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Abstract In this paper, starting from a function analytic in a neighborhood of the unit disk and based on
Bessel functions, we construct a family of generalized multivariate sinc functions, which are radial and named
radial Bessel-sinc (RBS) functions being time-frequency atoms with nonlinear phase. We obtain a recursive
formula for the RBS functions in R% with d being odd. Based on the RBS function, a corresponding sampling
theorem for a class of non-bandlimited signals is established. We investigate a class of radial functions and prove
that each of these functions can be extended to become a monogenic function between two parallel planes, where
the monogencity is taken to be of the Clifford analysis sense.
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1 Introduction

Sinc function sinc(t) = Si?t,t € R, introduced by Woodward [14], is fundamental in digital signal pro-
cessing and information theory due to the Shannon sampling theorem for reconstructing a bandlimited
signal [5,8]. The Fourier transform of sinc is the characteristic function of [—1, 1], which is well-known as
an ideal low-pass filter leading to the multi-resolution analysis of Haar and Shannon wavelets [7,15,16].

Shannon sampling holds only for bandlimited signals and as such ones naturally ask whether it is
possible, and if yes, how to construct “sinc functions” for reconstructing non-bandlimited signals by their
samples? This problem of one dimensional case has been completely solved by [2,3]. In this paper, we
focus on the higher dimensional case. Incidentally, our theory has the following three features.

(I) It presents a case where a Shannon-type sampling holds for non-bandlimited signals. Moreover, the
classical Shannon sampling is imbedded in our theory, more details about which can be seen in Example 1
of Section 2.

(IT) The common method to construct a sinc function is tensor product [9,10]. However, the sinc
function in this paper is constructed through time-frequency atoms with nonlinear phases, namely, it
is radial.
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(ITI) Our theory is closely related to analytical signal theory. The notions of the instantaneous ampli-
tude (TA), instantaneous phase (IP) and instantaneous frequency (IF) are used in many applications to
measure and detect local details of a signal. A commonly acceptable approach to define them is through
Hilbert transform, which leads to the theory of analytical signal. An important fact about IA and IP is
as follows. When an IP is taken from the boundary value of a function analytic in a neighborhood of the
closed unit disk, the corresponding IA is in the even-shift-invariant space generated by the integer-shifts
of a generalized sinc function and the even-integer-shifts of the Hilbert transform of the generalized sinc
function [1]. The fact inspires us to investigate the corresponding result in the multivariate case. The
present paper is, to our best of knowledge, the first touch of higher dimensional analytic signals related
to sinc functions. Our theory offers a potential in applications such as designing filters.

Our main idea is sketched as follows. We divide R into a cascade collection of the annulus {S,, : n€Z, }
defined by

Sy = Bont1) \ B(o.n) (1.1)

with B0y = () and B(0,0) being the ball in R? centered at 0 with radius 0. We define even functions
such that they are piecewise constants in {S,, : n € Zy}. These constants correspond to the coefficients
of power series expansion of a function analytic in a neighborhood of unit circle. Now the generalized
sinc function is defined to be the Fourier transform of the piecewise constant function mentioned above,
where the Fourier transform of any f € L?(R?) is defined by

f©)=@n)t [ ft)eEPat, ¢eR?
]Rd

with

d
(&t) = ijtj,
j=1

for &€ = (&1,...,&4),t = (t1,...,tq5) € R We will see in Section 3 that the generalized sinc functions are
closely related to Bessel function. For better understanding the generalized sinc function, we need more
details about the Bessel function. Recall that the Bessel function J,(z), a € C, is defined to be

o 1 k 2/2 a2k
Jo(z) = kz_o (k!F)(k(+/a)+ o F€ C (1.2)

with I" being the Gamma function on C. It is well known that J,(z) satisfies Bessel’s differential equation

d’y | dy
2 2 _ 2\, _
de2+de+(z —a“)y =0.

For a complex number a with Re(a) > —1/2, it holds that

_ (2/2)* /’T 20
Jo(z) = r(1/2)T (0 +1/2) , cos(z cos f) sin™ 6d6.
In particular,
2 1
Jpy1(z) = \/ (—=1)"z" 2D (sinc(2)) (1.3)
2 ™
with the operator D defined by
D — 1d
YT otat

Readers are referred to [13, 3.1.8, 3.1.1 and 3.3.1] for more materials on a Bessel function.

We need more notations for convenient narration. If f € L?(R%) and supp fc B(0,0), then f is
called a bandlimited function with bandwidth o. Denote the set of positive integers by N and the one of
nonnegative integers by Z,. Let N,, = {1,2,...,m} and Z¢ be the d-dimensional integer lattice. The
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unit sphere in R is denoted by S4~1 = {x € R? : |z| = 1}, where | - | = (-,-)}/2. A function f(t),t € R,
is said to be radial if there exists a univariate function F(r),r € [0,00), such that f(t) = F(|¢|) for any
t € R

The structure of this paper is organized as follows. Two approaches are given in Section 2 to construct
generalized sinc functions in univariate case, one is Fourier transform approach, the other is boundary-
value approach of analytic function. Section 3 aims at constructing radial-Bessel-sinc functions and
addressing their properties. Since they are dimensionally dependent, we establish a recursive formula in
odd dimensional case. In Section 4, generalized sinc functions are applied to the linear time-invariant
system and sampling for multivariate non-bandlimited signals. A Clifford monogenic extension result for
generalized sinc functions is established in Section 5.

2 Two approaches to construct univariate sinc functions

Definition 2.1.  Let R(A) be the set of functions analytic in some neighborhood of the closed unit
disk A, real-valued on the real axis and normalized such that any G € R(A) satisfies G(1) = 1 and
G'(1) # 0, where A is the open unit disk.

For any G € R(A), define a complex-valued function g by

then introduce functions ug and ve on R via the boundary value on R of g(2) by
g(t) = uc(t) +ive(t), teR. (2.2)

The fact that G being analytic in some neighborhood of A leads to a power series expansion

G)= Y gt (23)

kEZy

with gy, real for k € Zy. It is easy to check that there exists constants ¢ (> 0) and A € (0, 1) such that
for any k € Z,, it holds

| < A,

namely, the sequence {gi : k € Z;} decays exponentially. Now ug and vg can be also expressed by

va(t) = Z grsin(kt), wuqg(t) = Z g cos(kt), teR,

keN kEZy
which implies that both ug and vg are 2m-periodic and in C*°(R). Direct observation on (2.2) gives us
1=G(1) =g(2mn) = ug(2mn) +ivg(27n), Vn e Z. (2.4)

Hence,
va(2mn) =0, wug(2mn) =1, (2.5)

of which the last relation equals

> g =1. (2.6)
k=0

Next, we introduce the first approach to construct generalized sinc function.
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Definition 2.2. For any G € R(A), we define the generalized sinc function sincg : R — R and cosinc
function cosincg : R — R by

since (t) = ”Gt(t), teR (2.7)
and ) ,
cosincg(t) = ZLG( ), teR. (2.8)

By (2.5), it is easy to check that sincg and cosincg both belong to L?(R). Functions sinc, and cosincg
constructed in [2] correspond to G = B, the Blaschke product defined by

zZ—a

Ba(z) a € A.

1—az’

For better understanding sincg and cosincg, we explain more about vg and ug. For any G € R(A),
define F € H*(A) by

-1
Fioy= GO 1 e, (2.9)
z—1
which can be expressed as the power series
F(z)= Z az®, zeC. (2.10)
keZy

It is easy to see that

va(t) = Z (ck—1 — cg) sin(kt) (2.11)

keN

and

ug(t) =1—co+ Z (ck—1 — cx) cos(kt). (2.12)
keN

Direct calculation gives us
[ee]
cn=1-(go+ +gn)= Z 9;
j=n+1

implying ¢, satisfies the same exponential decay estimate as g,, i.e.,
k] < eA™ (2.13)

for some positive constants ¢ and A € (0, 1).
Next, we introduce the second approach to construct generalized sinc function.

Definition 2.3. A symmetric cascade filter (SCF) H, is a piecewise constant function on R defined by
Hyc(t)=cn, t€(—n—1,-n]U[n,n+1) (2.14)

with the sequence ¢ := {¢,, : n € Z}. Here we use the indices pair to show that the filter is dependent
on the dimension 1 as well as on the vector c. Radial cascade filter associated with general dimension d
will be seen in (3.1).

Note that H; . in (2.14) can be rewritten by
Hie=> cax(-—n), (2.15)
ne

where the components of the bi-infinite sequence ¢ := {c¢, : n € Z} are extended by ¢, = ¢_,,_1,n € Z,
and x is the characteristic function of the interval [0, 1).
Corresponding to the filter H; . is the impulse response function ¢ defined by

¢F = \/gf‘lHl,c. (2.16)
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An explicit form of ¢z can be given by
t o
or(t) = sinc<2)Re{F(e““)eélt}, teR. (2.17)

A direct computation confirms that
¢F = sincg, (2.18)
which will be proved in Appendix.
Example 1.1. Let G = z, i.e., F = 1. This case leads to sincg = sinc.
Example 1.2. Let G be the Blaschke product of order n, i.e.,
Z — aj

G(z) = Ba(2) = [ [

rale 1—a;z

with @ := (a1, aq,...,a,) € (—1,1)". Then by (2.17) and (2.18), we can check that

5in O, (¢

sincg(t) = sin fa ),

t

where 6, is called a nonlinear phase and decided by the boundary value of Blaschke product by
elfalt) — Bg(e'!), teR.

Correspondingly, e%+() is a time-frequency atom with nonlinear phase 6,.

We remark that, from the above discussion, there are two equivalent ways to construct a generalize
sinc function in one dimensional case. One is the boundary value approach of analytic functions in a
neighborhood of the closed unit disk given by (2.7), and the other is the Fourier transform approach
given by (2.17).

3 Radial Bessel-sinc functions

Let the vector ¢ = (¢, : n € Z, ) € 1?(Zy) be defined by (2.10). Extend ¢ to be a symmetric bi-infinite
vector ¢ := (¢, :m € Z) by ¢, = c_p_1,n € Z;. We say that a radial cascade filter (RCF) Hg. is a
piecewise constant function if

Hic(t)=cn, teS, (3.1)

with S, defined in (1.1). The filter Hg . in (3.1) can be rewritten as

Hye(t) =Y eax([t| = n) = Hio(Jt]), teR, (3.2)
neL
where y is the characteristic function of the interval [0,1).

Definition 3.1.  The Radial Bessel-sinc function sincg . in R¢ associated with the vector ¢ is defined
to be
T

d
2
sinca©) = (5 ) F 7 (Hao)©) (3.3
For (3.3), we need to investigate the Fourier transform of Hy c.

Lemma 3.2.  The Fourier transform of Hqc,d > 1, is

(k+1)[¢]

sincg,e(§) = ( ) DY ck/ % Ja- 2 (r)dr, €€ RY (3.4)

keZy k(€]
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Proof.  Using the computing technique of the Fourier transform of a radial function, we have

i g\ i€0)
sincg.c(€) = (2m) ™ 2 Hy o(Jt])e"'>" dt
2)  Jaa
e} . 1S
= 2*‘1/ Hl,c(r)rdfldr/ e gy ¢ e Y
0 gd-1
Recalling the formula
/ et gyt = (27T)g7aig+1Jd;2 (r), weS¥ re(0,00),
gd—1
being independent of w € S9!, we obtain

™

sincg.c(§) = (2) ’ |5|f§+1/ rgHLc(r)JdEz (r|€))dr, € e R%
0

Noting the definition of H; ., recalling the decaying rate of ¢ and using Lebesgue dominated convergence

theorem, we get

sincac© = (5 ) 17 [t Y et - s

0 kEZ
4 k+1
(3 ) A S a [ ras
kEZy
(1)1l
< ) H chk/ r2Jas (r)dr.
ke k|g|

It is easy to see from Lemma 3.2 that sincg. is of dimensional dependence. In particular, when d
is odd, due to the explicit representation (1.3) of Bessel function J,, +1, We can handle the right-sided
integral in (3.4) in the rest of this section. We first set d = 2m + 3, m € Z,, and define the function

o (4D
Ym(t) :=1 Z Ck : ro2 Jypi(r)dr, teR.
kEZ, t

Consequently,

2m+3

sineaniac® = (5) e, €

Lemma 3.3.  The function v, m = 0, defined in (3.6) satisfies
Yma1(t) = Qm(t) + (2m + 3)t 2y (t), teR,

where
2
Qun(?) :=\/ (—1)mHTmE N D (sine(r))| ), tER,

T
keZy
with the operator D mentioned in (1.3).
Proof. Tt follows from (1.3) that
k+1 277L+3 2 1
nlt) = 7278 / 72 STy D sine(r)dr,
keZy g

which can be simplified as

Y (t) = \/2( ymg2me3 Z ck/ r2m 2D (sine(r) ) dr-.

keZy

(3.6)

(3.10)
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Now direct computation gives us

9 (k+1)t
Ta(t) =S S g [ D () dr

™

kEZy
2 m+1 —om—5 (et1)e p2m+3 m
s (D} (sine(r))]
keZy
2
= SR o sine(r)
0 kEZy
9 k+1t

kEZy

Recalling the definition @, in (3.9) and noting (3.10), we conclude the proof.

Below we investigate the function Q,,.

Lemma 3.4.  The function Q.,, defined in (3.9) satisfies

Om(t) = (—1)m\/2t_2Dm( UG (t)>, teR,

where ve is defined in (2.2).

Proof.  We prove this lemma by induction method on m. Firstly, we show that

Qo(t) = \/275_21;’(;(75), t € R.

T t

To this end, setting m = 0 in (3.9), we have

_ (k+1ﬁ
\/ t chr blIlC?” 7 bt

keZy
\/ t=3 Z crl(k + 1)? sin(k 4 1)t — k? sin(kt)]
keZy
2 .
= —\/Wt_3 Z(ck_l — cp) k% sin(kt).
keN

Combining this with the identity (2.11), that is,

va(t) = Z(ck_l — ¢k sin(kt),

keN

we conclude (3.11) for m = 0.
Secondly, we need to show that @, satisfies the differential equation

Qura(t) =~ 5, Qult) ~ 272Qu(0), e R

Direct calculation leads to an equality chain

2 5
Qu(t) :J (=) N D (sine(r)| "

™
keZy

2 — m T :
= \/ﬂ_(—l)m“t 2 Z cr(k + 1)2 +3D,, (sinc(r))|r=(k+1)t
k€Z+

1921

(3.11)

(3.12)
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2
—\/ (—1)mHig=2 Z k™ T3DM (sine (1)) =g,

™

keZy
which implies that
2
Qm(t) = \/ (—1)mtte—2 Z(Ck—l — ) k23D (sine(r)) = (3.13)
i
keN

Differentiating on both sides of (3.13) gives us

 Qult) = —2\/ 2 (13 (et — KD (sine(r) i

dt T perd

+ \/i (1) the? Z(qu — ek jt{D:,”(Sinc(r)ﬂr:kt}.

keN

Invoking the above equality chain, we have

2 Qul) = 27100 + [ (1 > (ot - R [rD sine(r) e} o
= 271G 1)+ 1P S s — R DI sinelr) )
keN

- _Qt_lQm(t) - tQm-i-l(t)a

from which, we get (3.12).
Now we continue with the induction. Assuming that (3.11) is true for m, we proceed to show that it
also true for m + 1. Applying the formula (3.12), we have

Qur(t) = —tli{(—uw I A | SR TN

—
™
2 v (t) 2 .d vl (t) _
-9 —2 1 m 22)%1 G -1 nk%lx/ t 3 2)”1 G — 2t 2 t).
2y 2 P (M) ey 2es g {or (7 Q)
By the induction hypothesis, we obtain

Quat) = (1t 22 [o

-3
7N
Q\
-~ 23
-
~—
'
~—

The proof is completed.

Now, (3.7) and the following recursive formulas A and B lead to our main result in this section.
Recursive formula A: Functions {v,(¢) : j € Z4} can be recursively calculated by

Yma1(t) = (2m + 3)t 2y, (t) + (—1)m\/2t—27>tm ( [”Git)]ﬂ) , teR, (3.14)

with the initial function

and v defined in (2.2).
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Recursive formula B: Construct {g; : j € Z; } by

with the initial function

(k+1)t
\/ t=3 Z ck/k rsinrdr. (3.16)

keZy

Theorem 3.5.  The radial Bessel-sinc function sincg . satisfies the following identity for odd d =3,
5,7,...,

sinca§) = (5 ) (e, € R 3.17)

where v, is determined by the recursive formulas A and B.

Proof.  The recursive relation (3.14) can be concluded from Lemmas 3.3 and 3.4. As such, we just need
to prove the explicit expression of 7g. To this end, it follows from (3.10) that

(k+1)t (k+1)t
\/ t3 Z Ck/k rslnrdr—\/ 3 Z ck/k —cosT)

keZ kEZ
(k41)t
\/ t=2 Z ci(kcos(kt) — (k+ 1) cos(k + 1)t \/ t=3 Z ck/ cos rdr
keZy keZy ki
= \/275_2 Z(ck — cp—1)k cos(kt) + \/275_3 Z(ck 1 — ¢g) sin(kt)
™ B ™ -
kEN kEN

— \/727 [—t2ug(t) +t3ug (1)),

where we used the formula (2.11) twice in the last equality. Now we get
2 ()t — t 2
Yo(t) = —\/ﬂtlvG( ) " va(t) = —\/th(SinCG(t))
to complete the proof.

We know from Theorem 3.5 that the recursive formula (3.14) is crucial for constructing a radial sinc
function. For convenient discussion, we need a further investigation into (3.14) and as such we present an
alternative expression of (3.14), precisely, we offer a differential-operator-based characterization of (3.14).

Proposition 3.6.  Form € Z., it holds that g, = Ym, which implies that (3.14) is equivalent to (3.15).

Proof. ~ We prove this proposition by induction method on m. It follows from (3.14) and (3.16) that
go = Yo0- Now we just need to show that if g,, = v, then g1 = Ym41. Recursive formula A leads to
the sequence of functions 7, defined by (3.10), that is,

9 (k+1)t
Y (1) :\/ ()N / 22D (sine (1)) dr-

keZy

Now it suffices to show that

jt'ym(t) = —(2m 4 3ty (t) + (—1)m+1\/72rt173;”([%?)]”), teR. (3.18)

Differentiating on both sides of (3.10) gives us that

dm = o (2 e 3 /T D ine(r) i |

keZy
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—(m+ 3)1%@) 4 \/2

w(—l)mfl D ekl + 17D (sine(r)) [ (k1)

keZy
2 .
- \/ 7T(—1)mfl > kD (sine(r)) -
keZy
1 2 my—1 2m~4-3pym (;
=—2m+3) vm(t) + (=1)™t Z(ck,l —ck)k D" (sine(r)) | =kt -
t g keN

Now by comparing (3.13) and (3.11), we obtain (3.18). The proof is completed.
As a consequence of Proposition 3.6, we have the following corollary.

Corollary 3.7.  Suppose that the two sequences {~my : m € Zy} and {gm : m € Zy} of functions are
defined by (3.14) and (3.15), respectively. Then we have

A (t) = gm(t) = \/ (—1)™ 1D (sincg (1)), t € R, (3.19)

where v is defined by (2.2).

™

Proof. By comparing recursive formula A with formula B, the required result follows immediately.
Finally, we offer an estimation for decaying rate of the generalized sinc function.
Proposition 3.8.  The following inequality holds
. const
|Slncd7c(€)| g |£|d+1 I fe Rd7 |£| 2 1) (320)
2
where const is some constant independent of &.
Proof.  Recalling (3.17), it suffices to show that
const
(O < 0 tER 2L
where const is some constant independent of ¢. By using (3.19), we need to prove

const

D (sinea () < ity tER > 1

This inequality can be verified by adopting induction method on m, by using the formula

m—1 k im—k
1 (m) 1 d
Dt = b —
t tm Z k ( t) dgm—Fk
k=0
with some constants b,gm), k=0,...,m—1, independent of ¢, and by noting that both of sincg and vg

are infinitely differential and their derivatives are bounded.

4 Applications in LTI system and sampling

Let T be the transform function of a continuous linear time-invariant (LTT) system. When the input
signal is fin, then the output signal f,; is the convolution of T and f;,, namely,

fout(t) = / fin(t - a?)T(x)dx, te Rd.
Rd
There is also an equivalent representation of the output signal in the frequency domain

four(€) = (21) 7% fun(O)T(€), € e R
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If, in particular, in univariate case, we choose T to be the indicator function X(—1,1), then the response
function is just the usual sinc function up to a multiplicative constant. In higher dimensional cases,
one adopts the tensor product approach, that is, 7" is the indicator function of the cube (—1,1)% and
T(t) = szl Si?:k (see [10]). To apply RBS functions to LTI system, we propose the following filtering
process: for input signal fi,,, the output signal f,,; keeps the frequency information of f;, with different

scales in the different frequency bands, i.e., in the annulau S, = B(g,n+1) \ B(o,n), namely,

fout(€) = cofin(€), €€ So = By,
fout(€) = e1fm(E), €€ 81,

fout(f) = Cnfin(g)a §€Sy, n=12,...,

where ¢ = {c¢; : j € Zy} is the vector defined in (2.10). Corresponding to this LTI system, we know
from (3.3) that the transform function in frequency domain is the cascade radial filter Hy . and the
impulse response is just the radial Bessel sinc function sincg,e.

In order to introduce a sampling space in L?(R?), we need to recall the classical Whittaker-Kotelnikov-
Shannon sampling theorem by the tensor product approach, which states that any bandlimited signal f
with suppf C [0, 0]% can be reconstructed from its sampling sequence {f(nl):ne 7%}, that is,

(ot —
-y f< )H sin(oty =nim) - (4.1)
ot; —n;m
nezd =1
Any bandlimited signal f with supp f C [~0, 0]¢ corresponds to a multivariate integrable complex valued
function in the d-dimensional cube of width 27, i.e

fo,(t):(\/z”) Zf( ) Zmt) e RY (4.2)

nezd

Taking Fourier transform to both sides of (4.1), we can define the space of bandlimited signals in frequency
domain to be

By ={f € L*(RY) : £(£) = M§.0(§)X(—0,0)4(£), § € R}

In order to derive a sampling space of non-bandlimited signals, motivated by (4.2), we define function
Gieo b

coMy ,(t), t€ B,

1My (t), t€ B0\ B0,0);

Geol(t) = : (4.3)
cnMy o (t), t€ Bo,mtyo) \Bonsy, n=12,...,

Now, we define the space of non-bandlimited signals by

Beo = {f € L*(R"): f(€) = Ge0(€). £ €R). (4.4)

Theorem 4.1. A signal f € Be, if and only if

= Z f(gk) sincg (ot — km), te R (4.5)

kezd
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Proof. ~ We first prove the necessity. By the definition of the space B, ,, we know that for any f € B. ,,
it has the following representation in the frequency domain

f&) = Gpen(€) = Z My o (§)en—1XB(0,n0)\B(0,(n—1)s) (§)

<\/27T) Z f( > i (k.E) Z Cn—1XB(0,n0)\B(0,(n—1)0) (5)

keZa n=1

Applying the inverse Fourier transform to both sides of the above equation leads to

d 00
1 LT .
f(t) = ( ) f( ) Cn— 1/ e_lf’<k’£>el<t’£>d£
20 k%Z:d nz::l B(0,no)\B(0,(n—1)0)
1\¢ i ,
= f(k ) Cn— 1/ et 2 R8) g¢
(20) gZ:d nzz:l B(0,n0)\ B(0,(n—1))
_9-d f(k;w> cn—1/ eilot=k6) g
kgl:d g ; B(0,n)/B(0,n—1)
= 2*d Z f <I€7T> Hd7c(£)ei<gt77rk’€> df
kezd 7/ Jra
= Z f (kﬂ>51ncd c(ot — k)
kezd g

Reversing the process above, we can prove the sufficiency.

The Shannon type sampling formula (4.5) involves with infinite sums. From the practical point of view,
we need to use finite sums to approximate the original signal f. The approximating error is measured in
terms of the energy norm of L?(R?) by an adaptive truncated sum. That is, we use

Sp(t) = Z f( )sincdﬁ(at —km), teR? (4.6)

[t— T k|<n

to approximate f.

Theorem 4.2.  Suppose that f € Be, and c satisfies (2.13). Then
1f = Sullo = On™"?). (4.7)

Proof.  Using the Cauchy-Schwartz inequality, we get

|f(t) = Sn(t)| = Z f( )sincd7c(at — k)
[t—T k|>n
< ( Z f2<ﬂ-k>)2< Z sincﬁjc(mﬁ—kﬂr)>2
[t—Tk|>n g [t— T k|>n
< f2<7rk)>2 < sinc27c(at—k7r))2
<k§Z:d 7 |t—§k:|>n ’

with ¢ € [0, 7)%. That the system {sincq.(- — k7) : k € Z%} is stable (a frame) in B, leads to

Zf2< ) const| f122 g

kezZd
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and correspondingly
1
2
|f(t) = S (t)] < Const< > sincg (ot — lmr)) .
[t—Tk|>n

Substituting (3.20) into above inequality leads to

)=S0 <oonse ()

[t—T k|>n
Note that

™

n
ti— ks
3T G

>
Vd

akeezag#j}

d
T
{k: }t— Jk’ >n} c U {(kl,kg,...,kd) :
7j=1
with k& = (ki, ks, ..., kq) and t = (t1,t2,...,tq). Consequently,

1 1
22 ot ket < 2 (i gy

[t— = k|>n [t— = k|>n

1
<d )
2 2 (0 lot; — kym|)d+t

(k1,..ska—1) €L~ [ota—mkal2 77

where the estimation = is guaranteed by the equivalence of norms in R?. Using the similar techniques
in [4,6], we can first estimate that

1
> ’
lota—mkal> "7, (ijl |0tﬂ' o kﬂ'ﬂ)dﬂ

1 1

<comst . o 1g TCOBSE o v (4.8)
(Zj:l |ot; — kjm| + m/d) (Zj:l |ot; — kjm| + m/d) i
Furthermore, by the same estimation method in (4.8), we have
1
Z d—1 to— ks no \d
(k1,...kq_1)€Zd—1 (Ej:l |U 7 JT(' + W\/d)
e e dry...dwa— 1
Sconst/ / do1 o -t o g S const . (4.9)
o e (S oty -yl + 1) n
Similarly,
1 1
> < const,- (4.10)

d—1
(v b )z (ijl lot; — kjm| + 7\'”\7d>d+1

It follows from (4.9) and (4.10) that ||f — Syl = O(n™1/2).
We remark that, compared with the sampling class defined by the usually approach

Seo = {f cf(t) = Z rpsincg (ot — kn),t € R, 7y, € lQ(Zd)},

kezd

the sampling class Be,, defined in (4.4) may look unnatural for the function Gy, and My, defined
in (4.3) are both dependent of f. In fact, when d = 1, the two function classes B., and S. , coincide.
This is because that the corresponding sinc function sinc; .(7(+)) is of cardinality. It is easy to show that
the two classes coincide if and only the involved sinc function has cardinality. Recall that a function ¢
is of cardinality if ¢(0) = 1 and ¢(k) = 0 for 0 # k € Z%. The cardinality of sinc; .(m(-)) is proved as
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follows. We first note that 4 = G'(1) = > kez, ¢k # 0. Then (2.11) implies that sincy(km) = 0 for
0 # k € Z. For k = 0, we have

1 . sm (kt)
Asmch(O) A tgr(l)z Ck—1 — Ck) Z k(ck—1 — ck)
keN keN
1
:AZ(kJrl)ck—chk— =1
kEZ, kEN kEZy

Therefore, we have that B. , = Se¢,» in the one dimensional case (see [11]).
For d > 1, it is easily seen that the corresponding sinc function sincg .(7(-)) does not have the cardi-
nality. Therefore, the two classes B, , and S¢ , are not identical.

5 A Paley-Wiener type extension theorem for a class of radial functions

We proved in [2] that, in the case of d = 1, all functions in B¢, (= Se¢,») can be extended to be analytic
in a strip symmetric about the real line. In higher dimensional case, we shall investigate the monogenic
extension of the following functions related to Hyc(§) in (3.2).

Definition 5.1.  Let S, := B n+1) \ B(o,n)- Suppose that R(r) is defined in [0,00) and 1-periodic,
and a sequence ¢ = {c¢,} decays exponentially, i.e., (2.13) holds. Define

={f€L2(Rd):f() ROEN Hao(€) = RUE) chm geRd}. (5.1)

It is not difficult to check that E = B., = Sc» when d = 1, but when d > 1, E # B, # Se,o-
Next, we show that any f € E can be extended to be monogenic between two parallel planes, where
the monogencity is in the sense of Clifford analysis. This result can be regarded as the counterpart
of [9] concerning Paley-Wiener theorem in the Clifford analysis setting. For basic knowledge of Clifford
analysis, we refer the reader to [9].

Theorem 5.2.  Suppose that f € E. Then f can be monogenically extended to the region between two
planes given by

log A log A
{x:y—i—x o(gj <y<—O§ },

where X is given in (2.13). Moreover the extended function in the region above can be estimated by

Cc,a

|f(y + fE)| < 1 — e—clyltlog A’
where Ce , is a constant depending on o and c.

Proof.  Consider a possible Clifford vector x =y +x = y + x1e1 + - - - + x4e4 that makes both of the
following two integrals well defined,

PR =t [ deneiy o fe)ds
@ =ent [ denely o

wo=4(125)

are the Fourier multipliers corresponding to the Cauchy kernels in, respectively, the upper and the lower
spaces [12]. Recalling the partition of the integral domain R? = (J°7_; S, we have

where

Fra) =0t /S eHE) Vel (6))e, R(IE])d
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oo 1
= (27()7% E / / ei(a(n+r)w,ac)efya(rJrn)XJr (W)enR(o(r + n))(ar)dildrdw
0 Jsa-1

1 00
= (27r)*g / / ellorws@)e=oury | (w)R(o7r)(or)d 1 [Z ellonwm)e=oune | drdw. (5.2)
0 Jsda-t n=0
Using the estimate (2.13), when
log A
> 5
o

the infinite series in (5.2) is dominated by a geometric series, and the exchange of the infinite summation
with the integration can be justified. Thus, we obtain a convergent integral. Replacing the infinite series
with the dominating geometric series, we obtain the desired estimate of the integral, i.e.,

Cc,a
1 — e—oytlogA”

[fH (@)l <

Similar to [2], we can exchange the differentiation with the integration and verify the monogenicity of

fT based on the monogenicity of ei<§’9”>e_y|5‘)pr (£). The same properties for f~ with y < —IOEA can be
proved similarly.
Now we investigate the properties of the function f € E.
Lemma 5.3.  Any function f € E takes the form
(k+1)]¢| ,
ety ck/ PSR( T ) Juea (r)dr,  tERY (5.3)
k|t| [t 2
keZy
Proof.  Using the computing technique of the Fourier transform of radial functions, we have
£ = a7t [ > cuxs. ER(EDe"
= (27) "% / HLc(r)rd_lR(r)dr/ MG gy ¢ e RY
0 Sd—1
Recalling the formula
/ it gt = (27T)g7"_g+1<]d;2 (r), weS¥  re(0,00), (5.4)
Sd 1

being independent of w € S9~!, we obtain that

f(t)=|t|‘3“/ r2 Hyo(r)R(r) Jus (rlt])dr, ¢ € R".
0

Noting the definition of H; ., recalling the decaying rate of ¢ and using Lebesgue dominated convergence
theorem, we get

0 = |t~ 2“/ 14 S (- YR acs (rlt)dr

kEZ
4 k+1
DY ck/ PSR u s (rlt)dr
=N
(k+1)|¢]|
= t|” —d Z Ck/ re (r).]d—z(r)dr.
ez, i t[) =

We shall see from Theorem 5.7 that any f € E can be radially expressed as g,, defined by

k+1 2'm+3 T
gm(t) = 23 Z Ck/ (t)‘]m+§(7")dr' (5.5)

keZy
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Therefore, to prove Theorem 5.7, we need to investigate g,,. Using the identity

Ty (2) = V 2 (—1)m2m DI (sine(2))

and the Fourier expansion of

— L—i2mgr
r) = g Rje ,

JEZ

we get

(k+1)t 2m+43 T
gm(t) =t72m3 Z ck/ ro2 R(t)Jeré(r)dr

keZy kt
(k+1) 2m+3 H ;T 2 1
o t—2m—3 Z Ck/ ro2 ZRje_IQ""Jt 7T(—1)7”7'm+2']):’1(SinC(T’))dT',
kez, Ukt JEL

which can be simplified as

(k+1)t o
gm(t) = \/2( ymg2mes Z Ch ZR / 22720 DM (sine(r) ) dr-.

keZy JEZ
Then
2 +1)t ) o
Gm+1(t) z\/ (—1)mtig—2m=5 Z CkZR / p2m e =i2mi Dt (sine (1) ) drr
keZ4 JEZL
2 +1)t ) o
:\/ (—1)mttg2m=5 Z ckZR / P23 i2TI t d[D™ (sine(r))]
keZy JEZL
2 3 ;T
= \/ (—1)mttg=2m=5 Z Ck ZRjr2m+3e"2”JtD:,"(sinc(r))|£k:E)t
T k€Zy  jEZ
9 (k+1)t L
_\/ ( m+1t 2m—>5 Z CkZR / DT’,”(sinc(r))d[erJr?’e*‘Qm‘]
keZy  jer
2 0T
:\/ (—)™ T2 N Y Ry e 27 D (sine(r)) [
T ke€Zy  jEZ

2 (k+1)t o
_ (2m =+ 3)\/ ( m+1t—2m 5 Z Cr Z R / D;ﬂ(sinc(r))TQm"rQe—lQﬂ'j tdr
™

kEZy JEZ

) (k+1)t o
i2 1 m+1t—2m 6 R / Dm 2 2m—+3 —127Tjtd )
+ \/WI (- g Ck g J ™ (sine(r))r e r

kEZy JEZ

For simplicity, we denote it by
a1 (t) = J1 + (2m + 3)t g () + J2,

where
2 om— o . k1)t
J = _1\ym+1,—2m—5 2mA3 —i27f  pym (k+
1 \/w( HmT E Ck E Rjr e D" (sine(r)) |, g
k€Z,  jE

and

2 (k+1)t . -
J — i2 m+1t—2m 6 R / Dm 2 2m+3 —i2myj i d .
2 \/ﬂ_l m(—1 Z Ck Z] ™ (sine(r))r e r

keZ4 JEL

We first investigate J; as follows.

(5.7)
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_ (ZRj> (—1)% 2t‘2Dm< "t“)) (5.8)

JET

Lemma 5.4.

Proof.

2 o —iomiT . k 1)t
T = -1 m+1t 2m—>5 R, 2m—+3 127\']th7,77, (k+
=2 3 e Y Ryt e D sine(r)

keZy  jEZ

~Y B \/ 1™ N " ek + 1)7 D (sine(r)) - (o 1)

ez kEZy
N V 2 S k2D (sine(r)) o
ez kEZLy

A further calculation leads to

7= (R 20 s D i) (5:9)

JEZL keN

By comparing (3.13) and (3.11) in Lemma 3.4, we conclude the proof of (5.8).

Lemma 5.5. L d
ng—tdtg m(t) — (2m + 3) 2gm() Ji, teR (5.10)

Proof.  Differentiating to both sides of (5.6)

9 (k+1)t o
gm(t) :\/ ( mt 2m—3 Z CkZR / 2m+2671271'jt'D;ﬂ(Sinc(r))d?f.7
keZy JEZ
we have
d 2 (k+1)t ) -
dtgm(t>=—<2m+3>\/ " S YR, [ e D sine(r) i
keZy JEZ
2 d (k+1)t . -
2 o a(SaXm [ e s )
g keZy JEZ
1
= —(2m+3) ,gn(t)
9 (k+1)t orii
+\/ (—1)mg—2m=3 Z CkZR / p2mEs gje_ﬁ’”tl):“(sinc(r))dr
keZ,  jEZ
2 —2m— m —i275 T ym (o3
+ \/W(—l)mt Zm=3 Z (k+ 1)ckZRjr2 2RI D (sine(r)) = (k1)
keZy JEZ
2 o
- V LN S T e Y Ry e B D] (sine(r)) =
keZy JEL

1
—(2m+3) gm(t) — tJ>

+ \/2 (—1)mt71 Z (k + 1)2m+3ck ZRjD:l(Sinc(r)”r:(kJrl)t

™ ;
keZy JEZ

—\/ DK ! Z k2m+3ckZR D" (sine(r)) =kt

keZy JEZ
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1
=—(2m + 3) tgm(t) —tJo

+(§:&>¢i“””1§3Wm%%1—%ﬂﬁ@mvmhm

jez kEN

By noting (5.9), we get
d

1
dtgm(t) =—(2m + 3) tgm(t) —tdy — tJy,

from which we conclude that

1d
TtdatTm
Corollary 5.6.  Suppose that the sequence of functions {gm : m € Zy} is defined in (5.5). Then for
any m € Zy., gm satisfies the following recursive equation:

gm+1(t) = —Dtgm(t), t e R. (511)
Proof.  This is a direct consequence of (5.7) and (5.10).
Theorem 5.7.  Suppose that f € E. Then for odd d = 3,5, ..., the following identity holds,

F(t) = gaa(ltl), teR,

)= (1)~ (2m+3) fgm(t) — .

where gy, is determined by the recursive equation gpm41(t) = —115 ;tgm(t), t € R with the initial function
9 (1)t o
go(t) = \/ 3 Z Ck ZRj/ rsinre 2™ dr.
T kez, jez kt
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Appendix: Proof of (2.18)

Below we prove ¢ = sincg. It follows directly from (2.16) and (3.2) that

or(t) = /37 ) = /377 (et =) ) )

nez

= /3 S el =m0

ne”Z
= \/ﬂ Zc ™M Fy (1)
2 " '
ne”Z
Using
1t 1 et —1
FIx) = /elgtd = )
x(t) Jor 3 Jor it
gives us

or(t) =

| |
MHQ
RS
s
o
S
CD._..
g
S =
3
CD....
&
—

it
nez
1 sin(n + 1)t —sinnt .1 cos(n + 1)t — cosnt
SF DI A I
nez nez
:= Re + Im.
Using the symmetry, i.e., ¢, = c_,—1 and in particular ¢y = c_;, we have
Re — 1 Z o sin(n + lit — sinnt
nez
1 sinnt
= 9 Z (Cnfl - Cn) ¢
neZ\{0}
1S sinnt 1 & sin(—n)t
= Z(Cnfl - Cn) + Z(Cfnfl - Cfn) ( )
2 t 2 t
n=1 n=1
1 & sinnt 1 — sin(—n)t
= Z(Cnfl - Cn) " + 9 Z(Cn - Cnfl) (t )
n=1 n=1
> sin nt
= (Cn—l - cn) ¢
n=1

and

Im — 1 Z ‘o cos(n + 1)t — cosnt

neL t
1 cosnt
=, Z (Cn-1 — Cn) ; (here ¢ =c_1)
n€Z\{0}
1 & cosnt 1 = cos(—n)t
= 9 ;(Cn—l - cn) ¢ + 9 ;(C—n—l c—n) +
1 & cosnt 1 = cos(—n)t
- 9 Z(Cnfl - Cn) + + 9 Z(Cn - Cnfl) +
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=0.

Therefore,
sinnt

¢r(t) = (cn1—cn) .

n=1

On the other hand, by F(z) = Gi‘?l_l, we get
Giz)=1+(:=z-1)F(z)=1+ Z Cpz™ T — Z 2"
n=0 n=0
=1l—-co+ Z(C”_l —cp)2™.
n=1

The formula G(e'!) = ug(t) + ivg(t) leads to

oo

sincg(t) = vg(t)/t = Y (en—1 — cn)sin(nt) /.

n=1

Now we conclude the proof of (2.18).



