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Abstract. An adaptive model reduction method is proposed for linear time-
invariant systems based on the continuous-time rational orthogonal basis (Takenaka-
Malmquist basis). The method is to find an adaptive approximation in the energy
sense by selecting optimal points for the rational orthogonal basis. The stability of
the reduced models holds, and the steady-state values of step responses are kept to
be equal. Furthermore, the method automatically ensures the reduced system to be
in the Hardy space H2. The existence of the best approximation in the Hardy space
H2 by n Blaschke forms is proved in the proposed approach. The effectivity of this
method is illustrated through three well-known examples.
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1 Introduction

Modeling of complex dynamic systems is an important problem in engineering. A
complicated model may lead to difficulties in both system analysis and controller
design. A simple and efficient model that matches the original system well under the
given criteria is always desired. In practice, different criteria are adopted for different
applications. Model reduction has received considerable attentions, various methods
and techniques have been proposed, including linear matrix inequalities [25], Routh
approximations [32, 54], error minimization techniques [36, 39], magnitude and phase
criteria [52], H∞ model reduction [24], the Padé type model reductions [45, 22],
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balanced truncation [37, 4, 29, 46], rational interpolation [30, 23, 26] and Krylov
method [6, 27, 28, 29, 30], and so on.

The model reduction problem for continuous linear time-invariant systems can
be formalized either in time domain or frequency domain. In this paper, we consider
the problem in the frequency domain, in which the original system is given by the
following p× q transfer function matrix of the form

G(s) =

m−1∑

i=0

Cis
i

m∑

i=0

bisi

, (1.1)

where Ci are p × q constant matrices, m is the order of the system and bi are the
scalar coefficients of the characteristic polynomial of the system, bm is normalized
to be equal to 1.

The reduced model transfer function is assumed to have the form:

G̃(s) =

n−1∑

i=0

C̃is
i

n−1∑

i=0

b̃isi

, n < m, (1.2)

where C̃ are p × q constant matrices, n is the reduced order and b̃i are the scalar
coefficients of the characteristic polynomial of the reduced-order model with b̃n = 1.

The presented new method for model reduction is based on the continuous-time
rational orthogonal basis (Takenaka-Malmquist (TM) basis) defined by a sequence
{ak} ∈ Π, Π is the open right-half plane, as

Bk ,
√

2<{ak}
s + ak

k−1∏

l=1

s− al

s + al
, k = 2, ..., (1.3)

with B1 ,
√

2<{a1}
s+a1

and <{·} denotes the real part of a complex number. Defining
the inner product by

〈Bp,Bq〉 , 1
2π

∫ ∞

−∞
Bp(jω)Bq(jω)dω

=
{

1, p = q
0, p 6= q,

then {Bk}k≥1 is an orthogonal system in the Hardy-2 space H2(Π).

The rational orthogonal basis (1.3) is the continuous-time case of the Takenaka-
Malmquist basis, which is a natural generalization of Laguerre and Kautz bases and
enjoys a long history of development and applications both in pure mathematics
[21, 55, 61, 11, 57] and engineering literature [1, 34, 60, 31, 58, 12].

It is proved in [1] that:

2



Theorem 1.1 The model set spanned by the basis functions {Bk}k≥0 (set B0 = 1)
is complete in all of the spaces Hp(Π), 1 < p < ∞, and A(Π), where A(Π) is the
right half plane algebra, if and only if

∞∑

k=1

<{ak}
1 + |ak|2 = ∞. (1.4)

In system identification and control, the rational orthogonal basis method has
been explored by many researchers for a long time. Many have been working on
the optimal poles for the rational bases. T. Oliveria e Silva derived the optimal
pole condition for Laguerre, Kautz and general orthogonal basis function models
in [41, 42, 43], respectively, by deducing the first derivative of the remainder error
functions. Others attempt to estimate a good pole position of a Laguerre model
are given in [51, 33, 13]. Generally in practice, the poles’ locations of the rational
orthogonal basis usually rely on the prior-known knowledge on the true system and
are prior given. While in this paper the poles {−ak} are adaptively chosen through
maximizing the function which depends on the deduced recursive formula in the
2-norm sense. For different systems, according to the algorithm, there would be
relevant sequences {ak} which generate the basis, and that is the adaptivity.

Recently, T. Qian et al developed an adaptive algorithm in [49] and [48]. It
aims to obtain approximations through consecutively selecting optimal points for
the given functions in H2–square integrable Hardy spaces in the unit disc and the
open upper half plane. We will introduce the method for functions in H2(Π). Further
more, we improve [48] by choosing the poles simultaneously (also see [50]).

This paper is organized as follows. Section 2 provides the main mathematical
theory, where the approximation algorithm based on (1.3) for functions in H2(Π) is
introduced, it can be treated as a new realization of n-best rational approximation.
This algorithm is applied in model order reduction with modifications and an added
constraint on the steady-state value in section 3. Three numerical examples are
given to illustrate the utility of this method in section 4, and in the last section,
some conclusions are drawn.

2 Best approximation with the generalized orthogonal
basis

We first briefly recall the so called n-best rational function approximation to H2(Π)
functions. It is to find the best approximation to an H2 function in the domain by
using a rational function P (s)/Q(s), where P (s) and Q(s) both are polynomials of
the complex variable s, Q is of order n, whose zeros are outside the domain, and
P is of an order less than n. Recursive processes in relation to rational functions
approximation or similar kinds of optimization problems have been seen in literature.
For instance, the Nevanlinna-Pick algorithm, which deals with the corresponding
interpolation problem [2]. Baratchart [7, 9] developed some aspects of the classical
treatment (Walsh’s book [61]) and the variables are coefficients of the denominator
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of the best approximating rational function, but not poles. Our process is completely
different. It directly reduces the criterion function to a rational function symmetric
in the poles to be selected. We prove that the global maximal value of the criterion
function is attainable in the interior points of the open set for the variables.

We use an algorithm that comes from the Gram-Schmidt orthogonalization pro-
cess based on the shifted Cauchy kernels, resulting in the rational orthogonal basis.
The closely related algorithm for the adaptive Fourier decomposition for H2(C+)
functions is studied in [48].

Adopting change of variable z → −jz from the upper-half complex plane to the
right-half complex plane, we can covert one of the two cases to the other. Precisely,
for f ∈ H2(Π), through a transformation

F (z) = f(−jz), z ∈ C+,

then F (z) ∈ H2(C+). The Cauchy integral formula for functions f ∈ H2(Π) reads

f(s) =
1

2πj

∫

jR

f(ξ)
s− ξ

dξ.

Introducing the shifted Cauchy kernel e{a}, defined by

e{a} =

√
2<{a}
s + a

,

we have the relation

〈
f, e{a}

〉
=

1
2π

∫ ∞

−∞
f(jω)e{a}(jω)dω

=
1
2π

∫ ∞

−∞
f(jω)

√
2<{a}

−jω + a
dω

=
1

2πj

∫

jR
f(s)

√
2<{a}
−s + a

ds

=
√

2<{a}f(a).

Now assume that f is the H2(Π) function to be approximated by a rational
function P/Q, where Q is of order n, whose zeros are in the left-half complex plane,
and P is of an order less than n.

Adopt the first approximation by a shifted Cauchy kernel e{a1}, with f1 = f, we
have

f(s) = 〈f1, e{a1}〉e{a1}(s) +
(
f(s)− 〈f1, e{a1}〉e{a1}(s)

)

= 〈f1, e{a1}〉e{a1}(s) + f2(s)
s− a1

s + a1
,

where
f2(s) =

(
f(s)− 〈f1, e{a1}〉e{a1}(s)

) s + a1

s− a1
.
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Note that the analytic function in the brackets has a zero at a1, hence f2 is still in
H2(Π). For f2, do the same process, we further express

f(s) = 〈f1, e{a1}〉e{a1}(s) + 〈f2, e{a2}〉e{a2}(s)
s− a1

s + a1
+ f3(s)

s− a2

s + a2

s− a1

s + a1

= 〈f1, e{a1}〉B1(s) + 〈f2, e{a2}〉B2(s) + f3(s)
s− a2

s + a2

s− a1

s + a1
,

where f3 is a function in the H2 space. To f3 we perform the process again. Repeat
the processes till up to the nth step, we obtain

f(s) = 〈f1, e{a1}〉e{a1}(s) + 〈f2, e{a2}〉e{a2}(s)
s− a1

s + a1
... + fn+1(s)

n∏

k=1

s− ak

s + ak

=
n∑

k=1

〈fk, e{ak}〉Bk(s) + Rn(s)

where fk(s) (k = 1, 2, ...) are in H2(Π) and recursively

fk(s) =
(

fk−1(s)− 2<{ak−1}fk−1(ak−1)
s + ak−1

)
s + ak−1

s− ak−1
, (2.1)

Rn(s) is the remainder

Rn(s) = fn+1(s)
n∏

k=1

s− ak

s + ak
. (2.2)

There holds

〈fk, ek〉 = 〈f, ek〉 = 〈f,Bk〉.

So for f(s) ∈ H2(Π) by Theorem 1.1, if {ak}∞k=1 satisfies the condition (1.4), we
have

f(s) =
∞∑

k=1

〈fk, ek〉Bk(s) =
∞∑

k=1

〈fk,Bk〉Bk(s). (2.3)

The nth partial sum

f̃n(s) =
n∑

k=1

〈fk, e{ak}〉Bk(s), (2.4)

is a rational function and is called the n-approximating partial sum, while {B{a1},
B{a1,a2},..., B{a1,a2,...,an}} is called the n Blaschke forms.

The above process is embodied in [49] and [48]. It corresponds to one-by-one
selection of the parameters a1, a2, ..., an. On the other hand, however, simultane-
ous selection of the parameters should lead to a better approximation. The main
technical strength of the present paper is to treat the simultaneous selection issue
in the unbounded domain. We start from dealing with H2 functions with real or
conjugated poles.
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Lemma 2.1 For functions f(s) ∈ H2(Π) with property f(s) = f(s). In the process
of the adaptive approximation, with {ak}n

k=1 appearing real or conjugated pairs, the
approximating partial sum f̃n(s) (2.4) is a rational function in H2(Π) with real
coefficients.

Proof. First, we show that if each al is either real or comes by a conjugate pair,
the coefficients of the recursive formula fk+1(s) by (2.1) are real. We can see that if
{al} is real and fl(s) has real coefficients, then fl+1(s) also has real coefficients. So
we only need to prove that f3(s) has real coefficients if a1 and a2 are conjugated.
By substituting f2(s) with the recursive formula (2.1), we have

f3(s)

=
f2(s)(s + a2)− 2<{a2}f2(a2)

s− a2

=
f(s)(s + a1)(s + a1)− 2<{a1}f(a1)(s + a1)

(s− a1)(s− a1)
− 2<{a1}f(a1)2a1 − 2<{a1}f(a1)

(s− a1)(a1 − a1)
= F1(s)− 2<{a1}F2(s),

where

F1(s) =
f(s)(s + a1)(s + a1)

(s− a1)(s− a1)
,

F2(s) =
f(a1)(s + a1)

(s− a1)(s− a1)
+

f(a1)2a1 − 2<{a1}f(a1)
(s− a1)(a1 − a1)

=
2={a1f(a1)}s− 2|a1|2={f(a1)}

(s− a1)(s− a1)={a1} ,

={·} denotes the imaginary part. We can see that the coefficients of f3(s) are real.

Now we use mathematical induction to prove the result. Without loss of gener-
ality, we set a1 to be a complex number and a2 = a1, then

f̃2(s) = 〈f1, e1〉B1(s) + 〈f2, e2〉B2(s)

= 2<{a1} [f1(a1) + f2(a1)]s + f1(a1)a1 − f2(a1)a1

(s + a1)(s + a1)
.

Substituting the recursive formula, the coefficient of s in the numerator of the above
rational function is

f1(a1) + f2(a1) = f(a1) +
f(a1)(a1 + a1)− 2<{a1}f(a1)

a1 − a1

=
2a1f(a1)− 2a1f(a1)

a1 − a1

=
2={a1f(a1)}

={a1} ,
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and the constant term of the numerator is

f1(a1)a1 + f2(a1)a1 = f(a1)a1 − a1
f(a1)2a1 − 2<{a1}f(a1)

a1 − a1

=
2|a1|2[f(a1)− f(a1)]

a1 − a1

= −2|a1|2={f(a1)}
={a1} .

They are both real. So the result holds for the first step of the induction. For the
second step, assume that the kth (k ≥ 2) partial sum f̃k(s) has real coefficients
where a1, a2, ..., an are either real or come in conjugate pairs. In the case if ak+1 is
real, the conclusion for f̃k+1(s) holds. If ak+1 is complex, letting ak+2 = ak+1, we are
to show that f̃k+2(s) has real coefficients. Because the kth partial sum already has
real coefficients, we only need to prove that the coefficients of the sum of (k + 1)th
and (k + 2)th terms are real. Computation gives

〈fk+1, ek+1〉Bk+1(s) + 〈fk+2, ek+2〉Bk+2(s)

=
2<{ak+1}fk+1(ak+1)

s + ak+1

k∏

i=1

s− ai

s + ai
+

2<{ak+2}fk+2(ak+2)
s + ak+2

k+1∏

i=1

s− ai

s + ai

= F (s)
k∏

i=1

s− ai

s + ai
,

where

F (s) =
2<{ak+1}fk+1(ak+1)

s + ak+1
+

2<{ak+1}fk+2(ak+1)(s− ak+1)
(s + ak+1)(s + ak+1)

.

Then from the proof given in the previous step, F (s) has real coefficients. Con-
sequently, f̃k+2(s) has real coefficients. Mathematical induction gives the desired
result. The proof is complete.

In [1, 12], there are methods to construct orthonormal basis with real coefficients
when complex poles are drawn into. Based on Lemma (2.1), to have the approx-
imations with real coefficients, it need not to make the basis functions with real
coefficients.

Since all the terms on the right-hand-side of (2.4) are orthogonal to each other,
we have the Plancherel theorem

‖f‖2 =
n∑

k=1

|〈fk, e{ak}〉|2 + ‖fn+1‖2.

Denote

An
f = |〈f1, e{a1}〉|2 + |〈f2, e{a2}〉|2 + ... + |〈fn, e{an}〉|2. (2.5)

Our main result is as follows.
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Theorem 2.1 Let f(s) ∈ H2(Π), and An
f be defined by (2.5). Then there exists

an n-tuple {a1, a2, ..., an} in the right-half plane that makes An
f to be the global

maximum, i.e,

{a1, a2, ..., an} = arg max{
n∑

k=1

|〈fk, e{a′k}〉|
2, a′1, a

′
2, ..., a

′
n ∈ Π}.

Remark 2.1 As shown in the literature, the existence of the n-best rational approx-
imation is well-known. The existence is equivalent to what is claimed in Theorem
2.1. A proof of the existence is cited in [61]. A practical algorithm of finding an
n-best rational function, however, is a long standing open problem and thus is a hot
topic of contemporary research [8, 10]. Below we provide a new proof of the exis-
tence. The reason why we give this new proof is that it proposes an algorithm to find
the n-best approximation. When n is not so large, the algorithm is practical.

Proof : To stress on the main idea we deal with the case n = 2. The same proof is
valid for general n (also see [50]).

We show that the global maximum can be attained at a 2-tuple {a1, a2} in the
open right-half complex plane. If not so, then we can find a sequence {al

1, a
l
2}, l =

1, 2, ..., such that
A2,l

f = |〈f1, e{al
1}〉|

2 + |〈f2, e{al
2}〉|

2

tends to the supreme of the quantity, while at least one of cases of <{al
1} or <{al

2}
tends to 0, or one of |al

1| or |al
2| tends to ∞, A2,l

f becomes small. Since A2,l
f is the

norm of the projection of f on the span{al
1, a

l
2}, the order does not matter. Thus

we may assume, without loss of the generality, that Re{al
2} → 0 or |al

2| → ∞,
regardless the behavior of {al

1}. We show that in either of the two cases the limit
can not exceed

max
a∈Π

|〈f, e{a}〉|2, (2.6)

that is a contradiction.

First consider the case <{al
2} → 0. Since 〈fk, e{al

k}〉 = 〈f,Bk〉, for the Poisson
kernel Py, owing to the properties of the Poisson kernel, when y is sufficiently close
to 0,

‖f − 〈f1, e{al
1}〉e{al

1} − 〈f2, e{al
2}〉e{al

2}‖
= ‖f − 〈f,Bl

1〉Bl
1 − 〈f − 〈f,Bl

1〉Bl
1,Bl

2〉Bl
2‖

≥ ‖Py ∗ (f − 〈f,Bl
1〉Bl

1 − 〈f − 〈f,Bl
1〉Bl

1,Bl
2〉Bl

2)‖
≥ ‖Py ∗ (f − 〈f,Bl

1〉Bl
1)‖ − ‖Py ∗ 〈f − 〈f,Bl

1〉Bl
1,Bl

2〉Bl
2)‖

≥ (1− ε)‖f − 〈f,Bl
1〉Bl

1‖ − |〈f − 〈f,Bl
1〉Bl

1,Bl
2〉|‖Py ∗ Bl

2‖
≥ (1− ε)‖f − 〈f,Bl

1〉Bl
1‖ − ‖f − 〈f,Bl

1〉Bl
1‖‖Py ∗ Bl

2‖.
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Now fix y. Because Bl
2 is in H2, we have

Py ∗ Bl
2(s) = Bl

2(s + y).

It follows

‖Py ∗ Bl
2‖2 ≤ 1

2π

∫ ∞

−∞

<{al
2}

t2 + (<{al
2}+ y)2

dt

=
<{al

2}
<{al

2}+ y
.

Now, if <{al
2} → 0, then

‖Py ∗ Bl
2‖ ≤ ε.

Therefore,

‖f − 〈f1, e{al
1}〉e{al

1} − 〈f2, e{al
2}〉e{al

2}‖
≥ (1− 2ε)‖f − 〈f1, e{al

1}〉e{al
1}‖.

Because of the orthogonality between f − 〈f1, e{al
1}〉e{al

1} and 〈f2, e{al
2}〉e{al

2}, this

shows that the selection of al
2 has no effect, and the limit of A2,l

f is at most as given
by (2.6). The above Poisson kernel argument is uniform for all al

1 in the right half
complex plane.

Now assume |al
2| → ∞, as l →∞. In the case we show

|〈f,Bl
2〉| → 0. (2.7)

Since f is square integrable, we choose a large number A so that

|
∫ ∞

A
f(it)Bl

2(it)dt|+ |
∫ −A

−∞
f(it)Bl

2(it)dt| ≤ ε.

Now with a constant C, the Hölder inequality implies that

|
∫ A

−A
f(it)Bl

2(it)dt| ≤ C

(∫ ∞

−∞
|f(it)|2dt

)1/2



∫ A+={al
2}

<{al
2}

−A+={al
2}

<{al
2}

1
t2 + 1

dt




1/2

(2.8)

The last integral is over an integral of length 2A/<{al
2}. We consider two possible

cases here. One is that the set <{al
2} is unbounded for l = 1, 2, .... In the case we

select a subsequence of {al
2}∞l=1 with lim<{al

2} = ∞ to replace the original {al
2}∞l=1

with the same supreme effect, while

lim
l→∞

2A/<{al
2} = 0.

Because of the absolute continuity of Lebesgue integration, for large enough <{al
2}

the left hand side of (2.8) is less than ε. The second case is that the set for <{al
2}

is bounded. In the case |= {al
2}| is unbounded, and, in fact, tends to ∞ as l →∞.
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In the case for large enough l the integral interval (−A+={al
2}

<{al
2}

,
A+={al

2}
<{al

2}
) shifts to

either +∞ or −∞. In either cases the integral becomes small. To summarize, the
last integral tends to zero along with l → ∞ for the fixed A, if necessary for a
subsequence of {al

2}∞l=1. Thus the limit (2.7) is proved. The above Poisson kernel
argument is uniform for all al

1 in the right-half complex plane. The proof is complete.

For the convergence rate in the energy sense, from the greedy algorithm point of
view, we give a modest result of the remainder Rn(s) if treating the set D = {ea, a ∈
Π} as a dictionary of greedy algorithm.

Define H2(D, A) as, 0 < A < ∞,

H2(D, A) = {f ∈ H2(Π)|f =
∞∑

k=1

dkek, ek ∈ D,
∞∑

k=1

|dk| < A.}

If f(s) ∈ H2(D, A), then we have

‖Rn(s)‖2 = ‖f −
n∑

k=1

〈fk, e{ak}〉Bk‖2

= ‖f‖ −
n∑

k=1

|〈fk, e{ak}〉|2

= inf
a′1,...,a′n∈Π

(‖f‖ −
n∑

k=1

|〈fk, e{a′k}〉|
2)

≤ A2

n
.

The estimation in the last step above is a result for greedy algorithm given in [14].

For the pointwise convergence, there is a result cited below. Suppose that f(s) ∈
H2(Π) has the following form

f(s) =
m∑

k=1

αk

s + βk
, (2.9)

and {a1, a2, ..., an} is obtained from the algorithm, then for the n-approximating
partial sum f̃n(s) (2.4), in [1] it shows that

|f(jω)− f̃n(jω)| ≤
m∑

k=1

| αk

jω + βk
|

n∏

l=1

|βk − al

βk + al
|. (2.10)

The above result indicates that the approximation error decreases at least exponen-
tially with increasing n, thus this method is pointwise convergent for the rational
functions whose poles are on the left-hand plane.

3 Algorithm for Model reduction

In the algorithm introduced in the above section, any nth order approximating par-
tial sum (2.4) is a rational function P (s)

Q(s) , where the degree of P (s) is less than n and
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the degree of Q(s) is equal to n, which means this algorithm automatically ensures
the reduced system to be in the Hardy space H2. This guarantees the stability of
the approximating partial sums. But there is a problem that the coefficients of the
partial sums may not be real. In [35], the conjugate consecutive optimal sequence is
used in order to construct an approximating partial sums with real coefficients, but
it seems not effective here as it also makes the order of the approximating functions
higher.

So now, on one hand, the achievement of global maximum of (2.5) is expected;
on the other hand, the coefficients of the reduced order models must be real. By
considering both sides, if the original system has only real poles, we can just select
{ak}n

k=1 in the right real line R+, that may lead to a little loss of the precision of
approximation but avoiding the oscillating reduced model; if the original system has
complex poles, according to Lemma 2.1, conjugate complex poles can be drawn into
the selection of {ak} to make the approximating partial sum (2.4) of real coefficients.
In the rest of this section, we will use the real pole to clarify our idea, the method
of incorporating conjugated pairs complex poles is the same and the number of
parameters needed to be found is the same in R+ as the real poles case.

In model order reduction, it is often important that the steady-state value of
the step response of the reduced order models are kept to be equal to the original
systems. An original system G(s) ∈ H2(Π), in case of single input and single output,
is given by

G(s) =

m−1∑

i=0

cis
i

m∑

i=0

bisi

,

where bm is assumed to be equal to 1. The step response in time domain is given by

h(t) =
1

2πj

∫ α+j∞

α−j∞
estG(s)

1
s
ds,

where α is larger than the largest real part of the poles of G(s). The steady-state
value of h(t) is equal to c0

b0
. Meanwhile, for the reduced order system G̃(s) given in

the form (2.4), it can be rewritten as:

G̃(s) =

n−1∑

i=0

c̃is
i

n∑

i=0

b̃isi

, n < m,

where b̃n = 1, its steady-state value of step response is equal to c̃0
b̃0

. So for keeping
the steady-state values equal, we have the following constraint:

c̃0

b̃0

=
c0

b0
.
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Together with the relation, as a is real,

〈f, e{a}〉 =
√

2af(a),

the target function (2.5) can be further written as

An
f = 2a1|f1(a1)|2 + 2a2|f2(a2)|2 + ... + 2an|fn(an)|2. (3.1)

Then the algorithm is formulated as follows.

Algorithm: Step 1. Writing out the forms of partial sum f̃n(s) and An
f through

the recursive formula

fk(s) =
(

fk−1(s)− 2<{ak−1}fk−1(ak−1)
s + ak−1

)
s + ak−1

s− ak−1
. (3.2)

Find out c̃0
b̃0

and it is clear that f̃n(s) is completely determined by the sequence
{a1, a2, ..., an}.

Step 2. Finding out a sequence {a1, a2, ..., an} in the right real line R+ such that:




{a1, a2, ..., an} = arg max{An
f , ak > 0}

c̃0

b̃0

=
c0

b0
.

(3.3)

Now in step 2, it turns to be a restrained nonlinear extremum problem, and the
target function is smooth, thus it can be treated by the numerical methods. Take
n = 2 for example, according to f1(s) = G(s) and the recursive formula

f2(s) =
(
f(s)− 〈f1, e{a1}〉e{a1}(s)

) s + a1

s− a1
,

the approximating partial sum (2.4) is written by

G̃(s) = 〈f1, e{a1}〉B1(s) + 〈f2, e{a2}〉B2(s)

=
(2<{a1}f1(a1) + 2<{a2}f2(a2)) s

s2 + (a1 + a2)s + a1a2
+

2<{a1}f1(a1)a2 − 2<{a2}f2(a2)a1

s2 + (a1 + a2)s + a1a2
.

When a1, a2 are real numbers,

G̃(s) =
(2a1f1(a1) + 2a2f2(a2)) s

s2 + (a1 + a2)s + a1a2
+

2a1f1(a1)a2 − 2a2f2(a2)a1

s2 + (a1 + a2)s + a1a2
,

and then the constraint for a1, a2 reads

2a1f1(a1)a2 − 2a2f2(a2)a1

a1a2
=

c0

b0
.

The above constraint defines a manifold in the product space R+ × R+.

Remark 3.1 Theoretically the stable model generated by our proposed method may
not be unique. In the case there are multi-solutions, then according to (2.10), one
should choose the poles to be as close to those of the given transfer function as
possible.
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4 Numerical examples

There are three numerical examples chosen from the literature in this section. Let
G(s) ∈ H2(Π) be a given high order transfer function, then the inverse Laplace
transform is defined by

g(t) =
1

2πj

∫ α+j∞

α−j∞
estG(s)ds,

where α is larger than the largest real part of the poles of G(s), g(t) gives the impulse
response of the system. The impulse response energy (IRE) [32, 53] is defined by

IRE =
∫ ∞

0
g2(t)dt =

1
2π

∫ ∞

−∞
|G(jω)|2dω,

and it is calculated and compared for both the original and the reduced-order models
in the examples.

Just for illustrating the utilize of our method, we will only consider the second
order model G2(s),

G̃2(s) =
c̃1s + c̃0

s2 + b̃1s + b̃0

for comparison of the chosen examples. The results obtained using various reduction
methods are compared in the tables below.

In our programm, we use the algorithm fmincon in matlab to solve the con-
strained extreme problem (3.3). Since the algorithm fmincon can not guarantee the
global optimal property in general, it is repeated with different initial points and
then an optimal solution {a1, a2} among the results is chosen.

Example 1 First we consider a 10th-order system previously studied in [38, 56,
45], where G10(s) is given by

G10(s) =
540.70748× 1017

∏10
l=1(s + bl)

, (4.1)

and b1 = 2.04, b2 = 18.3, b3 = 50.13, b4 = 95.15, b5 = 148.85, b6 = 205.16, b7 =
257.21, b8 = 298.03, b9 = 320.97, b10 = 404.16. The impulse response energy (IRE)
of the above system is 0.90305.

By using the proposed method, we obtain a1 = 2.1608 and a2 = 9.7031. Then
the 2nd partial sum G̃2(s) is

G̃2(s) =
−0.5367s + 20.96

s2 + 11.86s + 20.97
, (4.2)

with IRE=0.8956. The step responses of the original and reduced models are shown
in figure 1, and a comparison on the impulse response energy (IRE) with the other
methods is given in table 1. It can be seen that the IRE of the reduced model of
our method is close to the original system, and its asymptotic behavior of the step
response is better than others.
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Figure 1: Step responses of the original and reduced models for example 1.

Table 1: Comparison of the reduced models for example 1.
Model reduction method Reduced model IRE

Original system G10(s) 0.9031

Proposed method −0.5367s+20.96
s2+11.86s+20.97

0.8956

G. Parmar et al.[45] −28.367s+647.60193
s2+359.999s+647.60193

2.0171

Edgar[20] −0.93s+26.28
s2+14.92s+26.4961

0.9026

Therapos and Diamessis[56] −1.999638s+37.32915
s2+20.34s+37.332

1.0159

Example 2 The second example is a 4th-order system investigated in [37, 45],
where

G4(s) =
s + 4

(s + 1)(s + 3)(s + 5)(s + 10)
, (4.3)

with IRE=2.6938× 10−4.

By the proposed algorithm, we obtain a1 = 1.0753 and a2 = 2.5111. Then the
2nd partial sum is

G̃2(s) =
−0.00299s + 0.072
s2 + 3.586s + 2.7

, (4.4)

with IRE=2.6894× 10−4.

The step responses of the original and reduced models are shown in figure 2, and
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Figure 2: Step responses of the original and reduced models for example 2.

Table 2: Comparison of the reduced model for example 2.
Model reduction method Reduced model IRE

Original system G4(s) 2.6938× 10−4

Proposed method −0.00299s+0.072
s2+3.586s+2.7

2.6894×10−4

Moore[37] −0.003127s+0.072358
s2+3.573s+2.73798

2.6896×10−4

G. Parmar et al.[45] −0.02187s+0.19915
s2+9.5s+7.45868

3.0503×10−4

Pal[44] −0.004855s+0.0818975
s2+4.066347s+3.071157

2.7144×10−4

a comparison with the other methods on the impulse response energy (IRE) for this
example is given in table 2. It can be seen that the values of IRE from our method is
comparable to other methods, and the behavior of the step response is better than
others. In figure 2, the asymptotic line of Parmar et al. [45] is different with the
original system.

Example 3 The third example is an 8th-order system investigated in [32, 45, 47,
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Figure 3: Step responses of the original and reduced models for example 3.

53]:

G8(s) =

7∑

i=0

cis
i

8∑

i=0

bisi

, (4.5)

where c7 = 18, c6 = 514, c5 = 5982, c4 = 36380, c3 = 122664, c2 = 222088, c1 =
185760, c0 = 40320 and b8 = 1, b7 = 36, b6 = 546, b5 = 4536, b4 = 22449, b3 =
67284, b2 = 118124, b1 = 109584, b0 = 40320, with IRE=21.739. Using the proposed
method, we obtain that a1 = 0.7910 and a2 = 6.6071. The second-order approxima-
tion is

G̃2(s) =
17.7857s + 5.2264

s2 + 7.3981s + 5.2264
, (4.6)

with the IRE=21.7322.

The step responses of the original and the reduced order models are shown in
figure 3, and a comparison with the other methods on the impulse response energy
(IRE) is presented in table 3. It can be seen that the proposed method gives not only
a comparable step response to that of iterative rational Krylov algorithm (IRKA)
[28, 30], but also a closer IRE value to the original system than the other methods.
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Table 3: Comparison of the reduced model for example 3.
Model reduction method Reduced model IRE

Original system G8(s) 21.739

Proposed method 17.7857s+5.2264
s2+7.3981s+5.2264

21.7322

G. Parmer et al.[45] 24.1144s+8
s2+9s+8

32.75

Mukherjee et al.[40] 11.39.9s+4.4357
s2+4.2122s+4.4357

15.9285

Prasad and Pal[47] 17.98561s+500
s2+13.24571s+500

31.0849

Hutton and Fiedland[32] 1.98955s+0.43184
s2+1.17368s+0.43184

1.8702

Shamash[53] 6.7786s+2
s2+3s+2

7.9916

Bai[6] 15.0990s+4.82
s2+5.9927s+4.82

19.4238

S. Gugercin et al.[28, 30] 17.4119s+4.8188
s2+7.1315s+5.0129

21.5807

5 Conclusion

A fast adaptive method is proposed for model reduction of continuous systems in
this paper. This method is based on the continuous-time Takenaka-Malmquist basis
and aims to obtain the best approximation in the given order in the energy sense
through selecting {ak}n

k=1 simultaneously for the Takenaka-Malmquist basis with a
newly deduced recursive formula. It is adaptive for different systems. It can be seen
from the tables and the figures, on considering both IRE and step response, the
proposed method is considerable. Based on the proved theory and the promising
experimental results, we can see the theory and the current numerical algorithm is
useful in model reduction for the systems with low order. For the systems with large
order, the theory has no constraint, we believe that our method is also useful under
a suitable numerical realization to the second step of the algorithm.
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