MICRO-LOCAL STRUCTURE AND TWO KINDS OF WAVELET
CHARACTERIZATIONS ABOUT THE GENERALIZED HARDY SPACES

TAO QIAN AND QI-XIANG YANG

ABSTRACT. In this paper, we prove two kinds of wavelet characterizations of the predual
spaces of the Morrey spaces through considering some micro-local quantities of the predual

spaces.

1. INTRODUCTION

In chapter 5 of the celebrated book [13], Y. Meyer commented that B. Maurey did the
pioneer work on the relation of the Hardy space H' and the L' unconditional convergence in
[12]. L. Carleson [2] and P. Wojtaszczyk [21] also found some unconditional basis to establish
such relation. According to the idea of Y. Meyer, through the wavelet characterization without
a family of Borel measures, we can establish roughly the following: For function f in the Hardy

space H', || f||z: is equivalent to ||f]|z: + Z |R:f|lL1 where R;f is the Riesz transform of

function f. Y. Meyer used several sectlons to prove such wavelet characterizations. In this
paper, we consider the generalized Hardy spaces, viz., the predual spaces of the Sobolev type
Morrey spaces.

We start by giving the definition of the Sobolev type Morrey spaces. For s € R, denote
by fsq = 1Q|7! fQ (x)dz the mean value of the function (—A)2 f on the cube Q. For
a>0,seR1 §p<oo let

— EX 1
Busaf =1QIHIQI [ 1-8)35() ~ £ gl
We denote also B, p.qf = Bao,p,qf- The Morrey spaces M, s, and the vanishing Morrey

spaces M p are defined as follows.

Definition 1. Let = be the set of all the cubes. Define
(i) f € Mysp, if sup Baspof < 00.
QeE

eM , sup Ba.s < d li B, s =0.
(i) f€ Mooy if 300 Baspof <ooand M  Baspof
The classical Morrey spaces My, = Mq,0,p Were introduced in 1938 to study certain partial
differential equations. The BMO space was introduced by F. John and L. Nirenberg in 1961.

See [9] and [15]. If & = s = 0, then, for 1 < p < oo, different p produce the same space:
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Mo, = BMO and M, ,, = VMO. We know that (VMO)' = H' and (H')' = BMO. See
[7] and [9]. If pa = n, then, modulo polynomials, they become the classical Sobolev spaces.
Maop = LP. If 1 < p < Z, then M, s, are different from each other for all different triples
(, s,p). These spaces are different from the spaces discussed in the celebrated book of Triebel
[20]. Further, if we replace |Q
[30] that there exists a large collection My ; that have no unconditional basis.

The @ spaces Qo = Mg o2 Were introduced by R. Aulaskari, J. Xiao and R. H. Zhao. The

Q) spaces come from the complex analysis, and were extended to IR™ by M. Essen, S. Janson,

= by some positive function ¢(|Q|), we get My ,,. It is shown in

L. Z. Peng and J. Xiao. Now many authors are interesting in studying the @ spaces, see
[1, 3, 6, 8, 16, 23] and the references therein. Ignoring a difference of fractional differential,
Wu-Xie [23], Xiao [24], Peng-Yang [16, 26] proved that @) spaces are in fact Morrey spaces in
view of complex analysis, real analysis and wavelet theory, respectively. Q. X. Yang generalized
@ spaces to Mg*q by wavelets. See §5.5 of [26]. D. C. Yang and many researchers studied
systematically the properties of the Besov type Morrey spaces, the Triebel-Lizorkin type Morrey
spaces and other spaces. For an overview, we refer the readers to [4, 17, 27, 28, 31, 32].

In the famous paper [7], C. Fefferman and E. M. Stein proved that the BMO space is the dual
space of the Hardy space H'. The classical Hardy spaces play an important role in harmonic
analysis and PDE. See also [7, 13, 19] and the references therein. The predual spaces of Morrey
spaces have a special micro-local structure. E. A. Kalita found some predual spaces by using
a family of Borel measures in 1998. Afterwards, the predual of Morrey spaces were studied
extensively by various skills. See [3, 5, 10, 16, 23, 25, 31, 32].

The classical Hardy spaces are special Triebel-Lizorkin spaces. The generalized Hardy spaces
are neither Besov spaces nor Triebel-Lizorkin spaces. The generalized Hardy spaces have a very

different micro-local structure.

(i) For the classical Hardy spaces, the micro-local structure does not play an explicit role.
When we consider the micro-local structure of the generalized Hardy spaces, we found
that, the high frequency part and the low frequency part make different contributions
to the norm.

(ii) For the generalized Hardy spaces, D. C. Yang and W. Yuan used a group of Borel
measures to get some wavelet characterizations. But for the Hardy space H'!, the
L' unconditional convergence produces a wavelet characterization without involving a

family of Borel measures. See [13] and [25].

In this paper, we obtain two kinds of wavelet characterizations through considering three kinds
of micro-local quantities of the generalized Hardy spaces. To stress on the main idea, we
consider only the cases p =2, s = 0 and 0 < 2a < n in the two last sectyions of this paper. For
simplicity, we denote M, = M, 92 and M2 = M27072.

There have been many methods to determine whether a distribution f belongs to the gener-
alized Hardy spaces. For example, G. Dafni and J. Xiao [5] used the Hausdorff capacity relative
to the Careleson measure. Another method is to use the classical atomic decomposition idea
like what C. Fefferman and E. M. Stein did in [7]. See [11] and [26]. Such obtained predual
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spaces are Banach spaces. But we did not know how to use these ideas to get the wavelet
characterization of the predual spaces of the Morrey spaces. W. Yuan, W. Sickel and D. C.
Yang adopted a family of Borel measure to determine whether a function belongs to the predual
spaces or not. The induced norm shows that the predual spaces are only pseudo-Banach spaces,
see [10, 25] and [32].

We introduce a new method to study the generalized Hardy spaces in this paper. The word
‘micro-local’ appeared first in the study of PDE, we borrow this idea to study the predual
spaces. Roughly speaking, we consider the functions concentrated in a compact set, whose
frequencies concentrated in a band. But, the micro-local information of a distribution can
reflect in its global information.

This paper contains three main results for the generalized Hardy spaces. The first one, pro-
ceeded in §3, concerns the micro-local quantities of distributions, which manifests the micro-
local structure of the generalized Hardy spaces. The second result is to give a wavelet charac-
terization by the micro-local quantities. The third result is to give a wavelet characterization
of the functions in the generalized Hardy spaces through a group of L' functions defined by the

absolute values of their wavelet coefficients. The last two results will be given in §4.

2. WAVELET PRELIMINARIES

In this section, we present some preliminaries on wavelets, functions and operators con-

cerned in this paper.

2.1. Wavelets and Sobolev spaces. In this paper, we use the real-valued tensor product
wavelets; which can be Meyer wavelets or Daubechies wavelets. To simplify the notations, we
use also 0 to denote the zero vector (0,---,0) in R™. Let ®°(x) be the scale function in the
wavelet terminology. Let E, = {0,1}"\{0}. For € € E,, let ®°(z) be the wavelet functions, cf
[13, 22] and [26]. Let m be a sufficiently large integer such that m > 8n and let M be an integer
depending on m. For € € {0,1}", we suppose that our Daubechies wavelets ®¢(z) belong to

Cyr([—2M,2M]"); further, for € € E,,, ®°(x) have all the vanishing moments from the order 0

to the order m — 1. Ve € {0,1}",j € Z, k € Z", we denote Q = Qjx, = [][277ks, 277 (ks + 1)]

s=1
and ®f (z) = @, (x) =22 (272 — k). Let Q = {Qj4,j € Z,k € Z"} and Ay, = {(c, j, k), € €
E.,j€Z,keZ}.

For 1 < p < oo, we denote by p’ the conjugate index satisfying % —+ ﬁ =1 Forl <p<
00,7 € R, we know that the dual space of the Sobolev space WP is W7, see [13, 20] and [26].
For any function f(z), we denote, in this paper, f5, = (f, ®5,),Ve € {0,1}",j € Z,k € Z". Let
X(x) be the character function on the unit cube [0,1]™. The above wavelets can characterize
the Sobolev spaces W™ and the Hardy space H', see [13, 26] and [29]:

Lemma 2.1. Given 1 < p < 0o and |r| < m. For any function g(x) = ( Z): 95 £ P51 (2),
€,7,k)EA,
we have
g@)= X g @@ ewrr e (X 290 Py (20 — k)2 e < oo

(e,3,k)EAr (e,3,k)EAR
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. . 1
gl@)= ¥ g e eI X 2V [Px (272 — k))Z (s < oo
(e,5,k)EAL (€,4,k)EAR
2.2. Calderén-Zygmund operators. We introduce now some preliminaries about the

Calder6n-Zygmund operators, see [13] and [19]. Let K(x,y) be a smooth function for z # y
such that there exists a sufficiently large Ny < m satisfying that

10205 K (2, y)| < Cla —y|~ "+ ja] + 5] < No.

A linear operator T is said to be a Calderén-Zygmund operator if it is continuous from C*(R™)
to (C1(R™))’ with the kernel K (x,y) where

Tf(z) = / K(z,9)f(4)dy

such that Tz® = T*z® = 0,Ya € N and |a] < Ny. Such Calderén-Zygmund operator was
denoted by T' € CZO(Np).

Taking into account that K (z,y) may have high singularities for = y, the kernel K(-,-) is
only a distribution in §'(R>"). V(e, j, k), (€', 5/, k') € An, let a5 1, o = (K (), @5, 95 ). T
is a Calderén-Zygmund operator, then its kernel K(-,-) and the related coefficients satisfy the
following relations, see [13, 14] and [26]:

Lemma 2.2. (i) If T € CZO(Ny), then the coefficients aj::7j,7k, satisfy the following condition:
279 4277
277 277 + |k277 — k27|

| < Coli=71(3+No) )N (e, 5, k), (€, 5 k') € Ay

| €€’
NN
(i1) If ass satisfy the above condition (i), then
Gokod’ K Y ;
’ ’
— €,€ € €
K(,-) = Z ONRIR TS SN
(€.4,k),(€,3" k") EAn

in the distribution sense. Further, for any small positive real number §, T € CZO(Ny — 9).

To end this subsection, we recall a variant result for the continuity of the Calderén-Zygmund
operators on the Sobolev spaces (also see [13, 14, 16] and [19]). For all (e, j, k) € A,, denote
~€ 675l e
G5k= 2 w5, We have

(¢/,3" k") EAR

Lemma 2.3. If s > [r[,1 <p < o0 and ¥ (€., k), (¢/,5',K') € An,
279 4277

277 + 277" 4 k277 — k27|

then [ (29420 |gs  [2x(273 — k) ¥da < C [ (527020 |gs, *x(20w — k) d.

a5 s ] < 0271710+ o

)

2.3. From wavelet characterization of Morrey spaces to generalized Hardy spaces.

For |s| < m, for any function f(z) = >_ f5,®5,(z) and for any dyadic cube Q, let
€,7,k

a_ 1 1 €

nTE( Z 22js|f',/c
QjxrCQ

If s =0, we denote Cy of = Cq,0,0f. By the wavelet characterization of the Sobolev spaces

2)%

Coc,s,Qf = |Q

W2 we get the following wavelet characterization of the Morrey spaces, cf [32]:
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Proposition 1. If 0 < a < § and [s| < m, then

(i) f(l‘) = Z f;,kq);k(x) € Mas2 &  sup Cys0f < oo
(evjvk)eAn Qe
(i) fz)= X [0 eM,, <«
(€,4,k)EAR
sup Cq s < 00 and lim Cos =0.
Qe% =2 QeQ,|Q|=0 or co of

According to the lemma 2.1 and the above proposition 1, we can identify a function f(x) =

> f;k‘b;k(aj) with the sequence {f;,k}(e,j,k)EAn' In this paper, we did not distinguish
(€,3,k)EAR '
f(x) with the sequence {f5,}( jr)ea, sometimes.

Peng and Yang used atoms to define the predual spaces of the @ spaces in [26] like what
Fefferman and Stein did for the classical Hardy spaces in [7]. Below we introduce the standard

atoms, the wavelet atoms and the relative generalized Hardy space:

Definition 2. (i) A distribution g(x) is an (o, s,2)—atom on a cube Q, if ||(=A)"2g||z2 <
Q|2+, suppg(z) C Q, and Jz*g(z)dz = 0,V|a| < |s| in the distribution sense.

(ii) A distribution f(x) belongs to the Hardy space H**2  if f(z) = > A\ugu(x) where {\,} €
1Y and g, (z) are (o, s,2)—atoms.

Definition 3. (i) A distribution g(z) = >_  ¢5,95,(2) is an (o, s,2)— wavelet atom on a
€Q;,rCQ

dyadic cube Q, if (> 2—2js|g§7k|2)% <|Q|s*
€5,k
(i) A distribution f(z) belongs to the Hardy space H®%2, if f(z) = 3 Augu(z), where

n

{A\} €1t and g, (x) are (o, s,2)—wavelet atoms.

These two kinds of atomic spaces H**? and H2*? are, in fact, identical; further Calderén-

Zygmund operators are continuous from H%%2 to H**2 see [16, 30] and [32]. In fact,

Proposition 2. If0 < a < §,|s| < Ng <m, then
(i) Ho? = Hos2,
(ii) f(x) € H**? & (=A)2 HY02,
(iii) Any Calderén-Zygmund operators T € CZO(Ny) is continuous from H®*2 to H%52,

For a function space A, we denote by (A)’ the dual space of A. Applying the same ideas in
[16, 18] and [32], we get the following duality:

Proposition 3. If0 < a < § and |s| < m, then
(i) (H**2)" = Mo, s.2.
(it) (Mg 5)" = H**2.

To stress on the main ideas, we assume that s = 0 in the rest of this paper and consider only
Ha,2 — Ha,0,2.
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3. MICRO-LOCAL QUANTITIES FOR H®?

If « =0, then H%2 = H'; and if a = 5, then modulo constant, Hz?2 = L2 The
norms of the relative function spaces depend only on the LP(I?)-norms of function series {f; =
Q;f}jez,p = 1,2, where the support of the Fourier transform of f; is contained in some ring of
size 27. But for 0 < a < 5, the relative wavelet characterization depends on both the Fourier
frequency information and the local information in a self-correlation way.

The word ‘micro-local’ was first introduced in the PDE problems. Although our ideas in this
paper is a little different from the original one, it is similar in some sense. This is the reason
we borrow this word. First, we use mathematic methods to study the conditional maximum
value problem for non negative sequence in §3.1. Then we will use the result obtained in §3.1

to obtain the micro-local quantities in §3.2.

3.1. Conditional maximum value for non-negative sequence. For u € N, we denote
Ay = {O, 1,---,2% — 1}n and G, = {(e,s,v),e €eFE,0<s<u,ve Asyn}.

VjeZ,keZ" teN and sequence gj;f’k = {g§+s72sk+u}(€,37u)eat,n7 we define

Definition 4. {9§+s,2sk+u}(e,s,u)er,,n s a mon negative sequence, if

(3.1) Ggs2ektu = 0, V (€,8,u) € Gyp.

For a non-negative sequence gj,, > we would like to find the maximum value of the following

quantities:

_ € €
(3.2) Tfdbn = E fits2ohtudirs 2 htu
(€,5,u)€Gy,n

where f;’k = {f5ss.2:k+u)(esu)eG,,, 18 anon-negative sequence satisfying the following 0<Z< ns
<s<t
restrict conditions

22000+ S (fE L )’ <1, Yue Ay
ecE,
22 GH=D ST (e pe k)] S L VU E Mgy
(e:50)€G1n
(3.3) 2(n—20)(+t=2) 37 (Firimorsze@-2hraso)’ 1 VUE€ Mo
(6,5,v)EG2n
< 17 )
9(n—2a)j > (f;+s725k+v)2 <1.
(6:5,0)€Gt,n

There exist (2" — 1) 37 2" elements in Gyn, so ff, is a sequence of (2" —1) >3 2"
0<s<t ’ 0<s<t
components.

Definition 5. Vj € Z, k € Z", t € N, we call f}; = {ff,, 2eprut(csu)cCGen € Ffp if £l 05 @

non-negative sequence satisfying condition (3.3).

According to the basic results in mathematical analysis, we have:
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Theorem 1. Given0 < a < 5 andt > 0. Forj € Z, k € Z™ and for any non-negative sequence
g;k = {9;4-3,25k+u}(e,s,u)€Gt,n; there exists at least a sequence f;,k = {f;+s,25k+u}(e,s,u)6Gf,,n €
FY ) such that

max Tf At

Tfe gt = t .
i k195 i k095
J,k’74,k f]tkepjfk J.k74,k

Proof. The (2™ — 1)0<E:< 2" quantities f5,  5.p1 0 (€,8,u) € Gyj, of the sequence f]tk are
<s<t
restricted in a closed domain, so the conclusion is obvious. O

3.2. Micro-local quantities in H*?2(R"). Applying the proposition 3, to determine whether
a function g(z) =  >> g5, P5,(z) belongs to a given generalized Hardy space H>2(R"),
(e,j,k)EAn i
we consider the actions of f € M2(R™) on g, where sup C, s o f < 1. The above sup of Cy g f
QeQ
is taken for all Q € €2, we can not manifest the real structure of g(z). Hence we localize g(x) by
restricting its wavelet coefficients g5, such that ) x are contained in the dyadic cube @, then

we limit the range of frequencies by limiting the number of j. In fact, we consider the function

(3.4) gr.q(z) = Z g;;ﬁ’jk(x)

Qj,.CQ:—logy |Q|<nj<nt—log, |Q|

For such a g; g, the number of (e, j, k) such that g5, # 0 is at most (2" —1) > 2.
0<s<t

In this section, we study the micro-local functions g; g in H*?(R") and obtain its three
micro-local quantities. For all ¢,j € Z,k € Z™ and t > 0, we consider the series gik =
{951 520100 € € B, 0 < s <t,v € Ag n}. Denote
(3.5) g;k(a:) = Z g§+s,25k+u¢)§+s,25k+u(‘r)'

(€:5,u)€Gyn
Because there is a one-to-one relation between the sequence gﬁ’k and the function gik(x),

sometimes, we do not distinguish them.

To simplify the notations, we suppose that our functions are real-valued. For two functions

fle)y=" > fip®5(@)andg(z) = >  ¢5,95,(2), i (f(2),9(x))and D5 ff,95,
(€,4,k)EA, (€,4,k)EAR (€,4,k)EAR
are well defined, then we have

(3.6) Trg = (f@),9(@) = D fixdie
(e:4:k) €A

For the given function g}k, according to the equation (3.6), we can restrict f to the function

;k(x) = ( ;G f;+s’25k+u¢§+s,23k+u(x) with ||f;’k||M2 < 1. For ;k(x), the number of
€,5,u)EG n
(€, 5,u) such that ff, ..., # 0is at most (2" —1) > 2. That is to say, applying the
0<s<t

equation (3.6), we transfer the problem to finding out the supremum on an infinitely many

t
restricted conditions to a maximum value problem on Y 2"¢ restricted conditions on the series
s=0

of quantities {f;+s72sk+u}(6,s,u)ect,n.

Based on the theorem 1, we begin to consider the micro-local quantities of gj-,  in HY2(R™).

Theorem 2. Given 0 < a < § and t > 0. For g, defined in (3.5), if |g5 ;| zra2 > 0, then
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() There eaists o function SFiu(0) = 3 i fisairu®irnzmnsnl®) with 5] g
>S5 t,n
; ; _ t fe €
< 1 satisfying thet | max 7y, = - u)Zth S35t s 2ok s 2ok

(ii) There exists a positive number Pfg;k which is defined by the absolute values of wavelet

coefficients of g}ik such that

Pt a2 = IMaxX Tg,t = Tgygt t o
g] k= ||g] k”H Hf”]wo <1 f»gjwk Sfj,kvgj‘k
9=

(ili) There exists a sequence {Q%g5 \ }eer, such that 3 Q%gS @5, (v) has the same H>2o

ecE,
norm as gt ;. does.
;

~t _
Proof. For any sequence 9] k= {9]+s 95 ktul (e.5,u)€C;,,» denote ik = {|g§+s,zsk+u|}(e,s,u)th,no

Denote G§7J7 = {(67 S?“) € Gt”ﬂ7gj+s,25k+u 7é 0} For fjt,k(x) = Z f;+s,25k+u(1)§+s,25k+u($)’
(eysvu)th,n
define
Fes _ |f;+s,23k+u| ) |g§+s,25k+u|_1g§+s,25k+u7 (€;8,u) € Gens
gts2ktu 0, (e,8,u) & Gip.

We denote by F7* the set
{ Tk fi(x) = Z f;fs’gsk+u¢);_,’_s)25k+u($) and || f llaro < 1}_
(€,5,u)EGt,n

According to the wavelet characterization of M2, we have
£ kllaro < 1 implies f7, € Fj,.
Hence, by the equation (3.6),

(3.7) max

= max = max 2 ~ = m X ~
||kaHMO<1 a Tf?kag;ﬁ'k a Tftv;wg;-’k a Tft
s 9<

-}j k 9]' k t 7 g
sk?9g, ik t,j,k k2 k
t R th’ cFlI eFt s 7,

According to the theorem 1, there exists at least one sequence f;k = {JE;-s-s,zsk-s-u}(e,s,u)th,n €
F} such that

(3.8) TFt it = ftmea;i T b0
Let ngt‘,k(ﬁ) = > Sgt‘f;+s,2sk+u(b§+s,2sk+u(x) where

(€,5,u)EGt,n

SifS s 2 hau = { ﬁ+5»25k+u|9§+s,2sk+u|_19§'+s,25k+u’ V(e s,u) € Gin;
0, V(e s,u) ¢ Gip.
According to the equations (3.6) and (3.7), Sfj , (x) satisfies (i).
Let Pjg}, = T gt According to the equations (3.7) and (3.8), Pjg}, is defined by the
absolute value of 9;,;« By applying the equations (3.6), (3.7) and (3.8), the proposition 3 implies
that Pfgt, satisfies (ii).

Denote

2(% )= Ptgjk7 Z |g]k‘_0

th o = eck,
_1 .
3 2037 Plgt (3 g5 ) T2l if ZE |95 | # 0.
€E, €E,
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According to the equation (3.6) and the wavelet characterization of MY, we know that {Q595 1 }eer.,

satisfies the condition (iii). O

Remark 3.1. For a =0 and a = %, if we deal with similarly P}g5 ., then:
(1) For o = 0, according to the wavelet characterization of the Hardy space H' in [13], the

quantity P}gt , is equivalent to ||(( z):G 2"(j+s)|9§+s,23k+u|2x(2j+5$_25k_u))% ot
€,5,u)cGyi n

(2) Fora =%, Pigl, can be written as (Y |g§k|2)%,
' (6157u)€Gt,n '

But for 0 < a < 3, P;g;k can not be written in an explicit way. Luckily, the sequence
{Q' 95 v }eer,, the function Sf} ;. = " u)ZéGt ) Sif5 1 s 20 hru® s .00k u(2) and the quantity Plgj
indicate the micro-local characters. They include both the frequency structure information and
the local structure information. In the last section, {Q;gj,k}eeEn and P;g;k will be repeatedly
used to the wavelet characterization. On one hand, we show that the micro-local quantities
result in the global information of functions in H*%(R™) in §4.1. On other hand, we prove
that the functions in H*?(R™) can be characterized by a group of L* functions defined by the

absolute values of their wavelet coefficients in §4.2.

4. WAVELET CHARACTERIZATION OF GENERALIZED HARDY SPACES

In the chapter 7 of [32], W. Yuan, W. Sickel and D. C. Yang used a family of Borel
measures, to determine whether or not a function belongs to the pre-dual spaces of generalized
Morrey spaces. They got some wavelet characterization, but the predual spaces equipped with
the induced norm are only pseudo-Banach spaces. In [16] and [26], L. Z. Peng and Q. X. Yang
characterized H%®? with atomic decomposition like what C. Fefferman and E. M. Stein did
in [7] and obtained induced Banach spaces. But their methods cannot be used to characterize
these spaces with wavelet coefficients.

B. Maurey inaugurate the study about the relation between Hardy space H' and the L!
unconditional convergence in [12]. L. Carleson [2] and P. Wojtaszczyk [21] make also their
contributions. In chapter 5 of [13], Y. Meyer showed also the importance of a wavelet char-
acterization without involving a family of Borel measures. It is natural to seek some wavelet
characterizations without involving a family of Borel measures for generalized Hardy spaces.
Comparing to the classical Hardy spaces, we have seen in the above section that the generalized
Hardy spaces have a different micro-local structure. Thanks to the study in the above section,
the task of this section is to establish two kinds of characterizations of functions f in the gener-
alized Hardy spaces H%? by the absolute values of its wavelet coefficients. The induced spaces

are Banach spaces.

4.1. Micro-local information results in global information. For s € Z, N € N, denote
Qv ={Q € Q:|Q| >27",Q C [-2N~5,2N=2]"}; for 0 < ¢t < N and for m € Z", denote
QLY ={Q' € Q:27" <|Q'| <2079 Q' C Qs—nm}- Vs, N €Z,m € Z" and 0 < t < N, de-

note gﬁ%(:ﬁ) = X g;k@;’k(m),gé\f_]\,m(m) = gﬁvnjlv(a:) and 5%(:1:) = > @5 k().
Qi rEQL, Qi reQl N,
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We know that Q, v = U Qé\%\’ For PﬁNgSN_N,m defined in the theorem 2, denote
me{—1,0}"
Ping= > PNgN n,.. We define
me{—1,0}n ’

Definition 6. We call g(z) € PL, if

Cig= sup Ps;ng<oo.
s€Z,NeN

Then we have:
Theorem 3. If0 < o < %, then P\ = H*?,

Proof. Applying the proposition 3, it is sufficient to prove (M2) = PL.

(A) We transform first the problem to considering the micro-local functions. If g(z) =
> g§k<1>§k(x) € (M2 thenVf(z) = f;kcl);k(x) € M2, weknow that 7, = sup |rp4| <
€.,k €.,k [fllea<1
co. Vs,N € Z and N > 0, denote gs n(z) = > 5,95, (x). Since (Mg) = H*?, we

Q€N '
know that, if s, N — oo, then gs n(z) — g(z) in the norm of H*2. Denote fsn(z) =

> [5x®5 . (2); by (3.6), we know that
Qi kEQs N ’ ’

Tgs,n — SUP ‘Tf,gs,N| = sup |Tf5,Nigs,N‘ — Tg-
Iflea<1 Ifs,nll@a <1

(B) For g5 n(x), we prove that its P! norm is equivalent to its H*? norm. In fact, according

to the proposition 3 and the theorem 2, we have

195% 3 (@) a2y = 1955 n . (@) o2 = P v g3 v -
Since we have go n(z) = Y. gN;N(z). Hence
me{—1,0}»

lgs. v @)laee < Y gl nm@) ez < llgonlpr-
me{—1,0}"

According to the wavelet characterization of M? and the equation (3.6), we have

lgellougy = max o wm(@laigy = 2" lgenlez
Hence [|gs nl|p., ~ llgs,n ]l p2 and (M) = Py. 0
4.2. Characterization by a group of L' functions. In chapter 5 of the famous book

[13], Y. Meyer proved the following fact. The norm of functions in the Hardy space H' can
be characterized by the L! norm of some function defined by the absolute values of wavelet
coefficients. The task of this subsection is to show that the norm of each function g(x) in H*?
can characterized by a group of L! functions Ps ; ng(z).

We introduce first two lemmas.
Lemma 4.1. ([6]) For 0 < a < %, Qo = Ma,a2 C BMO.
By the fractional different differential and by the duality, we have

Lemma 4.2. (i) My =My C BMO™ ={f:(-A)"%f € BMO}.
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(i) FO* ={f:(-A)sfe H'} c H*2,

Now, we introduce some notations on the set of cubes. For s € Z and N € N, denote
QN ={Q e Q27 < Q| < 29"} for 0 < t < Nym € Z™,Q = Qs_N.m, denote
Qogg = N ={Q € Q:27" < |Q| < 279" Q' C Qs_n,m}. It is easy to show that
QN = | NN,

mezZ™
We further define g, v(z) = N ), where
Gs, 9s—Nm ’
mezn ’
N
(4.1) gst,m(x) = Z g;kq);k(x)
Qj ey
We begin with the definition of the quantities g;ZtN
(1) Ift=0and j > s, then we denote g;:Z’t’N = 0; if j = s, then we denote g;:Z’t’N =951
(2) Fort > 1,if j > s —t, then we denote g;7z’t7N = 0; if j < s — t, then we denote
g;:]?t’N = gj; if j = s —t, then we denote g;:Z’t’N = Qég;k, where Q;Q;,k is defined in
the theorem 2.
We denote g+ n(z) = Ek g;”Z’t’N@;k(x) and set
&J,
; ; 1
(4.2) Py ng() = ( > )2 |got N 2y (20 — k)2,
€,Q;,k€QN j<s—t
_ ; < 1
(4.3) Qarng = [2057D( > 2" |gow N Px (20 — k)2 | o

6,ijk€QS’N,jzsft

We define now the second kind of spaces.

Definition 7. P2={g: sup min [[Ps;ng(z)|p: < oc}.
s€Z,NeNOSt<N

‘We have

Theorem 4. If0 < a < %, then P3 = H*?,

Proof. According to the part (A) in the proof for the theorem 3, for g(z) = > g5, ,.(z) €

6,5,k
H*? and for any 6 > 0, there exists 75 > 0 such that, for s > 75, N > 25, we have
(4.4) g5, () = (@)l ez + Y (92w (@) ez < 8
‘m|>2"
and

@5) 87 max ) (@)l =0 < lgn@lies € 3 X n(@llns +6,
- [m|<2m

By the construction of the above notations and using the theorem 2, we know that
(4.6) 1922 5. (@) | 12 = Qs NN Ge- N = [1Po, N, NG ()] 21
Furthermore

(4.7) 195,68 (@) [z < llgs,e.n (@) ]| gz = (| Ps, e, v ()| 1
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According to the above equations from (4.4) to (4.7), we finish the proof of the Theorem 4.2.
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