Elsevier Editorial System(tm) for Journal of Mathematical Analysis and Applications
Manuscript Draft

Manuscript Number: JMAA-11-1917

Title: An Application of Entire Function Theory to Analytic Signals

Article Type: Regular Article

Section/Category: Complex Analysis

Keywords: Analytic Signal, Hardy Space, Phase, Mono-component, Entire Function

Corresponding Author: Mr. Guantie Deng, PhD

Corresponding Author's Institution: Beijing Normal University

First Author: Guantie Deng, PhD

Order of Authors: Guantie Deng, PhD; Guantie deng, Ph.D; Tao Qian, PH.D

Abstract: Analytic signals of finite energy in signal analysis are identical with non-tangential boundary
limits of functions in the related Hardy spaces. With this identification this paper studies a subclass of
the analytic signals that, with the amplitude-phase representation $s(t)=\rho (t)e*{iP(t)}, \rho (t)\ge
0,$ satisfy the relation $P'(t)\ge 0% a.e. Signals in this subclass are called mono-components, and, in
the case, the phase derivative $P'(t)$ is called analytic instantaneous frequency of $s.$ This paper
proves

that when $s(t)=\rho (t)e”{iP (t)},$ where $A(t)$ is real-valued, band-limited with minimal bandwidth
$B$ and $P (t)$ is real-valued, as the restriction on the real line of some entire function, then $s$ is an
analytic signal if and only if $P(t)$ is a linear function, and with $P (t)=a_0+a_1t$ there holds $a_1\leq

B.$ In the case $s$ is a mono-component. This generalizes the corresponding result obtained by Xia
and Cohen in 1999 in which $P (t)$ is assumed to be a real-valued polynomial.



Cover Letter

Department of Mathematics, Beijing Normal University
100875 Beijing, The People’s Republic of China
and Department of Mathematics, University of Macau.

June 23, 2011

Journal of Mathematical
Analysis and Applications
Editorial Office

525 B Street Suite

1900 San Diego,

CA 92101-4495, USA

Dear Editor

We send our paper ” An Application of Entire Function Theory to Analytic Signals”
submitting the Journal of analysis and application”.

If you have any suggestions and comments on this paper, please contact me.

Sincerely Yours

Guantie DENG and Tao QIAN
P.S.

Potential referee:

Loukas Grafakos

Associate editor of Journal of Mathematical Analysis and Application,

Professor of Mathematics at the University of Missouri at Columbia Department of
Mathematics, University of Missouri, Columbia, MO 65211, USA.

Email: grafakosl@missouri.edu



Journal of Mathematical
Analysis and Applications
Editorial Office

525 B Street Suite

1900 San Diego,

CA 92101-4495, USA



*Manuscript

An Application of Entire Function Theory to
Analytic Signals

Guan Tie Deng * Tao Qian T

Abstract

Analytic signals of finite energy in signal analysis are identical with
non-tangential boundary limits of functions in the related Hardy spaces.
With this identification this paper studies a subclass of the analytic signals
that, with the amplitude-phase representation s(t) = p(t)e’T™®, p(t) > 0,
satisfy the relation P’(t) > 0 a.e. Signals in this subclass are called mono-
components, and, in the case, the phase derivative P’(t) is called ana-
lytic instantaneous frequency of s. This paper proves that when s(t) =
p(t)etr® | where A(t) is real-valued, band-limited with minimal band-
width B and P(t) is real-valued, as the restriction on the real line of some
entire function, then s is an analytic signal if and only if P(¢) is a linear
function, and with P(t) = ao + a1t there holds a1 < B. In the case s is
a mono-component. This generalizes the corresponding result obtained
by Xia and Cohen in 1999 in which P(t) is assumed to be a real-valued
polynomial.

Key Words Analytic Signal, Hardy Space, Phase, Mono-component, Entire
Function

1 Introduction

There have been unfaded interests in the concept analytic signals since Gabor
first introduced it in 1946 ([3], [9]). It is a natural one since it deals with signals,
or functions, whose Fourier spectra are supported in the right half of the real line,
or, in other words, those possessing only non negative Fourier frequencies ([5]).
They, in such a way, correspond to the so called physically realizable signals.
A close study of this concept is related to the so called analytic instantaneous
frequency. If s is a real-valued signal, a candidate of instantaneous frequency of
s is the phase derivative ¢’(t), where the phase function ¢(t) is defined through
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s(t) +iHs(t) = p(t)e’*®, p > 0, a.e., and Hs is the Hilbert transform of s. In
order to have a qualified frequency function, it would be right to require ¢’ (t) > 0
a.e. Cohen pointed out ([1]) that non-negativity of Fourier frequency does not
necessarily imply nonnegativity of analytic phase derivative. In other words,
not every analytic signal has an analytic instantaneous frequency function. It is
necessary to single out a subclass of analytic signals that have a.e. non-negative
analytic phase derivative. The class of mono-components is the subclass of
analytic signals that have nonnegative analytic phase derivatives, defined as
analytic instantaneous frequency functions. A large pool of mono-components
have been identified ([6], [7]), including boundary values of Blaschke products
of finite and infinite zeros, of singular inner functions, of starlike and p-starlike
functions, and of the basic functions in the Takenaka-Malmquist system, etc.
As generalizations of the complex monomials 2", |z| < 1, and the trigonometric
functions e**, ¢t > 0,z > 0, they have been used in adaptive mono-component
decompositions of functions ([8]).

Writing a signal in its amplitude-phase representation s(t) = A(t)(t)e*’®),
by saying that s is a chirp signal, it means that P(t) is a polynomial of some
degree larger than 1. The result of [9] amounts to say that chirp signals of
band-limited amplitude cannot be analytic signals. If P(t) is restricted to be
a polynomial, then the only chance for s to be an analytic signal is that P(t)
is of degree 1, and, in the case, s has to be a mono-component. The present
paper generalizes the result by Xia and Cohen to entire functions P(z) with real
values on the real line. We provide an alternative proof that is sophisticated
and, more general.

2 Main Result

By the essential compact support of a(w) € LP,1 < p < 0o, we mean the smallest
compact set S such that

J1e@ras= [ ja@ras.

We note that if A(x) is real-valued of finite energy, then its Fourier transform,
denoted by a(w), enjoys the conjugate-symmetric property, viz. a(—w) = a(w).
This implies that if a(w) has an essential compact support, then the essential
compact support is symmetric with respect to the origin. We recall the Paley-
Wiener Theorem asserting that an L2-function A(z) is extendable to become
an entire function with exponential type B, ie.

|A(2)] < CcePy, C,B>0, z=ux+1y, (1)

if and only if esssuppA C [—B, B], or, equivalently, A(z) has bandwidth B.
Let A(x) be real-valued with bandwidth B. If, moreover, the essential compact
support of its Fourier transform a(w) is precisely contained in [—B, B], viz.

—B+§ B
/ la(w)|dw >0 and / |a(w)|dw >0
_B B—§



for all small enough § > 0, then the Paley-Wiener Theorem implies that A(z)
satisfies the sharp estimate (1) (the constant B cannot be made smaller). In
the case [— B, B] is called the minimum bandwidth of A(x).

Our main result is as follows.
Theorem 1.1 Assume that A(z) is real-valued, band-limited, and of finite
energy,

B

A(a:):/ a(w)e™™ dw, (2)

—-B

where B is the minimum bandwidth of A(x), and P(z) is an entire function of

2,

P(z) = Z anz", (3)
0

with real coefficients a,, € R, n = 0,1,2,---. Then the fact that A(z)e'’®) is
the boundary value of a function in H? (0 < p < oo) of the upper-half complex
plane implies that P(z) must be of degree 1, i.e., P(z) = ag + a1 2. Furthermore,
aq 2 B.

Proof
The relation (2) shows that A(z) is the restriction to the real line of the
entire function given by

B
A(z) = /_B a(w)e™™ dw, z =z +1y, (4)

of exponential type B. Therefore, A(z)e'’(?) is an entire function. Since, by
assumption, A(z)e*’(*) is the boundary value of a function in the HP of the
upper-half plane, the uniqueness of analytic function implies that the Hardy
space function coincides with A(z)e!’*), Tmz > 0.

The inequality

+o0 + +o0 2
/ 2log™ |A(z)|dx < log/ |A(z)| d:c,
s (1 + a2) oo (14 22)

implies that A(z) belongs to the class C :

+oo
{A(z) : A(z) is of exponential type and/ log™ |A(z)|/(1 4+ 2?)dx < oo}
(see [4], p.115).
Therefore, A(z) satisfies the relation
log |A(2)| = By + o(|z|), y = Rez >0, (5)



everywhere outside a system of exceptional disks of finite view ([4], p.116).
Note that at this point we use the fact that B is the minimum bandwidth. As
consequence, for any ¢ > 0,6 € (0, ), there exists a sequence { R, }, independent
of 0, such that R,, — oo as n — oo, and

log|A(R,e?)| > BR,, sinf — eR,,. (6)

Since f(t) = A(t)e’’® is the boundary value of a function f(z) = A(z)er'(?)
in H? of the upper-half plane, the function |f(z)[? is subharmonic function.
Hence, for z = x + iy,y > 0,

. SO _ 1 [ .
sars [ worTE s [7 [nerimpracan <

2|71
uy’ '

where
171 = supf [ 17t + im)ede s > o).
R
So, there is a positive constant C' > 0 such that
. . ) C
[f (@ +iy)[” = |A(z + iy) [Pexp(—plmP(z + iy)) < 5 Y0

Taking logarithm on the last obtained inequality and replacing y by R,, sin 6,6 €
(0,7), by invoking (6), we have

pBR, sin® — epR,, — pIm P(R,e"’) < —logR,, +log C' — logsin 6. (7)
Let u(z) = —Im P(z2), u™(2) = max{u(z),0} and v~ (z) = max{—u(z),0}.
Since P(z) is an entire function of z with Taylor expansion (2), where a,, € R,
n=20,1,2,--- are real coefficients, we have
u(Re™) Z (—ayR®) sin k6. (8)
k=0

This implies that
k2 [T 0y o
—apR :—/ u(Re")sinkfdf, k=0,1,2,..
T Jo

In particular, for kK =1, R > 0,

2 [" (Re') sin 0d6 2 /7r *(Re) sin 0df 2 [ u~ (Re™) sin 0df
—a; = — u(Re") sin = — e’ ) sin - — e’ ) sin 6d#.

Y ) 0 TR J TR

Therefore,

R/ |u(R, e 51n9d9—a1+—/ %) sin Bd6.
T



By (7), there is a positive constant Cs such that

2 T ) 77 )
/ |u(R,e")|sin0dd < |a;| + / uT (R,e)sinfdh < Cs. 9)
7TRn 0 iwares 0
For k > 2,
2 i ; 2 i ; kC
lax| < T /0 |u(R,e") sin kO)dh < T /0 |u(R,e")|ksinfdf < ﬁ—fl

So ay = 0 for k > 2. P(z) must be of degree 1, i.e., P(z) = ag+a;2. Furthermore,
by (7), for any 8 € (0, ),

pBR,, sin® — epR,, — p(ap + a1 Ry, sind) < —log R,, + log C' — logsin 6.

By taking § = 3, we have a; > B — ¢. Since € > 0 is arbitrary small, we arrive
at ap Z B.
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