) follows.

The point-wise convergence in (4.1) is a direct consequence of the following inequality

|Fhn(x)−Fh(x)| ≤ ||Fhn −Fh||L∞(R) ≤ ||hn − h||L1(R) → 0

for any convergent sequence {hn} in L1(R). 2

5 Numerical Experiments

In this section, we conduct numerical experiments to confirm our previous theories. In Figs.
5.1 and 5.2 we plot the normalized BB-splines of various orders and various powers of the
general sinc functions according to the functions on the left-hand sides of Eqs. (4.1) and (4.2),
respectively. From the two figures we clearly see that both the BB-splines and the powers of
the general sinc converge to the standard Gaussian quickly.
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