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Algorithm of Adaptive Fourier Decomposition
Tao Qian, Liming Zhang, Zhixiong Li

Abstract—The present paper is a continuing work on
the recently established Adaptive Fourier Decomposition
(AFD) mainly stressing on the algorithm aspect, including
algorithm analysis and numerical examples. AFD is a varia-
tion and realization of greedy algorithm (matching pursuit)
suitable for the Hardy H2 and the L2 spaces. Applying
AFD to a given signal, one obtains a series expansion in
the basic signals, called mono-components, that possess
non-negative analytic phase derivatives (functions), or,
equivalently, meaningful instantaneous frequencies. AFD
is shown to be robust with computational complexity
comparable with DFT. Consistent to the greedy algorithm
principle experiments show that AFD produces (pre-)
mono-component series with efficient energy decay that
also leads to efficient pointwise convergence in terms of
computer running time.

Hardy spaces, Hilbert transform, rational orthogonal
system, analytic signal, instantaneous frequency, mono-
components, matching pursuit, greedy algorithm, adap-
tive decomposition.

I. INTRODUCTION

For a given signal its Fourier expansion may converge
slowly, for the entries cke

ikt in the expansion that build
up the essential part of the total energy may arrive late.
One encounters the same problem whenever expanding
an element against a fixed basis in a Hilbert space.
To treat this problem greedy algorithm comes into play
([11], [7], [24]).

AFD is based on the rational orthogonal system, or
the Takenaka-Malmquist system, {Bn}∞n=1, where

Bn(z) = B{a1,...,an}(z)

:=
1√
2π

√
1− |an|2
1− anz

n−1∏
k=1

z − ak
1− akz

,

an ∈ D, n = 1, 2, ...,D = {z ∈ C : |z| < 1},
C is the complex plane. Note that for any sequence
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{an} in D the system {Bn} is orthonormal. If all
an’s are taken to be 0, then the system reduces to
a half of the complex trigonometric (Fourier) system,
viz. { zn−1

√
2π

}∞n=1. Functions Bn will be called modified
Blaschke products. Relevant studies on the theory and
applications of the system have a long history with a
large quantity of literature ([2], [3]). All the existing
studies of the system, however, are based on the so-
called hyperbolic non-separability condition

∞∑
k=1

(1− |ak|) = ∞. (1)

The condition (1) is sufficient and necessary for the
system to be complete in each of the complex Hardy
spaces Hp(D), 1 ≤ p < ∞, and in the disc algebra
A(D). In the present paper we concentrate in H2(D).

Apart from the greedy algorithm principle, the most
striking character of AFD is its relation with non-
negative analytic phase derivative. It is widely agreed
that the analytic phase φ and its derivative φ′ (frequency)
of a real-valued signal s should be defined through its
associated analytic signal As = s + iHs = ρeiφ via
the Hilbert transformation H. A signal is said to be a
(complex) mono-component if its analytic phase deriva-
tive, as a measurable function, is non-negative ([15]).
In the case the signal is said to possess a well defined
(analytic) instantaneous frequency φ′ ([13], [5]). An
analytic signal ρ(t)eiφ(t) is said to be a (complex) pre-
mono-component if eiMtρ(t)eiφ(t) is a mono-component
for some M > 0. It is asserted that not all analytic
signals have a non-negative phase derivative (instanta-
neous frequency). For instance, each outer function is
an analytic signal but it does not have a non-negative
phase derivative function. It turns out that what one can
do is to express an analytic signal in H2 as a series of
complex mono-components, or, equivalently, express a
general function in L2 as a series of mono-components
and conjugate mono-components ([17], [19]). Mono-
component decomposition is a generalization of Fourier
decomposition. A large variety of mono-components
have been found. The search for mono-components also
motivated a new phase of study of Bedrosian’s identity
([13], [14], [15], [16], [21], [22], [23], [25], [26], [6]).
The study of mono-components and their applications
naturally merges with the study of signal adaptive de-
composition by using {Bn}. In fact, it may be easily
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verified that if a1 = 0, then for any a2, a3, ... (inside the
disc), all Bn are mono-components; while if a1 6= 0,
then the Bn’s may not be mono-components, but are
at least pre-mono-components ([19]). Under the energy
principle AFD gives rise to the intrinsic components of
the signal in the modified Blaschke product model with
increasing frequencies. References for traditional studies
of TM systems and applications may be found in [1], [2],
[3]. Applications of AFD to control theory is referred to
[12].
§II sketches the mathematical theory of AFD. §III

provides detailed description of the algorithm based on
discrete data. §IV is devoted to a discussion of robustness
and computational complexity of AFD. §V presents
experimental examples with comparisons with Fourier
expansions. In §VI conclusions are drawn. §VII is an
Appendix proving the H2-robustness of AFD stated in
§4.

II. MATHEMATICAL FOUNDATION OF THE AFD
ALGORITHM

For the materials presented in this section we refer to
[19], [17] and [20].

Denote by L2 the Hilbert space of signals of finite
energy on the closed interval [0, 2π] equipped with the
inner product

〈F̃ , G̃〉 =
∫ 2π

0

F̃ (eit)G̃(eit)dt. (2)

Below, we identify the L2 space on the interval [0, 2π]
with that on the unit circle ∂D with the Lebesgue arc-
length measure.

If G̃ ∈ L2, then in the L2-norm sense,

G̃(eit) =
∞∑

k=−∞

cke
ikt, ck =

1

2π

∫ 2π

0

G̃(eit)e−iktdt,

‖G̃‖22 = 2π
∞∑

k=−∞

|ck|2.

The function G̃ has the direct sum decomposition G̃ =
G+ + G−, where G+ and G− are, respectively, the
non-tangential boundary values on the unit circle of the
analytic functions

G+(z) =

∞∑
k=0

ckz
k, |z| < 1;

and

G−(z) =
−1∑

k=−∞

ckz
k, |z| > 1.

Such functions G+ and G− constitute, respectively,
the so called Hardy spaces H+ and H−. For basic
knowledge of Hardy spaces we refer to [9].

The Hardy space projection G+ of G̃ is given by the
Cauchy integral:

G+(z) =
1

2πi

∫
∂D

G̃(ζ)

ζ − z
dζ (3)

=
1

2π

∫ 2π

0

G̃(eit)
∞∑
k=0

(ze−it)kdt

= c0 + c1z + · · ·+ cnz
n + · · · , z ∈ D.

We will deal with two types of decompositions. One
is for a given function G = G+ ∈ H2. In some
applications, including system identification, one knows
that the given data is for the boundary value of an
analytic function. The algorithm for this case is called
the core algorithm. The other type is for a given real-
valued function G̃ ∈ L2. For this type one needs to first
work out the projection G+ ∈ H2 of G̃, and apply the
core algorithm to G+. If G̃ is real-valued, then

G̃(eit) = −c0 + 2ReG+(eit), a.e. (4)

The decomposition of G̃ is then obtained from the
decomposition of G+ and the relation (4). A variation
of the decomposition of G̃ does not go through G+ and
Gk, but uses the relation 〈G̃, Bn〉 = 〈Gn, e{an}〉 (for the
definition of Gn, see (7)).

In AFD we have a “dictionary” consisting of the
elementary functions

e{a}(z) := B{a}(z) =
1√
2π

√
1− |a|2
1− az

, a ∈ D.

The function e{a} is called the evaluator at a. Each eval-
uator gives rise to, essentially, an evaluating functional.
In fact, for any F ∈ H2, by using the Cauchy Formula,
we have

〈F, e{a}〉 =
√
2π
√
1− |a|2 1

2πi

∫ 2π

0

F (eit)

eit − a
deit

=
√
2π
√
1− |a|2F (a).

The core algorithm starts from a given G = G+ ∈ H2.
Setting G1 = G = G+, the first step is to maximize the
projection |〈G1, e{a}〉|2 among all selections of a ∈ D.
In the sequel, for a general function F ∈ H2, we adopt
the notation

A2
F (a) := |〈F, e{a}〉|2

= 2π(1− |a|2)|F (a)|2, a ∈ D. (5)

What is crucial is the Maximal Projection Principle
asserting that for any F ∈ H2 there exists a1 ∈ D such
that

a1 = argmax{A2
F (a) : a ∈ D}. (6)

For a proof of this fact we refer to [19] or [17]. Now
write

G(z) = G1(z) = 〈G1, e{a1}〉e{a1} +R1(z),
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where a1 is selected according to the Maximal Projec-
tion Principle. The standard remainder R1(z) is thus
minimized, where we have the factorization

R1(z) = G2(z)
z − a1
1− a1z

,

with

G2(z) =
(
G1(z)− 〈G1, e{a1}〉e{a1}(z)

) 1− a1z

z − a1
.

Note that the reduced remainder G2(z) is still in H2,
because the difference G1(z)− 〈G1, e{a1}〉e{a1}(z) has
zero at z = a1. We call the process to get G2 from
G1 through the Maximal Projection Principle a maximal
sifting, and one in the same pattern but not through the
Maximal Projection Principle a compulsory sifting.

Applying a maximal sifting to G2 we obtain G3.
Repeating such process to the nth step, we obtain

G(z) =
n∑

k=1

〈Gk, e{ak}〉B{a1,...,ak}(z) +Rn(z)

=
n∑

k=1

〈Gk, e{ak}〉B{a1,...,ak}(z)

+Gn+1(z)
n∏

k=1

z − ak
1− akz

,

where the reduced remainder Gk+1 is obtained through
the recursive formula

Gk+1(z) =
(
Gk(z)− 〈Gk, e{ak}〉e{ak}

) 1− akz

z − ak
, (7)

where

ak = argmax{A2
Gk

(a) : a ∈ D}. (8)

The kth standard remainder has the expression

Rk(z) = Gk+1(z)
k∏

l=1

z − al
1− alz

. (9)

The orthogonal properties imply

‖G‖2 =
n∑

k=1

A2
Gk

(ak) + ‖Rn‖2. (10)

Under the consecutive maximal sifting processes we
can actually show that in the L2-norm sense

G(z) =
∞∑
k=1

〈Gk, e{ak}〉B{a1,...,ak}(z) (11)

([19] or [17]). There holds the Plancherel Theorem

‖G‖2 =

∞∑
k=1

A2
Gk

(ak) =

∞∑
k=1

|〈G+, Bk〉|2.

For a given threshold ε > 0, one sets to have the
consecutive maximal sifting processes cease at the first
N such that

‖RN‖2 = ‖G‖2 −
N∑

k=1

A2
Gk

(ak) ≤ ε. (12)

The approximation by the N th partial sum of the
IMCs is

G+(z) ≈
N∑

k=1

(1− |ak|2)Gk(ak)

1− akz

k−1∏
l=1

z − al
1− alz

. (13)

With an error less than 2ε the relation (4) gives

G̃(eit) ≈ 2Re

N∑
k=1

(1− |ak|2)Gk(ak)

1− akeit

k−1∏
l=1

eit − al
1− aleit

−c0. (14)

Remark 1 We can insert a compulsory sifting to change
(13) to become a mono-component decomposition. In
fact, denoting Bn(e

it) = ρn(t)e
iθn(t), n = 1, 2, ...,

we can easily show θ′n(t) < θ′n+1(t), t ∈ [0, 2π].
If, in particular, we make ak = 0, then all the terms
Bk+n, n = 0, 1, 2, ..., become mono-components.
Remark 2 The selected an’s may not satisfy the relation
(1), and thus may not define a complete basis {Bn}∞n=1

in H2. When {Bn}∞n=1 is not complete, we have
∞∑
k=1

1− |ak| < ∞.

In the case there is a Blaschke product, φ, using the an’s
as all its zeros including the multiplicities. We have the
direct sum decomposition ([19])

H2 = span{B1, ..., Bn, ...} ⊕ φH2,

where
G ∈ span{B1, ..., Bn, ...}.

Again, compulsory siftings can be inserted to produce
complete bases.
Remark 3 In [20] we prove that the decay rate of the
standard remainders of AFD is the negative square root
of the partial sum order, and show that in the average
sense Fourier series is the best. Some uniqueness and
continuity results for the selections of ak’s under the
Maximal Projection principle are proved in [19]. Some
variations of AFD and the theory for a half of the
complex plane are cited in [17] and [18].

III. THE AFD ALGORITHM BASED ON DISCRETE
DATA

In this section we will cite the algorithm for real-
valued G̃ given by a set of discrete data G̃(eitk) =
uk, tk ∈ [a, b], k = 1, ...,K. To apply the core algorithm
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to the projection G+ ∈ H2 we need to represent G+

and its energy ‖G+‖2 (12) using the data uk of G̃.
We will deal with the case [a, b] = [0, 2π]. For general

a and b one can proceed with the change of variable
s(t) = L

2π t+a, L = b−a. For the partition {tk} of the
interval [0, 2π], 0 = t0 < t1 < · · · < tK = 2π, define
the step function

G̃K(eit) =
K−1∑
k=0

ukχIk(t), Ik = [tk, tk+1]. (15)

Denote by G+
K the projection of G̃K onto H2, we have,

by (3),

G+
K(z) =

1

2π

K−1∑
k=0

uk

∫ tk+1

tk

eit

eit − z
dt. (16)

For simplicity the formulas given below are for the
equally spacing case, that is ∆K = 2π

K = tk+1− tk. For
the non-equally spacing cases the formulas are similar.
The algorithm is divided into several steps.
(i). Computation of G+

K given by (16)
The H2-function G+

K may be approximated by using
a variety of parameterized numerical quadrature, such
as the Simpson formula. We note that when using a
numerical quadrature the approximating rational function
of z may not be in the Hardy space. This problem
shows up when an adaptively chosen ak is close to the
boundary: It gives rise to a large error. The problem
may be treated through the constraint condition |ak| <
δ < 1, δ ≈ 1, when choosing ak’s under the Maximal
Projection Principle.
(ii). Computation of 〈Gk, e{a1}〉 and
argmax |〈Gk, e{a1}〉|2

The computation of Gk is based on the recursive
formula (7), where G = G1 is replaced by the ap-
proximation G+

K . The computation of the arguments
giving rise to max |〈Gk, e{a1}〉|2 is based on the formula
|〈Gk, e{a}〉|2 = 2π(1 − |a|2)|Gk(a)|2 that is a smooth
function in two real variables represented by

2π(1− x2 − y2)(u2
k(x, y) + v2k(x, y)), (17)

where uk, vk are two real-valued functions, Gk = uk +
ivk, z = x + iy. The extreme problem is a usual one
that can be treated by the existing numerical methods. In
practice the computation may be simplified by using the
Cauchy-Riemann equations ∂xu = ∂yv, ∂yu = −∂xv.
Primitively we do it through direct comparison of the
function values given by (5) with F being replaced by
Gk.
(iii). Energy in Terms of Discrete Data

To compute the energy of G+ = G1 we use the
relation

‖G̃K‖2 = 2‖G+
K‖2 − 2π|c0|2

deduced from their respective energy representations of
G̃K and G+

K in terms of their Fourier coefficients (The
Plancherel Theorem). It follows

‖G+
K‖2 =

1

2
‖G̃K‖2 + π|c0|2

≈ π∆K

K∑
k=1

|uk|2 + π∆2
K |

K∑
k=1

uk|2.(18)

We note that the energy errors given by the left-hand-side
of (12) is decreasing along with growth of N that should
never become negative. A negative error, however, may
occur. In that case the process should be set to cease.
(iv). AFD Series Expansions

The approximation of G̃ is given by (14) with c0 ≈
1
K

∑K
k=1 uk. As a bi-product we obtain approximations

to the circular Hilbert transform of G̃ :

H̃(G̃)(eit) ≈ 2Im

N∑
k=1

(1− |ak|2)Gk(ak)

1− akeit

k−1∏
l=1

eit − al
1− aleit

.

(19)

Remark 4 In some applications, including system iden-
tification, the given complex-valued data uk is known
to be from the boundary value of an analytic function
G = G+ ∈ H2, then G may be approximated by the
same formula (16) in discrete data. The energy is given
by

‖G‖2 ≈ 2π∆K

K∑
k=1

|uk|2.

This is different from (18), for it is now in terms of the
data uk of the function G itself, not those of G̃.

IV. ALGORITHM ANALYSIS: ROBUSTNESS AND
COMPUTATIONAL COMPLEXITY OF AFD

A. Robustness

Assume that added to the real-valued boundary data
G̃(eitk) = uk there is a noise data hk from a noise
h̃, h̃(eitk) = hk, of small energy, viz. ‖h̃‖2 ≤ ε. Under
the notation defined in (15) and (16),

h̃K(eit) =
K−1∑
k=0

hkχIk(t), Ik = [tk, tk+1],

and

h+
K(z) =

1

2π

K−1∑
k=0

hk

∫ tk+1

tk

eit

eit − z
dt.

We wish to estimate

‖G+ − Ĝ+
K,n‖H2 ,

where

ĜK = G̃K + h̃K , Ĝ+
K = G+

K + h+
K ,
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and Ĝ+
K,n is the n-th partial sum in the AFD of Ĝ+

K .
We are to show

Theorem 4.1: Under the condition

lim
K→∞

‖G̃− G̃K‖L2 = 0,

the AFD approximation is robust, that is

lim
K→∞,n→∞,ε→0

‖G+ − Ĝ+
K,n‖H2 = 0. (20)

As a consequence, the decomposition for the real-valued
G̃ = −c0 + 2ReG+ is also robust. The proof of the
theorem is given in Appendix.

The robust approximation is not in the H∞-sense as
usual, but in the H2- and L2-sense. The L2-convergence
does not imply pointwise convergence in general. In
many cases, however, besides L2-convergence, we do
have pointwise convergence as theoretically proved or
experimentally observed. In the AFD case the pointwise
convergence has not been proved. Some relevant infor-
mation and observations are given in the following
Remark 5 In 1966 L. Carleson in his celebrating paper
in Acta Math solved the long standing Lusin conjecture
by disproving the conjecture. He showed that for any
periodic function f of finite energy its Fourier partial
sums pointwisely converge to a function that is almost
everywhere identical with the function f ([4]). Subse-
quent to his proof there have been works devoting re-
proofs of the same result or extensions of the pointwise
convergence to Lp with various contexts ([10], [8]). The
methodologies used in Carleson’s proof and the suc-
cessive ones lay foundations of contemporary harmonic
analysis. It is conjectured that the norm convergence
should force the pointwise convergence to hold in a
more general context, including Laplace-Fourier series
on the higher dimensional spheres and AFD. Below we
cite a result showing that in the pointwise convergence
aspect TM expansions are of the same nature as Fourier
expansions ([1]).

Let a1, ..., an, ... be any sequence in the unit disc D,
and G be analytic and bounded in (1 + δ)D, δ > 0.
Denote by ‖ · ‖∞,C(A) the supreme norm of bounded
continuous functions in the set A. The n-th standard
remainder Rn given by (9) satisfies

‖Rn‖∞,C(∂D) ≤
(1 + δ)‖G‖∞,C((1+δ)D)

δ
×

exp

(
− δ

2(1 + δ)

n∑
k=1

(1− |ak|)

)
.

This estimate indicates that if there exist multiple choices
of ak under Maximal Projection Principle, then we
should choose ak as close as possible to the origin.

B. Computational Complexity

The statement of fastness of AFD does not mean that
the algorithm is fast. It means that the convergence is
fast. The computational complexity of AFD is expected
to be at least as large as that of DFT, as there is an adap-
tivity process incorporated. Fourier series corresponds to
the case where all the parameters are fixed (ak ≡ 0)
without a selection process.

In complexity calculations, we only worry about what
happens as the data lengths increase, and take the domi-
nant term. Based on this, AFD may be slightly modified
to get an O(K2) computational complexity that is the
same as for DFT. The modification is that in using the
Maximal Projection Principle (8) instead of selecting ak
in D we select ak in [0, 1). This restricted adaptivity
is adopted in our recent work in system identification
dealing with rational functions of real coefficients ([12]).
The calculation of the complexity is as follows.
(i) For each fixed z ∈ [0, 1) to compute the value of

G+
K(z) given by the formula (16), O(K) multipli-

cation and addition steps are necessary. Dividing
[0, 1) into K equal parts, there are K function
values A2

Gk
(zk) to be worked out. Thus, KO(K) =

O(K2) computational steps are necessary.
(ii) To get max{A2

Gk
(a) : a ∈ [0, 1)} from the K

function values only K−1 computational steps are
involved.

(iii) Both the computations for Gk based on the recur-
sive formula (7) and the energy from the formula
(18) require O(K) computational steps.

Altogether the dominant term is O(K2).
Likewise, the full adaptivity costs the computational

complexity O(K3). These, in the AFD case, however,
are compensated by fast convergence of the partial sums:
We show in our experiments (Examples A and C in §V)
that to reach the same errors the AFD running times
are considerably shorter than those of FFT that is of the
complexity O(K logK).

V. EXPERIMENTAL RESULTS

A. AFD on Analytic Signal

The original signal is

G(z) =
0.0247z4 + 0.0355z3

(1− 0.9048z)(1− 0.3679z)
∈ H2.

In Fig.1 the four figures are for the partial sums of the
AFD expansion with the orders 1, 2, 4, 6. Fig.2 gives the
Fourier expansions of, respectively, the orders 1, 2, 6, 12.
With the relative energy errors of AFD and Fourier for
analytic functions defined respectively by

EA(G;N) =
‖G−

∑N
k=1〈G,Bk〉Bk‖2

‖G‖2
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and

EF (G;N) =
‖G−

∑N−1
k=0 〈G, fk〉fk‖2

‖G‖2
, fk(e

it) = eikt,

we have

EA(G; 1) ≈ 0.3799, EA(G; 2) ≈ 0.1374,

EA(G; 4) ≈ 0.0430, EA(G; 6) ≈ 0.0089,

and

EF (G; 1) ≈ 0.99996, EF (G; 2) ≈ 0.99987,

EF (G; 6) ≈ 0.72533, EF (G; 12) ≈ 0.21778.

Fig.3 presents the relative energy errors. The 6th AFD
partial sum has the relative error EA(G; 6) ≈ 0.0089379
that costs 2.226507 seconds as computer running time;
comparatively the 27th Fourier partial sum has the error
EF (G, 27) = 0.0092819 that costs 6.591188 seconds
computer running time.

B. AFD on Real signal with White Noise

The original signal G̃ is the real-valued function on
the unit circle

G̃(t) = 1+10 cos t+10 sin t+cos 2t+sin 2t+0.5 cos 5t.

We add Gaussian White Noise to G̃ with SNR = 20
and get a signal G̃0. Apply AFD to G̃0. As shown in
Fig.4, AFD suppresses the noise efficiently.

C. AFD on Jump Signal

The original real-valued signal to be decomposed is

G̃(eit) = −χ[0,π)(t) + χ[π,2π)(t), 0 ≤ t ≤ 2π.

Define the relative energy errors of AFD and Fourier for
real valued functions G̃, respectively, by

EA(G̃;N) =
‖G̃−

(
−c0 + 2Re

∑N
k=1〈G,Bk〉Bk

)
‖2

‖G̃‖2

and

EF (G̃;N) =
‖G̃−

∑N−1
k=−N+1

(
〈G̃, Bk〉Bk

)
‖2

‖G̃‖2
.

(i) Fig 5.1 is for the comparison between the original
signal and the real part of the 16th AFD partial sum,
EA(G̃; 16) = 0.0035391.
(ii) Fig 5.2 is for the comparison between the original
signal and the real part of the 16th Fourier partial sum,
where EF (G̃; 16) = 0.025276.
(iii) Fig 5.3 is the relative energy comparison between
the AFD and the Fourier partial sums.
(iv) Fig 5.4.1 and Fig 5.4.2 are for the same function
G̃, but with enlarged scale (from 0 to π). Fig 5.4.1 is

(a) The 1st AFD partial sum

(b) The 2nd AFD partial sum

(c) The 4th AFD partial sum

(d) The 6th AFD partial sum

Fig. 1. AFD decomposition of analytic function

for the 25th AFD partial sum with a relative energy
error 0.0023339; while Fig 5.4.2 is for the 200th Fourier
partial sum whose relative energy error is 0.002404.
The computer running times are, respectively, 37.63599
seconds (AFD) and 152.974644 seconds (Fourier). Gibbs
phenomenon is more noticeable in the Fourier expansion.

VI. CONCLUSIONS

AFD is a realizable variation of greedy algorithm for
functions in H2 and L2. The decomposition results in
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(a) The original function (b) The signal with white Gauss noise

(c) The 1st AFD partial sum (d) The 3rd AFD partial sum

(e) The 5th AFD partial sum (f) The 7th AFD partial sum

Fig. 4. AFD on real signal with white noise

series expansions of the so called modified Blaschke
products with non-negative boundary phase derivatives,
or, equivalently, meaningful instantaneous frequencies.
The algorithm is practical with solid theoretical foun-
dations. It is robust and with computational complexity
comparable with that of DFT. For randomly chosen
examples experiments show that in both the energy and
pointwise sense AFD leads to more efficient decompo-
sition than Fourier series. To get the same errors AFD
uses considerably shorter computer running times than
Fourier series. AFD has promising resolution results for
filtering out noises, and exhibits less Gibbs phenomenon.

VII. APPENDIX

Proof of Theorem 4.1 By inserting the limit term we
have

‖G+ − Ĝ+
K,n‖H2 ≤ ‖G+ − Ĝ+

K‖H2 + ‖Ĝ+
K − Ĝ+

K,n‖H2

≤ ‖G+ −G+
K‖H2 + ‖h+

K‖H2

+‖Ĝ+
K − Ĝ+

K,n‖H2 .

Since the Hardy space norm is dominated by the L2

space norm on the boundary, we have

‖G+ −G+
K‖H2 ≤ C‖G+ −G+

K‖L2 .

With the direct sum decomposition of the boundary L2

into the Hardy spaces, we have

‖G̃− G̃K‖2L2 = ‖G+ −G+
K‖2L2 + ‖G− −G−

K‖2L2 ,

and thus

‖G+ −G+
K‖H2 ≤ C‖G̃− G̃K‖L2 .
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(a) The 16th pre-mono-component sum (b) The Fourier 16th-partial sum

(c) The 25th pre-mono-component sum (d) The Fourier 200th-partial sum

(e)Energy comparison

Fig. 5. AFD and Fourier decomposition of Jump function

Likewise,
‖h+

K‖H2 ≤ C‖h̃‖ ≤ Cε.

Consequently,

‖G+−Ĝ+
K,n‖H2 ≤ C‖G̃−G̃K‖L2+Cε+‖Ĝ+

K−Ĝ+
K,n‖H2 .

Since the AFD algorithm is for Ĝ+
K , the convergence of

the algorithm implies

lim
n→∞

‖Ĝ+
K − Ĝ+

K,n‖H2 = 0.

Taking the limits K,n → ∞ and ε → 0, we obtain (20).
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