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Abstract

This paper presents a new adaptive algorithm for frequency-domain identification. The algorithm is related to the rational
orthogonal system (Takenaka-Malmquist system). This work is based on an adaptive decomposition algorithm previously
proposed for decomposing the Hardy space functions, in which a greedy sequence is obtained according to the maximal selection
criterion. We modify the algorithm through necessary changes for system identification.
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1 Introduction

System identification concerns the modeling of physical
systems that can be described by input-output measure-
ments in the time domain or frequency domain. This pa-
per is concerned with the problem of approximating the
dynamics of single input, single output (SISO) discrete
linear time-invariant (LTT) systems that are causal and
stable. For the considered discrete LTT systems, let {hy}
be the impulse response of the system. Then

+oo
Glz) =Y e M
=1

is the transfer function of the system.

A number of methods have been developed to identify a
system. One widely used method is to construct a model
structure with a given order, and then to estimate the
parameters by the measured data. The most classical
and commonly used models include the FIR model, ARX
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model and ARMAX model. Researchers have been using
the rational orthogonal systems by making the model
structure priori-linear in parameters, viz, the transfer
function G(z) is approximated by

G(2) =D _0uBi(2), (2)
=1

where {B;(z)} is arational orthogonal system, {6;} is the
n-tuple of parameters to be determined, n is the order
of the model structure. Denote § = [0, 02 ... 0,] as a
parameter vector. Let { Ex}2_, be the measurements in
the frequency domain with

B = G(e7*) + vy, 3)

where vy, is the noise, then associated with (2), the min-
imizing parameters 8* can be determined by a least-
squares criterion,

N
1 ~
* T JWr) _ 2
0 = argmin YO G(E) — B2 (4)
k=1
which can be done almost instantaneously.
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The general setting of the rational orthogonal basis is

1—-la Zk-1 — Tz
Bi(z) = ¥ il [~ (5)
l

s \ak\<1.
zZ — ag :12—(11

The following are the particular cases that (2) gives rise
to with (5).

e all a; = 0: the classical FIR model;

e all a; = a, a being real-valued: the Laguerre models
[21,22,39,42];

e all ap = a, a being complex-valued: the Kautz models
[40-42].

The general setting of the rational orthogonal system
(5) was first studied in the 1920s by Takenaka (1925)
and Malmquist (1926) [43], and thus was named as
Takenaka-Malmquist (TM) system. It has been used in
system identification and analyzed in detail since 1980s
by Ninness and other researchers with an ample amount
of publications, including [2-4,12,23-25,38]. The study
[26] by T. Oliveira e Silva shows that small perturba-
tions in locating the true poles do not induce much error
for the approach. Nevertheless, to estimate the true
poles of the original system is by no means easy. Our
approach is based on a different philosophy. We do not
care about where the poles of the true system are for the
LTI systems. We, using a maximal selection criterion in
terms of energy, find an approximation to the original
system in the energy sense through adaptively selected
poles defining the rational orthogonal system {8y }.

Here and after, let D denote the unit disc. With the nec-
essary assumptions on the system, the transfer function
(1) belongs to the space of functions, holomorphic out-
side the unit disk. Under the transformation: z — 1/z,
the transfer function turns out to be analytic in D. For
the uniformity and clarity, the functions considered in
this paper are assumed to be analytic inside the unit
disc, and they belong to Hs (D) with real-valued impulse
response.

For the rational orthogonal system, a well-known and
crucial result is as follows.

Theorem 1 [3]. Consider the set of functions {By(z)}

defined by
V1= |GPE ,

Bk('z) = B{Cl,Ck}(Z) = 1— Ekz 1_ lea
=1

where (p € D and k = 1,.... Then the set X =
span{Bi(z)}k>1 ts complete in A(D) or H,(D) for

1 <p < o0 if and only if
D (=Gl = oo, (7)

=1

where A(D) is the disk algebra {f : f is analytic in the

unit disc D and continuous on D }, H,(D) is the Hardy
p space of functions f(z) analytic in D.

The condition of completeness (7) is the so-called Szdsz
condition, which has a long history [34,13].

This paper is based on the theory presented in [30,29].
We will concentrate on the frequency-domain system
identification. The proposed algorithm is based on the
rational orthogonal system (6) through finding {(j} un-
der a maximal selection criterion. We incorporate a tech-
nical treatment that makes the approximating rational
functions to have real-valued coefficients which is neces-
sary for systems with real-valued impulse responses.

This paper is arranged as follows. In section 2 we give
the problem setting. A brief introduction of the adaptive
decomposition algorithm for f(z) in the Hardy space
H, (D) is given in section 3. After that, our main result of
this paper is given in section 4. In section 5 an example
is presented. Conclusions are drawn in the last section.

2 Problem setting

Frequency-domain identification is based on a set of
frequency-domain measurements. This set of data is usu-
ally obtained by the sinusoid response or, more accu-
rately, by the correlation method [17,13].

Without loss of generality, it is also assumed that a set
of frequency-domain measurements {Ek}gzl is available
and these frequency-domain measurements are obtained
from a single input, single output (SISO) discrete linear
time-invariant (LTT) system f(z) in H2(D) with real-
valued impulse response. We further assume that f(z)
can be continuously extended to a region containing the
closed unit disc. Under these assumptions, if f(z) is a
rational function, its coefficients are all real-valued and
the poles are outside the closed unit disc.

It is then assumed that the structure of measurements
{E,}Y_, is set up to be

Ep = fe ) + v, (k=1,2,..,N),

2 (k—1 . .
where wy, = %, N is even and {vy } is a bounded se-

quence satisfying |v| < €, € > 0, or a zero-mean stochas-
tic process with a bounded covariance function, and f(2)
is the true function to be approximated. Note that equal
spacing is, in fact, unnecessary in the algorithm. We just



need the measurements for w € [0,7), the rest in the
interval (7, 27) will be obtained by using the conjugate
symmetry of the frequency response data.

Let X,, = span{Bi,Bs, ..., B,}, where the orthonormal
system {Bj}7_, is defined by (6) and (, € D. The iden-
tification problem that we consider now can be stated as
follows.

Frequency-domain identification problem: Given a set
of frequency-domain measurements {Ey}Y_, for f €
H5(D). Find a projection f,(z) € X, through finding
{C¢k} € D, called a greedy sequence, such that for each k,

G = argmax{[(f, B(¢,,.c..1.cp)[>,C €D} (8)

This is a consecutive energy approximation, meaning
that

fn+1 = fn + <f7 Bn+1>8n+1 (9)

and, in the Ho-norm convergence of f, to f,
f= lim f,. (10)
n—oo

Such function decomposition is called adaptive Fourier
decomposition (AFD) in which it is expected that a se-
quence {(;}7_, is found to give rise to a TM sequence
{Bk(2)} that offers efficient approximation to the given
function.

3 AFD for Hy(D) functions

In this section, we provide a brief introduction to the
adaptive Fourier decomposition algorithm for Hy(D)
functions [30,29].

The inner product in Hy(D) is defined by

1 2T

(fr9) = o f(e7*)g(ed*)dw.

, called the evaluator at (,

V1-[¢)?
z

Denote eq¢)(z) = s

and D = {e¢,( € D} is the dictionary. By invoking the
Cauchy integral formula, it gives rise to the evaluating

functional
A /1 C 27
7‘ fle J ) ———dw

2 0 1 —_ Ce]w
1—[¢]?£ (<) (11)

(freqey)

Let f1 = g1 = f, we first have

F(2) = (f1(2) = (91, e1c1y) e(cay (2)) + (g1- €46y €4y (2)
= Ri(2) + (g1, €(¢,}) €41y (2)
= 92(2) 1Z_Cilz + (g1, ¢qay) e1ey (2),

where f2(z) has a zero at z = (3, and hence go(2) is
in Hy(D). It is proved in [30], or alternatively [29], that
there exists (; as an interior point of the unit disc D such
that )

(1= argmax{’<gl,e{<}>‘ : ¢ €D} (12)
The selection criterion for (; is named as Maximal Se-
lection Criterion. The process from g; to go through the
Maximal Selection Criterion is called a “maximal sifting
process”. Applying the maximal sifting process to gz, we
obtain g3, and so on. After the kth step we obtain

f(2) = Ri(2) + fi(2), (13)

where the remainder is

k 2=
Ri(2) = i () [[—

U=z (14)

and the kth approximating partial sum

k
= (ge0y) By carnciy (2). (15)
=1

fx(2) is a rational function g,;((zz))’ in which the degree

of the polynomial Pj(z) does not exceed k — 1 and the
degree of polynomial Qx(z) does not exceed k. For | =
.,k + 1, the recursive formula for g; is

a(z) = <gl_1<z> (- |cl_1|2>gl‘1(<l‘”> L

1-( 12 ) 2= Q-1
(16)
where (; is selected according to the Maximal Selection
Criterion

G = argmax{|<gl,e{¢}>|2 : ¢ € D}. (17)

The following theorem deals with the convergence.

Theorem 2 [30,29] For a given function f € Ha(D),
under the Mazimal Selection Criterion, first applied to
g1 = [ and then consecutively to gi(z), there holds

=Y {grkere) Be(z) = > {f.Br) Bi(2), (18)
k=1 k=1

where the convergence is in Ho(D).



For a proof, we refer to [30] or [29].

The greedy sequence {(x} selected under the Maximal
Selection Criterion may not satisfy the condition Z(l —
|Ck|) = oo. In the case > p— (1 — |Ck]) < oo, [30] shows
that Hs(ID) has the following decomposition
Hy(D) = span{Bi, ... Bk, ...} @D ¢Ha(D), (19)
where ¢ is the infinite Blaschke product which has and

only has {(x}72, as its zeros (including the multiplici-
ties).

4 Adaptive Approximation

In this section the AFD algorithm is modified to make
the approximating rational functions to have real-valued
coefficients. When adopting the adaptive algorithm, we
first work out a function f(z) approximating the true
function f(z) dependent on the given measurements.
Then we apply the AFD algorithm to the approximating

function f(z). We call this the two-steps algorithm.
4.1  Two-steps algorithm

In this algorithm, the first step is to construct a func-

tion f(z) € Hy(D) as the first approximation based on

the measured data {Ej}Y_,. In this paper, f(z) is con-
structed by the Cauchy integral,

1 2”Zkf(ej'“"ﬁ)Xk(‘,.)(W)

= — de’v
) 275 Jo e —z o

(20)
where x(+) is the indicator function, and, in the Lo sense,

D FE)Xk( ) (W)
k

N/2 ' N+1 '
= Z f(ejwk)x(wk,warl)(w) + Z f(BJWk)X(wk,wk,l)(w)
k=1 k=4 +2

o S

Using data { E, } instead of the function values, then (20)
gives

- 1 N/27 eIWk+1 _ o
1) 2myj kz—l kIn( eIwr — 4
1 N/QE | eTIWkt — »
T kIn e—Jwk —z 7
k=1

Furthermore, it is easy to show that f(z) = f(z).

Remark 3 To get an approzimating function f(z), the
use of the Cauchy integral in step 1 is not essential. Other
approximation methods can also work for this purpose,
such as by polynomials according to [11,27].

With an adequate sample of frequency-domain measure-
ments, the second step is to find approximations to the
function f(z) by using the AFD algorithm introduced in
section 3. We denote by f,(z) the obtained nth approx-
imating partial sum.

The computation of g in the adaptive algorithm is based
on the recursive formula (16), where f(z) = gi(2) is

replaced by the approximation f(z). The computation
of the arguments giving rise to max [{gx, eg¢})|? is based
on the formula [ (g, ;1 )[* = (1 — [¢[*)|gx(¢)|* that is a
smooth function in two real-valued variables represented
by

(1= 2® =) (ui(z,y) +vi(2,y))

where wug, v, are two real-valued functions and gp =
Uk +jvk, ¢ = x+jy. The extreme problem can be treated
by the existing numerical methods.

The greedy sequence {(j} obtained by using the AFD
algorithm may contain complex numbers. Similar to
[24] we use the conjugate points in the greedy sequence
Ck+1 = (j in case (i is complex-valued. We can show
that the partial sums with {(x} being real-valued or
coming by conjugate pairs have real-valued coefficients
as follows. We call the sequence under the construction
modified greedy sequence.

Lemma 4 For function f(z) € Ha(D) with the prop-

erty f(Z) = f(z). In the process of AFD algorithm, with
{Ck}7_, appearing real-valued or conjugate pairs, the ap-
prozimating nth partial sum f,(z) is a rational function
in Ho (D) with real-valued coefficients.

Proof. First, we show that if each (j, is either real-valued
or comes by a conjugate pair, the coefficients of the re-
cursive formula g,41(2) by (16) is real-valued. We can
see that if , is real-valued and g (2) has real-valued co-
efficients, then gxy1(z) has real-valued coefficients, too.
So we only need to prove that gs(z) has real-valued co-
efficients if (; and (5 are conjugated.

By (16), denote ¢ = 1 — |(1]?, substituting g2 (z) with its
expression in terms of g;(z), we have

g3(2) = g2(2)(1 = 422)2__(;2_ [€2)g2(¢2)

= Fi(z) + F»(2),




Py - 20 =020 -G2)
(2 =)z = 1)
(1- \C1|2)91(C1)(1 —(12)
(z =)z =)

(1-1G2)91 €)1 =8 — (1= |G %01 ()
(2_21)(21 —C1) ’

F(2) satisfies Fy(Z) = F1(z), and by computation, we

have

)

FQ(Z) = —

9:(C0) = 91(6) + 91 ~ 91 (@)=
(2 = C)(z = Q)G — )
ch(Cl)@ —91(¢)G +1G191(¢1)¢ — 91(G)¢]
(2 = C)(z = (& — 1)
(=S{g1 ()} + {1 (&)=
(2 = C)(z = C)S{G}
69{91(@)21} — G2 {916}
(z-CE-s{ar
where ${-} denotes the imaginary part of a complex

number. Thus F»(z) has real-valued coefficients and
hence g3(z) has real-valued coefficients.

Fy(z)=c

_|_

Now we use mathematical induction. First, without loss
of generality, we assume (; is complex-valued, then we
let (2 = (4, so for the second partial sum, we have

f2(2) = (91, e¢,)B1(2) + (g2, €, ) Ba2(2)
[92(C1) — g1 ()Cu)z + 91(G1) — 92(C1) G
(1—=G2)(1 = ¢y2)

= C y

according to the recursive formula (16), then the coeffi-
cient of z in the numerator in the above

92(¢1) — 91(¢1)G
_9016) ~ 016 + 010G — 916G

<1 -G
_ S{g1(¢)} — S{g1 (&)}
S{G}

is real-valued. And the constant term in the numerator

g1(¢1) — 92(¢1)G
_ 91(6)¢ — 91(6)G + 1611291 ()¢ — 91(61)¢]
G—G
_ S${g1(¢)¢} — 1GPS{g1(C) G}
-S3{G}

is real-valued too.

Second, if to the kth time, the conclusion is correct, that
is, the kth partial sum fi(z) has real-valued coefficients
under the construction: {(;}F_, are either real-valued
or come in conjugate pairs. Then, if (i1 is real-valued,
fr+1(2) must have real-valued coefficients; if (41 is
complex-valued, let (rio = 11, the following is to
show the (k + 2)th partial sum fj12(2),

k+2

frr2(2) = Z@h e))Bi(2),

=1

has real-valued coefficients. For the kth partial sum al-
ready has real-valued coefficients, it just need to prove
the sum of (k+ 1)th and (k+ 2)th terms has real-valued
coefficients. Computation gives

(Gh+15 1) Brr1(2) + (ghr2, ehr2) Brra(2)

k
1—[Ces]? z—=G
= ——=——gr+1(Cht1) =
1—Cry12 11;[1 1-¢;
k1
1 — [Cotal? z =G
+ —=—gr+2(Crs2) =
1= Cppo% g 1-¢;
k
z—(
=F() [[ —=.
el B
where
1 — |Crs1]?
F(z) = 7|7 +1l gr+1(Cr+1)
1= (g2
1-— 2 z—
Mgk+2@k+2)&~
L= Cpio2 1 — (12

Then from the proof given in the previous step, F'(z) has
real-valued coefficients. Consequently, fi12(z) has real-
valued coefficients. Mathematical induction gives the de-
sired result. The proof is complete.

4.2 Analysis with noise

With the noise incorporated, the first approximation in
our two-steps algorithm becomes

F(z) = fn(2) + Vn(2), (21)

where fN(z) is the first step approximation to the true
function f(z),

_ 27 Wi
=g [ Bt

= de’”, (22
217 Jo e (22)



and Vy(z) is the approximation to the noise, denote
v(W) = 3% VkXk(,) (W),

_ 2w vlw )
Vn(z) = ! /0 Ki)dej“. (23)

7?]’ eIv — 2z

We first assume that the noise is deterministic and
bounded, |vg| <€, € > 0. There is

1 2 9 1
ol = (5= [ Pt <

Then we have the following result.

Theorem 5 Let f(2) be in A(D), the disc algebra. Given
the measurements { Ey }N_, with bounded noise |vx| < e,

e > 0. If fn(2) is the obtained nth partial sum to f(z)
(21) by AFD method. Then the approzimating sequence
fn(2) has the following property:

L dmf = fullm =0 (21)

e—0

Proof. By inserting the limit term, we have

If = fall < W = Fllae +1F = fulls,
< ”f - fN||H2 + ||VNHH2 + Hf - fn”Hz'
The Hardy space theory implies that the Hy norm is

dominated by the Lo norm of the boundary data. De-
noting by C the Cauchy integral operator, we have

If = Fvllm = 1C(f) = €O FE )Xy ()
k
<= FE ) Xy ()l o
k

By the same reasoning, we have

IVallm, < lvllz, <e (25)

Meanwhile, the adaptive approximation for fimplies
lim [|f = follm, = 0.
n—oo

By passing the limit N,n — oo and € — 0, the proof is
complete.

For the stochastic case, we define

Hy(D, M)

={f € Hy(D): f =Y dyec,,ec, €D, > |dy| < M},
k=1 k

where 0 < M < oo, D = {eg,} is the dictionary and
{di}72, are the related coefficients [10]. The following
result holds.

Theorem 6 Let f(z) € A(D), {Ex}Y_, be the frequency-
domain measurements corrupted by stochastic noise

{vi} with zero-mean and Elvg|? < 02 < oo. If f(2) is in
Hy(D, M), then the obtained nth partial sum f,(z) by
AFD satisfies

M2
Bllf — fullf, < k() +40% 427 (26)
where
wn(f) = sup |f(e?@rae)) — f(e)).
[dw|<|wky1—wk]
1<k<N

Proof. By inserting middle terms, we have

< 2E|f — fli#, + 2E|f — fallf,
<Af = Fnllin, +4ENVN I, +2EIf = fallf,- (27)

For the first term of (27), from the proof of Theorem 5,
we have

1f = Il < IF =D FE)xn 3,
k
< wi (f)-

Noting that [v|* = ", |vk|*Xk(.,)(w), we have

E|[Vy |7, <Elvi,
1 27
< E—/ lv|?dw
2T 0

1 27
= —/ E|v|?dw
27 0

1 271' 2
=5 ; zk:E|vk| Xie(-,) (w)dw

1 2m

According to [10,31], if f(z) € Ha2(D, M), then

M

1f = fall2 < 7



Therefore

BIF - fuld= [ 1708 — £l ©)3du(©

o0 M2
s[m7;w&)
M2

)
n

where p(+) is the probability measure. Thus, the proof is
complete.

Note that on the right side of the result (26) the first term
goes to zero as N goes to infinity because the maximum
frequency gap tends to zero. The third term goes to zero
as n goes to infinity. The middle term remains constant,
that is, mean-square-error bound attributed to noise is
constant.

Remark 7 Forthe pointwise convergence aspect, we cite
a result showing that the TM system expansion are of the
same nature as Fourier expansions [3].

Let A(D,., K) denote the space of functions analytic in
the disc with radius r > 1 and bounded by K < oo in the
area, then [3] showed that the partial sums of any rational
orthogonal bases (6), satisfying the Szdsz condition (7),
pointwisely converge to the system with an exponential
convergence rate.

Precisely, if f(z) € A(D,, K), the remainder of adaptive
decomposition Ry (z) (14) in section 3 satisfies

k
BT ep(- T2 S0~ Il (29)

=1

1Bk ()l <

We thus observe that if f(z) is continuously extendable
to outside the closed unit disc and the selections of the
Ck satisfy 1 — |Cx| > d > 0, then the Lo, norm of the
remainder is exponentially decaying.

It is proved in [10,31] that the decay rate of the standard
remainder of AFD (14) is the negative square root of
the corresponding partial sum order. The result is sharp
because it deals with the worst cases without assuming
smoothness of the boundary function.

Remark 8 As guaranteed by the convergence Theorem
2, the alteration should stop after certain steps. The con-
vergence rates proved for the general greedy algorithm
are, in fact, rather modest (28). There is no theoretical
result to guarantee that for a given system function in
Hy the convergence of AFD is faster than any specific
but determined TM system, including Fourier series. The
energy effective algorithm, however, implies a practical
algorithm for the best approximation to a Hardy space

function by rational functions of a certain degree or less

5 Example

In this section we give an example for the algorithm
described above. We work on the system considered by
[24]:

272(0.03552 + 0.0247)
(z —0.9048)(z — 0.3679)

Applying the transformation z — 1/z to G(z) we have

G(z) = (30)

23(0.0247z 4 0.0355)

f(2)=G(1/z) = (1 —0.90482)(1 — 0.3679z2) B

Here we use the values m = 300,500,600, 800, 1000
frequency-domain measurements, respectively, in the
interval [0, 7) corresponding to a half circle that, in fact,
represent N = 2m points on the full circle. By using the
adaptive algorithm we obtain the nth partial sum f,(2)
with n components, and G, (z) = f,(1/z).

Table 1
Modified greedy sequences in the disc.
¢1 ¢2 ¢3
m =300 | 0.9517 | 0.7145 —0.2959; | 0.7145 -+ 0.2959;
m =500 | 0.9525 | 0.7145+ 0.2916j | 0.7145 — 0.2916;
m =600 | 0.9533 | 0.7145+0.2959; | 0.7145 — 0.2959;
m =800 | 0.9533 | 0.7137 —0.2956j | 0.7137 + 0.2956;
m =1000 | 0.9542 | 0.7152 — 0.2963j | 0.7152 + 0.2963;
Table 2
Continued modified greedy sequences in the disc.
Ca ¢s ¢6
m =300 | 0.9258 | 0.3525 — 0.6743j | 0.3525 -+ 0.6743;
m =500 | 0.9225 | 0.3537 +0.6680; | 0.3537 — 0.6680]
m =600 | 0.9233 | 0.3529 — 0.67505 | 0.3529 4 0.6750;
m =800 | 0.9225 | 0.3564 — 0.67315 | 0.3564 4 0.6731;
m =1000 | 0.9225 | 0.3529 — 0.67505 | 0.3529 + 0.6750
Table 3
Greedy sequences selected in (—1,1).
¢1 ¢2 ¢3 Ca ¢s
m =300 | 0.9519 | 0.5900 | 0.9479 | 0.2653 | 0.8940
m =500 | 0.9529 | 0.5915 | 0.9469 | 0.2658 | 0.8945
m =600 | 0.9534 | 0.5910 | 0.9469 | 0.2658 | 0.8955
m =800 | 0.9534 | 0.5930 | 0.9464 | 0.2653 | 0.8950
m =1000 | 0.9539 | 0.5920 | 0.9464 | 0.2653 | 0.8959

The frequency responses of FIR model, Laguerre model
and our method are compared in figure 1 and figure 2. In
all the subfigures the solid lines are the original system
G(z). In figure 1, the three on the first row 1(a), 1(b),
1(c) give the frequency responses of the 4th order, 7th
order and 19th order FIR model, respectively. While the
1(d), 1(e), 1(f) in the second row of figure 1 give the
frequency responses of the 4th order, 7th order and 10th
order Laguerre model with a = 0.3879, a = 0.9048 and
a = 0.7165, respectively. In figure 2, the three on the



01 _ — — —FIR-4th PN

imag
imag

0.2
e
— — — FIR-7th 01

—GC
— — — FIR-19th

imag

-0.2 0 0.2 0.4 0.6 0.8 1 -0.2 0
real

(a) 4th order FIR model

(b) 7th order FIR model

0.2 0.4 0.6 0.8 1 -0.2 0 0.2 0.4 0.6 0.8 1
real real

(¢) 19th order FIR model

Original system 02
o ~ — —a=03679

: ~ —a=0.9048 01
a=0.7165

imag
imag

Original system
- - —a=03679 01
— — a=0.9048
a=0.7165 0

Original system
- - —a=0.3679
——a=0.9048
a=0.7165

imag

-0.2 0 0.2 0.4 0.6 0.8 1 -0.2 0
real

(d) 4th order Laguerre model

Fig. 1. Frequency responses of fixed-pole models:
a = 0.3879,0.9048,0.7165.

Table 4
Continued greedy sequences selected in (—1,1).
Ce ¢r (8 Co ¢10
m =300 | —0.2430 | 0.6955 | —0.4585 | 0.6564 | —0.4983
m =500 | —0.2440 | 0.6930 | —0.4560 | 0.6668 | —0.4924
m =600 | —0.2440 | 0.6935 | —0.4560 | 0.6682 | —0.4909
m =800 | —0.2450 | 0.6920 | —0.4545 | 0.6737 | —0.4892
m =1000 | —0.2445 | 0.6925 | —0.4540 | 0.6742 | —0.4882
Table 5

Greedy sequences selected in (—1, 1) using data with added
noise.

¢1 C2 ¢3 Ca &3
m = 300 0.9568 0.5940 0.9440 0.2713 0.8786
m = 500 0.9568 0.6009 0.9499 0.2430 0.8643
m = 1000 0.9544 0.6014 0.9454 0.2713 0.9058
Table 6

Continued greedy sequences selected in (—1,1) using data
with added noise.

Co ¢7 ¢s Co ¢10
m = 300 —0.1880 0.7752 —0.2620 —0.9000 0.2930
m = 500 —0.2245 0.7158 —0.2420 0.9747 0.6831
m = 1000 —0.2835 0.6509 —0.4130 0.6623 —0.4410

first row 2(a), 2(b), 2(c) give the frequency responses of
the 4th order, 5th order and 7th order systems of our
method, respectively.

The figures show that we have better approximations

(e) 7th order Laguerre model

FIR model and Laguerre

0.2 0.4 0.6 0.8 1 -0.2 0 0.2 0.4 0.6 0.8 1
real real

(f) 10th order Laguerre model

model with priori-known knowledge

to the original system with the AFD algorithm. For the
FIR model, even the 19th FIR model is unsatisfactory.
The Laguerre model looks better than the FIR model.
However, from 1(d), 1(e), 1(f) in figure 1, we can see
when a = 0.3679, the frequency response of the Laguerre
model is the furthest away from the original system.
While when a = 0.9048, the curve keeps oscillating. This
motivates adaptive selection of poles.

Table 1 and Table 2 are the listed modified greedy se-
quences in the whole disc. Table 3 and 4 list several of
the greedy sequences selected in the interval (—1, 1). The
pictures in figure 2 are the 4th, 5th and 7th partial sums
by the two different choosing of the optimal points, re-
spectively.

When noise is incorporated, assume that the frequency-
domain measurements are sampled with added Gaussian
noise with SNR = 20. In the first row of figure 3, the
red dots are the data with noise, while there are the 4th
order, 5th order and 7th order approximating partial
sums by our method in the second row of figure 3. It
shows that this method is efficient in dealing with noise.

As mentioned before, the first step approximation can
use other methods other than the Cauchy integral one.
Approximations, for instance, may be referred to [11].
In this paper, we use the Cauchy integral approach in



0.1 — — —m=300 0.1

imag
imag

—G
- — —m=300 0.1

~ — — —m=300
— — m=500

imag

-0.2 0 0.2 0.4 0.6 0.8 1
real

(a) 4th order partial sum

0.2

(b) 5th order partial sum

0.4 0.6 0.8 1 -0.2 0 0.2 0.4 0.6 0.8 1
real real

(¢) Tth order partial sum

01 —0
— — —m=300 01

imag
imag

—G

— — —m=300 0.1 — — —m=300

imag

(d) 4th order, real-valued poles

0.2

(e) 5th order, real-valued poles

0.4 0.6 0.8 1 -0.2 0 0.2 0.4 0.6 08 1
real real
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Fig. 2. Frequency responses with the AFD algorithm used: in the first row, modified greedy sequence is used, while in the
second row, the greedy sequence selected in the interval (—1,1) is used, m is the number of data.

step 1 just for easy illustration. The main establishment
is the adaptive use of AFD algorithm for approximation
of considered systems, that gives experimental results.

6 Conclusion

So far, there can be said to have 3 usages of the rational
orthogonal system {8y} in system identification. One is
the FIR model that is without any previous knowledge
on the poles of the system, while the poles of {B;} are
all chosen to be zero. The second is the Lagurre model,
Kautz model and the generalized model in which the
poles of the true system are used as the poles of {By}.
The last one is to adaptively select the poles of {By}
according to the frequency domain measurements.

In general, a rough choice of the poles for the basis
functions will lead to a large number of basis functions
than what are required. With sufficiently many sam-
ple points, by using the proposed adaptive algorithm,
one can consecutively obtain a greedy sequence defining
the approximating orthogonal system. Although the ob-
tained points are not necessarily the true poles, one can
obtain functions approaching to the transfer function in
great efficiency.

7 Acknowledgements

The authors would like to express their sincere thank-
fulness to the two referees. They patiently reviewed the
manuscript and the revised versions and gave many
detailed constructive suggestions. Especially, to answer
their challenging questions is to better understand the
subject. The authors also wish to thank Brett Ninness
and Feng Wan for their support and helpful discussions
on this study.

References

(1] Akgay, H. (2001). On the uniform approximation of discrete-
time systems by generalized Fourier series. IEEE Trans.

Signal Process., 49, 1461-1467.

Akgcay, H., & Ninness, B. (1999). Orthonormal basis functions
for modelling continuous-time systems, Signal Processing, 77,
261-274.

Akgay, H., & Ninness, B. (1998). Rational basis functions
for robust identification from frequency and time domain
measuements. Automatica, 34, 1101-1117.

Akgay, H., & Ninness, B. (1999). Orthonormal basis functions
for continuous-time systems and L, convergence. Math.
Control, Signals Systems, 295-305.

Billings, S.A., & Wei, H.L. (2008). An adaptive orthogonal
search algorithm for model subset selection and non-linear
system identification. Internat. J. Control, 81, 714-724.

2]

(4]

(5]



—o
data with Gaussian noise(m=300)

imag
!
S
N

G
data with Gaussian noise(m=1000)

—o
data with Gaussian noise(m=500)

imag

real

(a) Data with noise

0.2

(b) Data with noise

04 12 12

real

0.6 0.8 1 0.2 0.4

real

0.6 0.8 1

(¢) Data with noise

imag
imag

—G
— — —m=300

imag

0.4
real

(d) 4th order partial sum

0.2

(e) 5th order partial sum

0.6 0.8 1 0.2 0.4

real

0.6 0.8 1

(f) 7th order partial sum

Fig. 3. 3(a),3(b),3(c) show the data added noise, while 3(d),3(e),3(f) give the relevant 4th,5th and 7th order adaptive approx-
imation with AFD algorithm using the noised data, m is the number of data.

[6] Bultheel, A., & Gucht, P.V. (2000). Boundary asymptotics
for orthogonal rational functions on the unit circle. Acta
Appl. Math., 61, 333-349.

Bultheel, A., & Carrette, P. (2003). Fourier analysis and the
Takenaka-Malmquist basis, Proceedings of the 42nd IEEE
Conference on Decision and Control, 09/01/2004; 1:486- 491

Vol.1.

Cluett, W., & Wang, L. (1992). Frequency smoothing using
Laguerre model. Proc. IEE-D, 139, 88-96.

Davis, G., Mallat, S., & Avellaneda, M. (1997). Adaptive
greedy approximations. Constr. Approx., 13, 57-98.

Devore, R.A., & Temlyakov, V.N. (1996). Some remarks on
greedy algorithm, Adv. Comput. Math., 5, 173-187.

Gu, G., & Khargonekar, P.P. (1992). A class of algorithms
for identification in H, Automatica, no.2, 28, 299-312.

Gucht, P.V., & Bultheel, A. (2003). Orthonormal rational
functions for system identification: numerical aspects. IEEE
Trans. Automat. Control, 48, 705-709.

Heuberger, P.S.C., Van den Hof, P.M.J., & Wahlberg,
B.(Eds.) (2005). Modelling and Identification with Rational
Orthogonal Basis Functions. Springer, London.

[7]

(8]
(9]
(10]
(11]

(12]

(13]

[14] Hunt, R.A. (1968). On the convergence of Fourier series,
orthogonal expansions and their continuous analogues. Proc.
conf. Edwardsville, 111. pp. 235-255; Southern Illinois Univ.
Press, Carbondale, I11.

King, R., & Paraskevopoulos, P. (1979). Parametric
identification of discrete time SISO systems. Internat. J. of
Control, 30, 1023-1029.

[16] Li, C.J., & Andersen, S.V. (2007). Efficient blind system
identification of non-Gaussian autoregressive models with

(15]

10

HMM modeling of the excitation. IEEE Trans. on Signal
Processing, 55, 2432-2445.

[17] Ljung, L. (1999). System Identification: Theory for the User,
Second Edition. Prentice-Hall, Inc., New Jersey.

(18] Longman, R., & Phan, M.Q. (2006). Iterative learning control
as a method of experiment design for improved system
identification. Optimization Methods and Software, 21, 919-
941.

[19] Ma&kila, P. (1990). Approximation of stable systems by
Laguerre filters. Automatica, 26, 333-345.

[20] Makila, P. (1990). Laguerre series approximation of infinite
dimensional systems. Automatica, 26, 985-995.

[21] Makild, P. (1991). Laguerre methods and H° identification
of continuous-time systems. Internat. J. Control, 53, 689-707.

[22] Nurges, 0. (1987). Laguerre methods
in problems of approximation and identification. In Adaptive
systems, Plenum, 346-352. Translated from Avtomatica i
Telemekhanika, 3(March 1987), 88-96.

(23] Ninness, B. (1996). Frequency domain estimation using
orthonormal bases. In Proceedings of the 13th IFAC World
Congress, 381-386.

[24] Ninness, B., & Gustafsson, F. (1997). A unifying construction
of orthonormal bases for system identification. IEEE Trans.
Automat. Control, 42, 515-512.

[25] Ninness, B., Hjalmarsson, H., & Gustafsson, F. (1997). The
fundamental role of general orthonormal bases in system
identification. IEEE Trans. Automat. Control, 44, 1384-1406.

[26] Oliveira e Silva, T. (1996). A n-width result for the
generalized orthonormal basis function model. In Preprints



of the 13-th IFAC World Congress, volume 1, 375-380, San
Francisco, USA.

[27] Partington, J.R. (1997). Interpolation, Identification, and
Sampling, Oxford University Press Inc., New York.

[28] Pintelon, R., Guillaume, P., Rolain, Y., & Schoukens, J.,
Hamme, H.V. (1994). Parametric identification of transfer
functions in the frequency domain-a survey. IEEE Trans.
Automat. Control, 39, 2245-2260.

[29] Qian, T. (2009). Intrinsic mono-component decomposition
of functions: An advance of Fourier theory. Mathematical
Methods in Applied Sciences, DOI:10.1002/mma.1214.

[30] Qian, T., & Wang, Y.B. (2010). Adaptive decomposition into
basic signals of non-negative instantaneous frequencies - a
variation and realization of greedy algorithm. Adv. Comput.
Math., DOI:10.1007/s10444-010-9153-4.

[31] Qian,T., & Wang, Y.B (2011). Convergence rate of Adaptive
Fourier Decomposition. Submitted to J. Math. Anal. Appl..

[32] Qian T. & Wegert E. (2010), Best Approximation by Blaschke
Forms and Rational Functions of a Finite Degree, accepted
to appear in Complex Variables and Elliptic Equations .

[33] Sandberg, H., Lanzon, A., & Anderson, B.D.O. (2007).
Model approximation using magnitude and phase criteria:
Implications for model reduction and system identification.
Int. J. Robust Nonlinear Control, 17, 435-461.

[34] Szdsz, O. (1953). On closed sets of rational functions.
Annali di Matematica Puru ed Applicata, Serie Quarta-Tomo
XXXXIV:195-218, 1953.

[35] Tan, L.H., & Zhou, C.Y. (2010). The point-wise convergence
of general rational Fourier series. accepted by Math. Meth.
Appl. Sci..

[36] Troutt, M.D., Tadisina, S.K., & Sohn, C., Brandyberry, A.A.
(2005). Linear programming system identification. Fur. J.
Oper. Res., 161, 663-672.

[37] Troutt, M.D., Brandyberry, A.A., & Sohn, C., Tadisina,
S.K. (2008). Linear programming system identification: The
general nonnegative parameters case. Eur. J. Oper. Res., 185,
63-75.

[38] Vries, D.K.de, & Van den Hof, P.M.J. (1998). Frequency
domain identification with generalized orthonomal basis
functions. IEEE Trans. Automat. Control, v.43 No.5, 656-
669.

[39] Wahlberg, B. (1991). System identification using Laguerre
models. IEEE Trans. Automat. Control, AC-36, 551-562.

[40] Wahlberg, B. (1991). Identification of resonant systems using
Kautz filters. In proceedings of the 30th IEEE Conference on
Decision and Control, 2002-2010.

[41] Wahlberg, B. (1994). System identification using Kautz
models. IEEE Trans. Automat. Control, AC-39, 1276-1282.

[42] Wahlberg, B., & Makila, P. (1996). On approximation of
stable linear dynamical systems using Laguerre and Kautz
functions. Automatica, 32, 693-708.

[43] Walsh, J.L. (1965). Interpolation and approzimation by
rational functions in the complex domain. American
Mathematical Scienty, Fourth edition.

11



