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Abstract This paper deals with the boundary value properties and the higher order
singular integro-differential equation. On Stein manifolds, the Hadamard principal
value, the Plemelj formula and the composite formula for higher order Bochner—
Martinelli type integral are given. As an application, the composite formula is used
for discussing the solution of the higher order singular integro-differential equation.
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1 Introduction

As it is know, the limit value formula plays an important role in the study of the
singular boundary problem. The existence and multiplicity of the solutions for such
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problems have received a great deal of attention. Early in 1957, Qikeng Lu and Tongde
Zhong initiated the study of the boundary properties of the singular integral with
Bochner—Martinelli kernel. They obtained the Plemelj formula of a singular integral on
a bounded domain with CY smooth boundary in C" [1,2]. Later, on a relatively com-
pact domain with C") smooth boundary in Stein manifolds, Tongde Zhong obtained
the Plemelj formula of the Bochner—Martinelli type singular integral [3]. In 2001,
Tao Qian and Tongde Zhong gave a new Hadamard principal value definition for the
higher order Bochner—Martinelli type singular integral on a closed smooth orientable
manifold in C”", they obtained the Plemelj formula and the composite formula [4]
of the higher order singular integral. In 2008 and 2010, we have some works deal
with the higher order singular integral and singular integral equation [5,6]. The aim
of this article is to generalize the above results to the higher order singular integral
on Stein manifolds. Since the structure of the manifold is complicated, we should use
special techniques to solve an integro-differential equation on this area. Here, the key
point of our process is to introduce the localization method and the biholomorphic
mapping. Then, on Stein manifolds, the Plemelj formula and the composite formula
for higher order Bochner—Martinelli type integral are given. As an application, the
composite formula is used for discussing the solution of the higher order singular
integro-differential equation.

This article is organized as follows: Sect.2 is devoted to preliminary knowledge,
notation and terminology. In Sect.3 we devote ourselves to the Hadamard principal
value, the Plemelj and the composite formula for higher order singular integral on
Stein manifolds. In Sect.4, we describe the regularization method, draw conclusions
for higher order integro-differential equation on Stein manifolds.

2 Definition and Preliminary Knowledge

In this section, we introduce some necessary definitions for proving the main theorems
of this paper in Sects.3 and 4. It is known that Henkin and Leiterer [7] extended the
famous Bochner—Martinelli formula from C” to Stein manifolds. In this paper, what
we shall be working with is a generic Stein manifold, denoted by M. Suppose that
T (M) is a complex tangent vector bundle and 7*(M) is a complex cotangent vector
bundle defined on M, T(M x M) and T*(M x M) are pullbacks of T (M) and T*(M).
Under the pullbacks, M x M — M and (z, §) — z respectively, holomorphic section
S(z,E) : M x M — T(M x M) generates the analytic sub-sheaf of sheaf p7x /9,
that is

(i) For every z € M,
S(z,2) =0.
The mapping
S(z,1): M — T(M)

is biholomorphic in some of the neighborhoods of z.
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(i) For every z # &,

S(z, &) #0.
S(z,6) =0 S(z, &),

mapping
o :T(M x M) — (T)*(M x M)

is equivalent to the mapping in C".

Let D be a relatively compact domain, whose boundary is C" smooth or CV) piece-
wise smooth. We adopt the following definition [7]:

Definition 2.1 [7] Suppose thatv > 2xn and (S‘, k) is aLeray section about (D, S, ¢),
the expression

(=D S)wg(i(z,S)Aws(S(z,E))LQ( b 5.5) o
@iy ¥ sScoz Y '

is called a Bochner—Martinelli kernel on the Stein manifold,
where

0y (5(z,8) = D (=D S5dSiA- - [dSiIA- - dS,,
k=1
a)g(S(Z, &) = dESl/\ BERIAN d;Sn,

norm |S(z, £)|s = (S(z, &), S(z, “;‘))% is an Euclidean measure, ¢(z, &) is a holomor-
phic function on M x M.
From the proof of the Theorem 4.12.1 in [7] and [8], obviously, we have the
following results
(1) In D CC M, there are isolated singular points whose orders are 2n — 1.
(2) Forevery z,£ € M and £ # z, function ¢* || S || 52 is C?.
(3) When integer v > 2n«, for every fixed point z € M and § € M\{z} , formula
2.1)isCcD.
(4) Foreveryze M, ¢(z,z) = 1.

Definition 2.2 Suppose that D is a relative compact domain on Stein manifold M,
f (&) is a function defined on the boundary d D, then

F(E)Z/f($)9(<p”,5(§,$),5(§,§)), ¢edD (2.2)

0 D¢

is called a singular integral. If f (&) satisfies the Holder continuity condition, the
principal value of the integral exists. The Cauchy principal value can be defined as
follows [3]
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V.P.F() = gf}) / FEQe", S, &), 5(.8), ¢ €D, (2.3)
25,8

where

¥5(6,8) =0Ds —05(8, &), 05(8,8) =0Dg N Bs(¢), Bs(¢) ={z:1z—¢| <d}.

3 The Hadamard Principal Value and the Composite Formula for Higher
Order Singular Integrals on Stein Manifolds

In the following, we should first study the higher order Bochner—Martinelli type inte-
gral on Stein manifolds of the form

Sk(z, &) .
——22 Q0" (z,8)S(z, &), S(z, , 3.1
a{ f($)|S(Z’E)|2 (¢"(2,€)5(z, &), S(z, &) 3.1

where f is a differentiable function defined in a neighborhood of the boundary 9 D.
On the boundary 9D, the first-order derivatives of f satisfy the Holder continuity
condition, here the exponent @ > 0. For simplicity we denote this function class by
Hi(x).

Lemma 3.1 Suppose that f € Hi(«a), B(¢, ) is a neighborhood of ¢ € dD, for a
sufficient small radius §, we have

(E3) ) -
Q LE)S(L, 8), S,
/ f(&)w(g’g)‘2 (9"(¢.6)5(,6). 8. 8)
9D\ B(¢,5)

1 A
=-—C, / LF ()¢ (¢ §)]
3(OD\B((,8))

5 S DTS O D TS A A S I A - AdSy AdSEA - ALSFIA - A dS,

1S, &)
. X
G / dLF©)9" (€, )] -
ID\B(Z,9)
S DTS O D TS A A S I A - AdSy AdSEA - ALSFIA - AdS,
. 1@, B ’

3.2)

where C,, = Eg;il)),,!.

Proof To show the identity we first carry out some differential computation, as follows.

J S DTS @ B DS A AASIA - AdSy AdSI A ALSTTA - AdS,
1S, &)[%
4 [ S DTS @ O S A ATSIA - AdSy AdS A ATAST A AdS, ]

(5,88, &)1
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= (IS SE O "TVSE, 6 D (—1)/ 715, o) A

=
A= L A A dS, AdSTA - ATASSTA - AdS,

FEmISEESE OIS 6 D (D718, 8) A
j=1
AEDE =D g A A [AS A - dSy AdSL A+ A AdS,
1 n .
+ - —1 =1 —1 k=1,
[S(¢, 88, &)1 JZ:%( ) =
x(=D"HTAS A - A[ASKI A AdSy AdST A AdS)A - AdS,
b_"k((yé)zzle(—l)j’lsj(;“,E)dSl A AdSy AdSI A ATdSjIA - AdS,

= IS )P
e F (DRSS, E)ASI A ATASEI A - AdSy AdSy A AdS,
" 5@, &)
S (=DEAS A AASE I A AdSy AdSE A A S,
o ISC. O
3 Se@ &) D (DTS E)dSi A AdSy AdSI A ATASIA - AdS,
B 1Sz, &) +2
n S E DR AS A ALASKIA - AdSy AdST A - AdS,
(- ==Y
IS(g, £)2+2
N Z';-=l(—l)k+”dS1/\»--/\[dSk]/\---/\dSn/\dS'l/\---/\d.S:,,
" ISC. O
Cn S@ &) X (=186, )dS1 A AdSy AdSy - ALdSTIA - AdS,
1S(Z, &)|2+2
= (=n) D(3) )
1S, &)Pe" (¢, §)
@' E) I (=118 £)dSy A A dSy AdS A ATASFIA - AdS,
) ISC O
Q@mi)" Si(Z, €) -
=(- Q" 8.9,
s ore S Y
where
I W Gt L E)w;(§(§,f§))Aw;(S(§,$))
©,5,95) =——79¢ (,
Qmi)y" 1S(¢, &)
So,
Sk E) v z
Q LE)S(Z, ), S(¢,
f@)\S(c,E)IQ (©"(£,6)5(£.6),5(,8))
aD\B(Z.5)
1
=_;C71 / [f&)e" (&, 8-

dD\B(¢.6)

(3.3)

o [z';l(l)flij(;, E) (=D dSI A ATdSKI A+ AdSy AdSy A - ATdSIA - A d§,,:|

1S, &)1
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1
--1c, / A[f©)" C.5)

dD\B(¢,8)
DI DTS (DS A ATdSI A - AdSy AdSE A ATdSTA - AdS,
X
1Sz, &)1

1
G / dIfE)6" & 8-
dD\B(¢,8)
S (DTS @ O DTS A ATASII A - AdSy AdST A ATASIA - A S,
x NG '

(34)

By using Stokes’ formula to the first term of the end of the above equality chain, we
immediately obtain the desired formula in the Lemma. The proof is complete. O

Now we consider the integrals on the right hand side of formula (3.2). Suppose
that f is a differentiable function in a neighborhood of the boundary dD. On the
boundary 9 D, the first-order derivatives of f satisfy the Holder continuity condition,
the exponent « > 0. For the first term, the dimension of the integral region is 2n — 2,
but the order of a singular point of the integrand is 2n — 1, so this integral is divergent.
The second integral exists in the sense of the Cauchy principal value. In relation to
the idea of the Hadamard principal value, we have

Definition 3.2 Suppose that D is a relatively compact domain on a Stein manifold M,
function f belong to H;(«) on d D. We define the Hadamard principal value

Sk(g,§) <
FP Q(p"(£,8)8(¢, 8), S(¢,
a! JO g R € D566, 5. ©)
(3

1
—rvlc, / dif ©)0" €. )]
aD
S DTS D AS A A ST A AdSy AdS A AASTA - AdS,
x 1S(g, &) .

(3.5)

Since the above definition throws away the divergent part of the higher order singular
integral and only keeps its finite part of the integral, we can simplify our computation,
and use the result of the Cauchy principal value directly.

Remark When the Stein manifold is just the space C", now S(z, £) = & —z. Our defini-
tion above reduces to the Hadamard principal value in C" (refer to Definition 1 of [4]).

Lemma 3.3 (Composite formula for Cauchy type singular integrals on Stein mani-
folds) Suppose that ¢ (n) € CV (D), it can be holomorphically extended to D, then

_ - 1
/Q(fp”,S(L&),S({,E))/¢(77)Q(90“,S(S, m. SE.m) = 16@). (3.6
aD

0 D¢

For a proof we refer to [9-11].
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Theorem 3.4 (Composite formula for higher order singular integral) Suppose that
D is a relatively compact domain on Stein manifold M, denoted by U (0 D) a neigh-
borhood of a point on the boundary dD. ¢ (n) is holomorphic in U(dD), it can be
holomorphically extended into D, then there holds the composite formula

] See. ) ]
Q(p" (¢, 8), 5(¢,8), S(¢, —2 Q" S, S
/ (", £). 5. 6), S(¢ 5))/‘/’(”)|S<s,n>|2 (¢ 5. 5)
BDg 8D,7
10
— 1@+ E—ﬁg)’ 37)

where 1(¢(£)) is constituted by integrals in the ordinary sense and in the Cauchy
principal value sense (also see formulas (3.38) and (3.39) below).
If we denote

Sp =2 / Q¢", 5(z.£), S(&. £)). (3.8)
BDE
and
S1¢=2/¢(n)91(¢“,5(5,n),5(€,n))=w(é), (3.9)
aD,
where
P Sk(%_v 77) P
Q" 5, 8) = —22_Q(e", S, S),
1(g ) SE. P (¢ )

then the composite formula becomes

ssl¢=4/ sz(so“(;,@,S(:,a,S(c,s))/¢(n)91<¢“<s,n>,5@,n>,S@, )
3Dg 3Dn

10
— 129 L e = s, (3.10)
n 0

This is an integral-differential equation for which we can obtain a unique solution ¢
under appropriate boundary value conditions.

Proof We will prove the Theorem by localization method. We need to compute the
above integrals and the term Q (", S(z, 1), S(z, n)) in a local coordinate. For a fixed
point { € dD, we take § > 0, Vy s C U; is a small coordinate neighborhood of
point ¢, V5 — B+ s = {n* € C" : |n* — ¢*| < &} is a biholomorphic mapping.
Assume that {U} is a local finite cover of M which consist of coordinate neighbor-
hoods, W; = S(¢, ). Denoted by H; = W (Vs N dD) a hypersurface in B+ s
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which passes through the center {*. When a point z € V; s N D tends to ¢ sufficiently
along a non-tangential direction, there exists a point z* € W;(V; 5 N D) such that

7= W{l(z*).

RN A St .
Dl e (M) A GG 1),
15, P
3.11)

where
S0 = SW ). W),
S ) = SW ), W ), (3.12)

O(*, ) = oW @), W o).

Now we study the relation between the Bochner—Martinelli kernel 2 (¢", 3‘ s S’) (n®)
on the Stein manifold and the kernel Q (7* — z*, n* — z*) in C".
Since

§C,+): Bees X Ber s — T(M x M),
we have

SC.): Boog x Bees — T5(M x M). (3.13)

Let {u;}, {u;} be local coordinates of S,S. u j(z*, n*) are holomorphic functions
defined in the convex region B¢+ s x Bex 5, u(z*, z*) = 0. By division theorem we
can obtain the expression

n
w0 =D vk ) mf = 7). (3.14)
k=1

where yji(z*, n*) is holomorphic for z* and »*. In addition,

(0, )=S0, n") =S, W, ' (/N =W, (W (/") =n" (here S(¢,) = Wp),
(3.15)

when (z*, n*) is in a sufficiently small neighborhood of (¢*, ¢*). We might as well
suppose this neighborhood is B+ s X B+ s,

det (yjx(z*, ") # 0. (3.16)
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By division theorem again, y; can be expressed as

n
yie@ ") =D v 0"z + 8k, (*.0") € Bees x Bees. (3.17)
=1

where 81 = y;x(0, n%).
By formula (3.13)—(3.16) we know kernel (¢", S, S)(r;*) can be expressed as

Q@ S, (") = " (", n)BE* ") + ¢ (5, nHAGH, 1), (3.18)

where the exterior differential formula B does not include dy i, but A includes dy .
From reference [2,7,12,13], we have

|A(Z*, n%) = O(In* — Z*[*~"), (3.19)
_ (n—Dldet(T\Dw (7* — 7 Ao (" — 2%)

T o@riy X v Gi; — 30 — 21
Jok,l

B(z", %) , (3.20)

where I' = y;i(z*, n*), T is a transposition of T
Moreover, we know the difference between B(z*, n*) and the Bochner—Martinelli
kernel Q(7* —z*, n*, —z*) in C" is

IB(z*, ") — QGi* — 25, 0" — 2 = O(n* — 2" 7). (3.21)
In addition, we have estimate
19" (z", n™) = 1| = |@" (2", n") — ¢"(z", 2" = O(In* — 2"]). (3.22)

When z* tends to £€*, we have the following estimates similar to formula (3.21)
and (3.22)

IBE*. 1) — QGi* —E*. n* — €% = O(In* — ") (3.23)
and
6V E*. %) — 1| = O(In* — £¥|). (3.24)
For the kernel

Sk(z, m)

WQ@)M» S(Z? 7)), S(Zv '7))7
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based on the previous knowledge, we have the following relations and estimations

A

Sk(z,m) - Sk oy 2
——=Q(¢", Sz, n), Sz, n) = —=Q@", S, H(n*
SC i (¢", Sz, m), S(z, m) KE (¢ ()

2o ik = 79)
ket Yikvk (7 — 205 — 25)

= " (%, n%) > [B(z", n*) + Az*, n™)], (3.25)

S ki — 25
= A | = o(n* — '), (3.26)
‘ | 22k VikVa @) = 2D — 25|
X ik =79 -z
ELEELALEE — B(z*, ") — uﬂ(n — 7 n* =%
‘ | 22 VikVa () = Z) (0 — 29 In* —z*|?
= O0(In* — z*|'™™), (3.27)
19" (2%, %) — 1] = 19 (2%, %) — §* (2%, 25| = O(In* — z*)). (3.28)

When z* tends to £*, under the biholomorphic mapping V; 5 — B+ 5, we also have
the estimates in the local coordinate neighborhood of B« s X B+ s

2o Vik(Ts = &) E .
———— B(§,n") — Q* — &, n* —&%)
‘Izj,k,l vikva iy — &5 — 7] 1 | In* — &2 1 1
= 0(n* —&*'™), (3.29)
|o" (€™, n*) — 1| = O(In* — &7)). (3.30)
Let
_ S.(E. ]
F(2) = / Q(¢", 5, 8).5(¢,8)) / ¢(n)ﬁ9(<p“,s(§,n),S(S,n))~
D¢ oD, ’
3.31)
Then
F(z) = / Q(¢", 5(¢,8), 5, 8) + / [@V(z", EM)A(*, &")

§€dD\ Ve snoD E*eH;

+¢" (" E)(B(", §) — Q" — 7%, 6" = 27)

+ (@' E) - DQE* — 75 =)+ QEF -7, 6 — 9]

Sk (&, 1)

5E DF Q" S 1), SE,m)

X / oM ———>
n€d D\Vi .NI D
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no S sk ok
Zj=1 )/jk(ﬂj - Zj)
2kt Vikva Gy = 21 = 2%)

+ / P(n®) [@“(z*, n*) AGE ™)+ ")
n*e€Hg
n SRk ok
y ijl ij(’?j Zj)
2k Vikva G = 2017 = 25)

M — %%

B(z* . n") — ————
n |77* —Z*|2

Q(T_]* _ Z*, n* _ Z*))

]7)* _ Z*
O ) = Do R — =)
—% =%
“;71‘_7;529(17* -t - z*)i| : (3.32)
where
) = oW, (). (333)

When we use the previously recalled estimates, it is easy to find that the first four terms
of both the two brackets in the right hand side of the above expression are proper inte-
grals. The fifth term in the first bracket is a Bochner—Martinelli integral in C", and the
fifth term in the second bracket is a higher order Bochner—Martinelli integral.

For simplicity, we separate the second integral in the first bracket of formula (3.32)
into two parts, one is

/ O, ) = / [V (%, E) AR, £%) + ¢V (2, E¥) (B, &%)
E*EH, EreH,
_Q(g*_z*7 %.* _ Z*)) + (@V(Z*, §*) _ I)Q(é‘* _ 2*, é_.* _ Z*)],
(3.34)

the other is

QE -6 -2,
E*eH,

we also separate the second integral in the second bracket of formula (3.32) into two
parts, one is

/ dHW (%)
n*€Hg

2o ik —79)

= S | 9"z, ") — A, 1) M (25, %)
/H >kt Vikva Gif =2 (rf—2%)
n*eHg . ‘
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X( DI VI p e TR o n*_z*))
2k Vikva (i =25 =25) In* —z*|? ’

ﬁ*—Z*
+ @) - 1)ﬁﬂ(ﬁ* —z - z*)} : (3.35)

the other is

then formula (3.32) becomes

F(z2) = / Q¢", $(£,8), 8¢, 6) + / (", &)
£€dD\V;, 5N D £ eH,
= = S‘k(é, 77) R
Q * *’ O Q /,L? S , R S ,
+ / (" =758 =2 / ¢(n)|S($,n)Iz (p*, S, m), S, m)
£ eH, n€d D\ V. .NdD

+ / SV 1) + / b =G -2 2
n*eHe n*eHe

Sk(€.m)
ISGE P

- / Q" 5. £). 5. ) / ) Q. 5. ). SE. )

£€OD\V; 5n0D n€ID\ Vi .N3D

+ / Q(¢", 52,8, 5(2,8) / P )W (*, 0%

£€dD\V; 5NdD n* € He

;]Z_zz =% = * *
|77*—Z*|2Q(n -t =7

T / Q" 5(¢.6). SC. £)) / $0r)

£€dD\V; 5NdD n* € Hg

Sk (&, _
+ / (2", £7) / () LS ) Q(¢", SGE.m), SE. M)

. IS, m)I?

£*cH, n€dD\ Ve .NID
+ [ ety [ damweran
E*eHy n*eHg

* ek 2k ﬁz_zlt =% =% % *
+ / (2", £7) / ¢(n)|n*_z*|29(n -0 =2
§*eH; n*eHe

_ A _
+ / QE* -7, 6" — ) / $0m ED o S, 5E0)

IS, ml

E*eH ned D\ Ve NID

+ / QE* -7 & -7 / PV, %)
§*eH; n*€Hg
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+ [ e - [ da >ﬁmﬁ*—z*,n*—z*>. (3:36)

E*eH n*eHg

Suppose that the hypersurface H; = W, (V; s N dD) passes through the origin O,
now we set {* = 0. When z* — 0, recalling the definition of the Hadamard principal
value of higher order singular integrals in C” (Definition 1 in [4]) and using some of
the previous estimates, we have

o) = / Qp", 5(2,8), S(2,8)) / $() -
563D\V5’SQ8D neaD\Vg’gﬂaD
S ) _
=22 QM SE, n), S(E,
S E 2@ SE . SE )
+ / Q" 5. £). S, 6) / $OrIW(O, %)
éEBD\V{‘aﬂaD 17*6]‘]5
_ 18 *
+ / Q(w”,S@,a,S(c,s))w/ ‘gf}")m* 0.7 —0)
£€ID\V; 5NID n* € He k
v [ ey ¢(>|Sf ’)’l)zsz(w“,i@,n),S(s,n))
E*eH; nedD\Vg .NOD
+ / (0, %) / d(*)W (0, n*)
E*eH; n*eHg
+ / <I>(O,$*)PV/ 8";(")9(' —0,7" —0)
E*eH; n*eHs nk
B} S i
+ / QE* — 0,6 —0) / ¢<n*)ﬁm¢“,S(S,m,S(s,n))
E*eH, n€dD\Vz N3 D N
+ / QE* -0, —0) / d(*)W (0, n*)
§*eH; n*eHg
*
+ / Q(E* — 0,6 — )PV / iadg;”)g(‘ 0, 7% —0). (3.37)
E*eH; n*eHg k

By the previous estimates, we see that the first eight integrals in the right hand side
of the above formula are proper integrals and they exist in the sense of the Cauchy
principal value. For simplicity, denoted by 7 (¢ (¢)) the sum of the first eight integrals,
then formula (3.37) becomes

1 8¢(n*)

Q" —0,n* =0).
8nk

D) =1(p(0) + / Q(E*—O,E*—O)PV/
E*eH, n*eHg
(3.38)
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For the second term in the expression (3.38), applying the composite formula for
singular integral with Bochner—Martinelli kernel in C” (refer to 4, 6 and 8), we have

n ong T &k

£*cH, n*eHe
(3.39)

The proof is complete. O

Remark In particular, when the Stein manifold M is just the space C", we have that
the section S(z, &) = & — z, and the composite formula (3.7) on the Stein manifold
M becomes the composite formula in the space C" which is

- 10
/K(af)/mn)é"_—n”";K(s,n):—ﬂ. (3.40)

4n 0%k
D¢ oDy,

Comparing the composite formula (3.7) on the Stein manifold with the composite for-
mula (3.40) in C", we find that there is an extra term 7 (¢ (¢)) for the Stein manifold
case that is caused by the difference of the section S(z, &) of the Stein manifold and
the section & — z of C". In local coordinate, the relationship between the coordinate
expression of S(z, &) and & — z isu;(z*,£%) = Doy VK2, E*) (&) — 2f), where
vjk(Z*, ) is holomorphic for z* and £*, this is a nonlinear relationship.

Theorem 3.5 (Plemelj formulas for higher order singular integrals) Suppose that D
is a relatively compact domain on the Stein manifold M. f is differentiable in a
neighborhood of the boundary 3 D and belong to Hy(«) on D. For the higher order
Bochner—Martinelli type integral, we have

F() = /f() Stz ';|)2sz(¢“,§(z, D). SG.m) z€M\OD,  (34l)

when z tends to { € 3D from the inner part or the outer part of D, we have the Plemelj
formulas respectively as follows

k(€. n) a
F;(¢) = FP Q" Sz, ), S,
(@) / AU )|S(§ DB (9", S m), S(&.m)
neoD
=0 1 T3f©) Af (&)
y2 *\ L . _ n
4—f(§)[<p 0,7 1]| 0|2+2n|:8§ + (=1 {1} (3.42)



Higher Order Boundary Integral Formula 461

or

Sk(;ﬂ?) o
F, = FP ———=Q(p", S(¢,n), S(¢,
©) 64) f(n)|S(§’n)|2 (", 8. m), SE&, )
n

——f(s“) [¢"(0, n*)—1]

7 =0 _L[af(:)
2n

8f(é“)
1 n
In* — 02 I Ck b ]

(3.43)

Proof We select a small neighbourhood of ¢ € 9D which is V¢ s, and take a biholo-
morphic mapping Wy = S(¢,-) : Vis = Bers = {n* € C" @ |n* — ¢*| < &}, here
¢* is the center of B¢+ 5. Denoted by H; = W, (V5 N 0D) a hypersurface in B+ ;
which passes through the center of By« s. When z € V; 5N D is sufficiently close to ¢,

there is a point z* € W;(V; s N D) such that z = Wg_l (z*). By the proof of Theorem
3.4 we have

Fo) = / O S’;(Z ’;?29«/)“,5@, n). S m)

Sk (&, m)

S 2w 3@ m. s

= / G

n€dD\ Vi 5N D

A Z”-=1 fjk(ﬁ* —z%)
+ / Fa* | e E* 0% I AGK ) + M Y
2k Vik Vi Gy = 201 = 25)
n*eH;
2 vkt = 25) i
B(Z*,n*)—kiﬂ(n -5 =z
* *
Z]kl)/]kykl(n[ —Zl)(fi _Z) |7) -
R 77 -z _ _
F@H 1) - D@t — 2, pF — 2%
In* — z*|2
—% =t 3
n, —2 _ _
+ M*k_izflzsz(n* - - z*):| . (3.44)

From the estimate formulas (3.26), (3.27), (3.28), (3.29) and (3.30), we find the first
and the second terms of the second integral in the above expression are proper integrals.
Following we consider the third and the fourth terms of the second integral.

The third term is a singular integral with Bochner—Martinelli kernel in C”". For
simplicity we suppose the center of B+ s is at the origin O, so ¢* = 0. When z* tends
to 0, using the Plemelj formula in C", we have

. N T S 7_711(
zl—l>%l+ J)(g (z,n)—l)mﬂ(n -5t =2
n*eH;

0 N *
Q@* —0,n7" —0)

=PV / f(n)(w”(oﬁ)—1)|*_0|2

n*eH;
7 —0

1 4
_ el *Y .
+3FO@ O = D=

(3.45)
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or
lim / f(n*)(@“(z*,n*)—l)hﬂ(n AT AT
n*eH;
_py / Fory@ 0.0 = Dt *—_0|2 @* 0,1 —0)

T[*GH{

——f(O)(¢“(0 n) —1)

-0
¥y '7* - (3.46)

0]’

where £(0) = £(¢).
The last term in formula (3.44) is a higher order singular integral in C". According
to Theorem 1 of [4], we have

11111 f( )mﬁ(ﬁ -5 =29
neH;
-0
_Fp / f(n*) 0|29(n 0,7 —0)
n*eH;
1 /@) L Of ()
_ , 347
+”[3C =D Cli| G4
or
tm [ fo *) Lk Y O
z—0 — |
n*eH;
_rp / Fa ) 0|2 QGi* — 0.7 —0>—2n[8§k +(=1) 8;_1}
n*eH;
(3.48)

Let Hadamard principal value

Sk(;an) '
FP ——=Q(p", S, n), S,
8D/ f(")|S(§, DE (¢", S, m, S&,m)

S‘k(;v 77) o
= —Q M,S 9 7S )
/ f(n)IS(C, DE (0", 8. m), S M)

n€edD\V¢ sNdD

R z";zl )7jk(ﬁ>|f - (_))
+ / F™) | 90, n%) - A0, n) +¢"(0,n")
|: Zj,k,z ij)/kl(’ﬁk - 0)(’77 -0)

n*eH;
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> Pk = 0) 0
x = B0.7") - ——— Q@ —0.7"—0)
2kt Vikvk @ = 0) (% — 0) In* — 0]

i 0 )
+PV / FOm@" 0,7 = Dk Q" — 0, 5" — 0)
7" — 0]
n*eH;
* (-) N *
+ FP f(n) 0|2§2(n —0 =0 |, (3.49)
n*eHg

when we apply the results of formula (3.45), (3.46), (3.47) and (3.48) to formula
(3.44), we have the desired formula (3.42) and (3.43). O

4 Higher Order Singular Integral-differential Equation on Stein Manifolds

Suppose that ¢ (17) is holomorphic in a neighborhood of d D, then the composite for-
mula (3.7) holds. We can accordingly solve the higher order singular integral equations
with the Bochner—Martinelli kernel as follows.

Consider the higher order singular integral equation

aS+bSip =, 4.1
where a, b are complex value constants, S, S; are given by the formulas (3.8) and
(3.9). By Definition 3.2, Eq. (4.1) is a partial differential singular integral equation.

Applying the operator
M =al —bS, Ip=¢ 4.2)
to both sides of the characteristic equation, we have
a’S¢ + abSi¢p — abSS¢p — b>SS1¢ = (al — bS)V,
that is
a(aSe + bS1¢) — abSS¢p — b*SS1¢ = (al — bS)V.
So

ay —abSS¢ — b>SS1¢ = ay — bSy,

(4.3)
aSS¢ + bSS1p = Sy

In Theorem 3.4 (see formula 3.10), we have the results

19¢(¢)

SSp=¢, SSip=1(¢(&)+—
n 8;‘



464 L. P. Chen et al

applying them to (4.3), we have

bo
ap+ b1 + 2228 _ gy 44)
n 9%

where (¢ (¢)) consists of the proper or the Cauchy principal value integrals.
Under certain boundary value conditions we can solve the integral-differential equa-
tion (4.4) for a unique solution of function ¢ (refer to [13]).
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