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Abstract

The work strengthens the result established by L. Cohen on uncertainty principle involving phase deriva-
tive. We propose stronger uncertainty principles not only in the classical setting for Fourier transform, but
also for self-adjoint operators. We also deduce the conditions that give rise to the equal relation of the un-
certainty principle. Examples are provided to show that the new uncertainty principle is truly sharper than
the existing ones in literature.
© 2013 Elsevier Inc. All rights reserved.

Keywords: Uncertainty principle; Phase derivative; Hardy spaces; Sobolev spaces; Self-adjoint operator

1. Introduction
The uncertainty principle is partly a description of a characteristic feature of quantum mechan-

ical systems. It did not really sink into the minds of signal analysts until Gabor’s fundamental
work [12] in 1946 (see [11]):

(1.1)

| =

010w =

* This work was supported by Macao Science and Technology Development Fund, MSAR Ref. 041/2012/A, Macao
Science and Technology Development Fund FDCT/056/2010/A3, University of Macau Research Grant RC Ref.
No. RG-UL/07-08s/Y4/QT/FST, NSFC (Grant 11071020), SRFDP (Grant 20100003110004).

* Corresponding author.

E-mail addresses: peidang @ gmail.com (P. Dang), denggt@bnu.edu.cn (G.-T. Deng), fsttq@umac.mo (T. Qian).

0022-1236/$ — see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jfa.2013.07.023


https://sslvpnserver1.umac.mo/,DanaInfo=.awxyCwholvloou4sr9Qu76+
https://sslvpnserver1.umac.mo/10.1016/,DanaInfo=.adyBgsnFvzp+j.jfa.2013.07.023
https://sslvpnserver1.umac.mo/locate/,DanaInfo=.awxyCiqyl3ro2Lp21+jfa
mailto:peidang@gmail.com
mailto:denggt@bnu.edu.cn
mailto:fsttq@umac.mo
https://sslvpnserver1.umac.mo/10.1016/,DanaInfo=.adyBgsnFvzp+j.jfa.2013.07.023

2240 P. Dang et al. / Journal of Functional Analysis 265 (2013) 2239-2266

where o; and o, are the duration and bandwidth of a signal s(¢) € L?(R) with |Is|l =1 defined
by

ol = /(r—(t>)2|s(z)}2dt (12)
and
ol = /(w—(w))2]§(w)]2dw, (1.3)

where (f) and (w) are the means of time ¢ and Fourier frequency w, respectively, defined by

[e.e]

(1) = / t|s(t)|2dt
and

]

() = / ol§()| do,

—00

where §(w) is the Fourier transformation of s(z).
The Fourier transform of s € L!(R) is defined by

$(w) =Fs(w) o) dt. (1.4)

0
=
— e

2
—0o0
If § is also in L!(R), then the inversion Fourier transform formula holds, that is

s@)=F 150 =)V @) 2 1og(w)dw, ae. (1.5)

oo
7
— [ e

2
—00
It is standard knowledge that through a density argument the restricted Plancherel Theorem
1513 = lIsl3. s € L'®) N LA(R)

may be extended to L2(R). Below, when we use the formulas (1.4) and (1.5) for L2(R) functions,
we keep in mind that the convergence of the integrals is in the L? sense.

A number of different forms of the uncertainty principle arose through mathematical formu-
lations since Gabor’s work [1,4,8,9,11,15,16]. The inequality (1.1) is the most concise version
but not the best one. In fact, a stronger result is available [3]:
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1
010 = 5\/1 + 4Cov?, (1.6)

where

[e.e]

Cov = (1 (1)) — (1){w) = f 16/ ()]s ()] di — (1) ()

—00

is the covariance of the signal s(¢), defined in [3], where, as usual, s(¢) = p (1)el?D), o) =|s()],
@(t) is a real-valued function, and ¢'(¢) is the classical derivative of ¢(t). The covariance has a
symmetric representation

0]

Cov = [~y (@) — (1) {w) = f —oy (@)]§ (@) do — (1) (o),

—00

where §(w) = |§(w)]e!¥ @), ¥ (w) is a real-valued function, and ¥/ (w) is the classical deriva-
tive of ¥ (w). It was shown in [3] that the equality (1.6) holds if and only if s(¢) =
=4y p=ilBU=1)*+(@)] where q, B and y are arbitrary constants and o < 0. However,
both the statement and proof of (1.6) depend on the classical differentiability of s () = ,o(t)ei 408
p(t) and (). General signals do not have such good smoothness properties. In order to establish
those fundamental results for signals in general function spaces [7] defines derivatives of s(¢),
p(t) and ¢(¢) through non-tangential boundary limits when s (¢), ws(w) € L%(R) (i.e., s is in the
Sobolev space) and offers a proof for the uncertainty principle (1.6) for s(¢) in the Sobolev space
with the extra condition 7s(¢) € L2(R) (i.e., § is also in the Sobolev space).
In this paper, we propose a form of uncertainty principle strictly stronger than (1.6), that is,

1 2
020} > 7+ U|(z ) (') — (a)))||s(t)|2dti| , (1.7)

where ¢’ () is suitably defined in our proofs.
It is the stronger uncertainty principle (1.7) that inspires us to study uncertainty principles for
operators. There have been many studies on uncertainty principles for operators [2,3,11,14,16].
[10] gives an uncertainty principle for self-adjoint operators as follows:

1
[(A—=as||(B—p)s| = E|<[A, Bls,s)|, seD(AB)ND(BA), (1.8)

where A and B are self-adjoint operators, «, 8 € C, and [A, B] £ AB — BA.
[3] gives a stronger uncertainty principle for self-adjoint operators A, B:

1
A =58 = prs] > 5y (14, Bls.s)” + [[(A —al, B~ plus.s)"
s € D(AB)ND(BA), (1.9)
where [ is the identity operator and [A —«l, B—BI1]y = (A—al)(B—BI1)+(B—BI1)(A—al).

Based on these results for self-adjoint operators, [16] derives the same inequalities for sym-
metric or normal operators in a Hilbert space H.



2242 P. Dang et al. / Journal of Functional Analysis 265 (2013) 2239-2266

If we assume that operators A and B are given by

_lds

As(t) =ts(1), B_?E

(1.10)

on the domains of all s € L>(R) such that s(r) € L>(R) or w§(w) € L*(R), respectively, and
o = (t), B = (w), the formula (1.8) is reduced to (1.1) and the formula (1.9) is reduced to (1.6). In
the present paper, we prove a corresponding uncertainty principle for self-adjoint operators that
is stronger than (1.9). In fact, the obtained uncertainty principle reduces to (1.7) if the operators
are taken to be those defined through (1.10).

The paper is organized as follows. In Section 2, we will prove the stronger form of uncertainty
principle for a signal s(r) = p(t)e!?") for which s'(r), p’(t) and ¢’ () exist at all points in the
classical derivative sense. Two examples are given to show that the lower bound estimate in our
uncertainty principle is strictly sharper than those in the literature. In Section 3, we will use the
Fourier transform derivative instead of the classical derivative. Once we use the Fourier trans-
form derivative, we can prove the stronger form of uncertainty principle for signals s(¢) with the
assumptions s(¢), s (w), ts(t) € L%(R). In Section 4, we prove the new form of uncertainty prin-
ciple for signals s (z) with the assumptions s(¢), @S (w) € L%(R) and zs4(z) € H*(C*), where s+
are, respectively, the projections of s onto the Hardy H 2(CcH) spaces (see Section 4). Sections 3
and 4 adopt different strategies. In Section 3 an absolutely continuous representative function of
the Sobolev space function is used, and thus the proof requires delicate analysis. In Section 4 by
using Hardy spaces decomposition everything can be done in the upper- and lower-half spaces
and thus the proof becomes straightforward. The Hardy space decomposition strategy accord-
ingly uses Hardy—Sobolev derivatives that were originally introduced in [6]. In Section 5, we
derive our new stronger uncertainty principle for self-adjoint operators. We note that [7] contains
a technical error (see Section 4) in the proof of the Cohen type uncertainty principle for non-
smooth functions. In Sections 3 and 4 we offer two different strategies to treat the error, as well
as replace the result with the stronger uncertainty principle.

We note that, with the classical L?-setting, what we provide in this paper, as far as we are
aware of, is the strongest uncertainty principle so far, but with the weakest assumptions. We also
characterize, under certain necessary conditions, the forms of the signals that make the equal
relation in the uncertainty principle to hold. The Sobolev space condition added is merely to
guarantee existence of phase and amplitude derivatives in either the distribution or the Hardy
space non-tangential boundary limit sense so as to accommodate the stronger forms of uncer-
tainty principle.

In the sequel we denote by R the real axis, by C the complex plane, and by C* and C™ the
upper- and lower-half complex planes, respectively.

2. Classical derivative and uncertainty principle
The following result can be found in [3].

Lemma 2.1. Let s(t) = p(1)e'?) € L2(R) and ||s||» = 1. Assume that the classical derivatives
o' (1), ¢/ (1), s'(t) exist at all points, and s'(t) is in L>(R). Then there holds

oo oo

ol = / P2t dr + f [¢'(t) — (@) p* (1) dt. (2.11)

—00 —00
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Theorem 2.2. Assume s(t) = p(1)e!*® and ||s||» = 1 and the classical derivatives p'(t), ¢' ()
and s'(t) exist at all points, and s' (1), ts(t) € L*(R). Then

2
olol /% [ f| (t— () (e’ @®) —( ))\,;%)dz} . (2.12)

If ¢’ (t) is continuous and p is non-zero almost everywhere, then the equality holds if and only
if s(t) is a chirp signal with the form

S(t) — 6_%(t_(t>)2+d] i[%(l—(f))2+(w)l+d2]’ (213)
5(1) = ¢~ F IO il F =)o) 2.14)
_ L 2 .
o) — o~ T 1 il L (1= (1) >+ (w)t+da] ift > (1) 15
o~ F U=+ il =L (t—(1)*+{w)r-+ds) ift < 1),
or
1 2 .
=g (=) +d1 i~ L (t— (1) +Hw)t+dg]
13 t = (1),
s(z)—ie ¢ ifr > 1) (2.16)
e

—F(—(1)*+d) oilas (=) +H{@)1+d7] ift <(t),

for some dy, da, d3, da, ds,dg, d7, ¢, € €R, ¢, & > 0, where 1 /52 — 1.

Proof. To prove inequality (2.12), by taking into account Lemma 2.1, it suffices to prove two
separated inequalities:

/(f—<t>)2}5(t)|2dt f p’z(t)dt>%,
and
00 [e'e) 00 2
/(t—<t>)2!s(t)|2dt/[w’(t)—<w>]2p2(t)dt>[ /|(t—<t>)[<p’(t)—(w)]!pz(t)dt} .

The proof of the first inequality is proceeded as follows. Due to the smoothness and integra-
bility assumptions of ,oz(t) and t,oz(t), for two particular sequences of numbers, M,,, N, tending
to infinity as n — 0o, we have

[ee] 2 M, 2
! 1/ 2(t)dt li 1/ 2(t)dt
—_ = — f— m -
i 2] " o2 | P

—00 *Nn

M)l

n : 1
N}—n“;‘;o[g/

_Nn

2
1
={ lim [5( (1)) (r— (t))Zp(t)p/(t)dt]]

n—oo
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1
]

oo oo

< /|(t—<z>)p(t)|2dt/|p/(t)|2dt. (2.17)

2
(t— <t>)p(t)p/(t)dt}

\8

3

2
(£ =) p ()0 )] dt}

\8

3

To show the second inequality we have

{ 7\(: —(0)[¢' @) — (@)][p*®) drr

y 2
z{ /!(f— <f>)p(t)[<p’(t)—<w>]p(r)|dt}
S /(t_(f))zpz(t)dt/[(p’(t)—(a))]zpz(t)dt. (2.18)

The inequality (2.12) follows from (2.17) and (2.18).

Next we deduce the conditions under which the equality holds in (2.12). The first equality
in (2.17) holds if and only if r — () and p’(r) have the same sign or opposite signs. The second
equality in (2.17) is attained if and only if there exists a positive number ¢ such that

[t = )p] =¢|p'®)].

If t — {¢) and p’(¢) have the same sign, then (t — {¢))p(¢) = £p'(¢), that is, % = %(t — (1)).
Using indefinite integral, we have

p(t) = et U=+,

1 2
Obviously, the function p(f) = et ="+ gch obtained cannot be in L2(R). Therefore, 1 — (t)
and p’(¢) cannot have the same sign, but have to be of opposite signs. Then —(r — (£))p(¢) =

£p’ (1), and, as consequence, % = —%(t — (t)). Using indefinite integral again we have

(6= e -

Since signals we discuss are of unit energy, we derive that ¢ and d; should satisfy €271,/ %’T =1.

The inequality (2.18) brings in conditions obeyed by the phase. The equality relation holds
in (2.18) if and only if there exists a positive number ¢ such that

[t = )p®] =e[[¢' 1) — (@) ]p®)]. (2.19)
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Deleting p that is a.e. non-zero, under the continuity assumption of ¢’, we have
|t — (1) =¢|¢'(t) — ()| forallz.

Since the left-hand side is the absolute value of a linear function, there can be altogether four
cases:

1 1
P)==(t— )+ (), or ¢@)=—=(t—(1))+ (w),

& &

or
, Le—t)+( ifr>(),
p=1", _
— (=) +(w) ift <),
or
, —Lt— ) +(w) ift> (),
=1, _
st = (1) + {0) if t < (1).
When
, 1
¢'(1) = g(t — (1) + (),
then
P(1) = L (t— (1) + (@) +d 5y = e~ F U il =) Ho) 4]
2¢e ’ :
When
, 1
¢'(t) = —g(t — (1) + (»),
then
() = 1L (t— <t>)2 + ()t + d3 5y = o~ T A=) 1 il— 3 (1= (1) 2+ (@)1 +4s]
2¢e ’ :
When
, Le—n+ (o) ifr =),
p=1", _
— (=) +{w) ift<(t),
then

(1) = (= () + (@)t +ds ifr =),
T —(t — () + (o)t +ds ift < (1),
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and

Finally, when

then

and

Hence the equality in (2.12) is attained if and only if the signal s is of one of the four forms

P. Dang et al. / Journal of Functional Analysis 265 (2013) 2239-2266

e TP+ i =) @)ds] iy > (),

S3(l)={ : iy )
e*f(f*(l» Fdi yil— g (=) H@)t+ds] 44 (t).

» —Le— )+ () ifr>),
1) =
¢ Lo— @)+ (@) ifr <),

(1) = (1 = (N + (@)t +ds if 1> (1),
T S (t— ()2 + ()t +d7  ift<(1),

¢~ t U= O il G =) @)t d] iy (7).

S4(l)={ | 2y .
e_f(t_([» + ]el[z(tf(t)) +{(w)t+d7] ift < (t)

given by s1, 52, s3 and s4. O

Remark 2.3. We will use the relation

that holds in a wide sense. For the classical derivative case it is proved in [3]. For the Hardy—
Sobolev derivative case and the Fourier transform derivative case it is proved in, respectively, [6]

8]

(0) = / ¢ ()p* (1) dt

—00

and Lemma 3.5 of the present paper. By using the relation (2.20) we have

e¢]

N

—00

- OO

- —00

- 00

- —o0

= / 19’ (1)p* (1) dt — () / tp*(r) dt — (1) /

2
(t — 1)[¢' () — (@)]p* @) dt]

—0oQ —0o0

2
= /t(ﬁ’(t)pz(t)dt—@)(t)—(t)(w>+(t)(w)} = Cov?,

00 2
@' (1)p*(1) dt + (1) () f pz(t)dt:|
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and
[ee) 2 00 2
[ / (r—<r>)[¢’(r>—<w>]p2(r>dr} <[ / \r—<r>\!¢’(r)—<w>|p2<r)dr} :
Therefore

1 C 1 T , 21y d 2
7 TCoV <o+ /|t—<t>||<o<t)—<w>|p (ndr| .

This shows that (2.12) is stronger than (1.6).

Next we show that there exist signals for which the lower bound in (2.12) is indeed strictly
sharper than that in (1.6).

Example 2.4. Let

(& Yie 5= piloz (—D*H@U+BT i 4 > (p)

s(t) = ’ 2.21
® (;)Ze_f(t_<> l[——(l (1) +{w)t+B2] ift < (1), ( )

that is a signal of the form (2.15), where ¢, B1, 82 € R, and @ > 0. Then

gizfp’z(t)dﬂr /[(p’(t)—<w)]2|s(’)|2d’

—00 —0o0

00 1

1 co 2
- / (%)2012(:—0))2 —el- dt—l—/[ (w>—(w>] [s ()| dr

—00 (1)
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&

1 2
+/[——(t—(t))+(w)—(w):| |s@)|” dr

1 (o a2
=5+ [ (-m) (;) e =" gy
o« 1 ale? +1
T2 282 262

&

r 1
= f(t - (t))|:—(t — (1) + (@) — (a))i| |s(;)|2dt

1
+ / (t— <t>)[——(t — (1)) + (@) — (w)i| |s(t)|2dt

&

(1)

(t— (t))E(t _ (t)):| |s@)|>dt + / (t— (r))[

(1) —00

Il
—3

1
(t— (r))] |s(0)|

&

and
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(o) (1)
= [ |t =) l(r—(r)) ls@)|*dr+ | |(r =) —l(z—u)) |s@)|* dt
I &
(t) —00
! oo 1 | (r) 1
_ 2 N2 & —at—)? z N2 X —at—)?
_8/(t (1)) ( ) e dt+8 /(t (1)) <n> dr
(t) —00
00 0
:l/ﬂ(ﬁ) e*“’zaltJrl f tz(ﬁ) —at® gy
& T T
0 —00
17 2
——/t2(3> e 4y
) T
_ 1
=5
‘We therefore conclude that
1 T ? 1
afaj:zjui /\(z—<z>)[<p’(z)—(w>]y\s(z)|2dz >Z+Cov2.

—00

The following example corresponds to the signal class (2.13) that gives equality in the old
uncertainty principle. This then forces the equal sign to hold in the new uncertainty principle.

Example 2.5. Let

i

s(t) = (E) o= 3= (1) il (=0 +H@)r+y], (2.22)
b4
where o > 0, ¢, y € R. It is a signal of the form (2.13).
Then
1 262 +1
0‘12 =, 602) _¢ +

2a 2e2q

and
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_ / é(r— ) [s)]* di
1

‘We therefore conclude that
olol= —+{ /| t— ()¢’ ) — (@)]|]s@)| dr

1
= -+ Cov*.
4+ ov

The proof of Theorem 2.2 depends on integrability of the involved functions and existence
of various derivatives. Those conditions cannot be satisfied by general signals of finite energy.
The next two sections will treat the problem and develop the theory of uncertainty principle for
signals in more general classes.

3. Fourier transform derivative and uncertainty principle

In the following sections we basically deal with signals in the Sobolev spaces. We adopt the
notation L% (R) for the Sobolev spaces [17], that is

*

L*(R) = {s(t) € L*(R): <d—)ns(t) € LZ(R)}
n "\ dt

with the norm defined by

2

3

2

] ()"

where ( )"s(t) stands for the n-th distributional derivative of s. This paper concerns signals

in LZ(R) or subspaces of it.

Lemma 3.1. Assume s(t) € L*(R), ts(t) € L>(R), then s(t) € L' (R) and the Fourier transform
S(w) € Co(R).

Proof. Let Eg=[—1,11, E; = {t: |t| > 1, |s()| > 1}, E» = {t: |t| > 1, |s(t)| < 1}. Then

f|s(r)|dt < (/|s(t)|2dt)§2% <00,
Ey Ey
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/|s(t)|dt</|s(t)|2dt < 00,

E E
| |
) 2 > 2
/|s(t)|dt< </|ts(l)| dt) </|t| dt) < 00.
E, E) E»
So s(r) € LY(R), and its Fourier transform §(w) € Co(R). O
Lemma 3.2. Assume that s(t), ts(t) and w$(w) € L*(R). Then § € L'(R), and s(t) is almost

everywhere equal to a function in Co(R). Moreover, there exists the Fourier transform derivative
(Ds)(1) € L*(R) of s such that (Ds)" (@) = iw§(w) € L*(R) and

+00
1in})/|a*1(s(t+a)—s(t))—(Ds)(t)|2dt=0. (3.23)

Therefore,

limigf]a’l (st +a) —s(®)) — (Ds)(®)| =0

holds almost everywhere on R. If, in particular, s(t) has classical derivatives s'(t) almost every-
where on R, then (Ds)(t) = s'(t) almost everywhere on R.

Proof. Since
+00 +00
2 ~ 2 N
||s||iz(R)=/|s<t>| dt=/|s(w)| do = [8172,
—00 —00

and w§(w) € LZ(R), by invoking Lemma 3.1, we have 5 € Ll(R), s € LI(R) and the inverse
Fourier transform F~1§(r) = F§(—1) € Co(R), which is almost everywhere equal to s(f). Let
sq(t) =s(t + a), then

F(a " (50 — 9)) (@) =a~ " (" — 1)Fs (o),

ja™ (e = D[ < o,
and
a (e —1) > io asa—0.
By Lebesgue’s Dominated Convergence Theorem, there holds
F(cfl (sq — s)) (w) — iwFs(w) = g1(w)

in LZ(R). Let F~! (g1)(®) = (Ds)(t). The Plancherel Theorem implies
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a ! (sa(t) = s()) = (Ds)(1)
in L2(R). So, (3.23) holds. 0O

In the following lemma, we prove that s(¢) is identical with an absolutely continuous function
almost everywhere. Although this is a known result [20], we prove it in a concise way.

Lemma 3.3. Assume that 1 < p; <2, 1 < p2 <2, s(t) € LP'(R), h(w) = iws(w) € LP2(R).
Let

1
g(t) = /(DS)(M)dM +s(a),

where a is a Lebesgue point of s. Then s(t) is identical almost everywhere with the absolutely
continuous function g(t), and

(Ds)(t) =g'(t) foralmostallt € R. (3.24)

Proof. Since h(w) is in LP2(R), by Hausdorff—Young’s inequality, (Ds)(¢) exists as an L2 (R)
function, where qiz + é =1.

r2
Let W(t)=e" 2, We(t) = 1W (%), and

e ¢]

sa(t)z(s*Wg)(t)z/s(t—x)WS(x)dx, e>0.

—00

Then s.(¢) € C*°(R). By calculation, we have W(a)) =W(w) e C*R), W0) =1, V/V;(w) =
W (ew), and 5; (w) = §(w) W (ew). Therefore, by Lebesgue’s Dominated Convergence Theorem,

+00 +oo
/|w|p2’§;(w)—§(a))’p2dw= / lo|72]3 ()| |1 — W(ew)|"* dw — 0,
—00 —00

as ¢ — 0. Since s, (1) = (F_IEZ)(t) = (FEZ)(—t), by Hausdorff—Young’s inequality,

+00 L +00 L
( /|sg(—t)—(Ds)(—t)|qzdr> ’ <( |w|1’2|s§(w)—§(w)|p2dw> ’ -0, (3.25)

as ¢ — 0. The relation (3.25) implies that

lin%) se(t)dt = / (Ds)(t) dt (3.26)
£—
[a,b] [a,b]
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over any finite interval [a.b]. But if a and b are Lebesgue points of s, the left-hand side of (3.26)
is equal to

lim (5:(b) — se(@)) = s(b) — s(a). (3.27)

Since the points in R are almost everywhere Lebesgue points of s, we see, from (3.26) and (3.27),
that s(¢) is equal almost everywhere to an absolutely continuous function g(z), and (3.24)
holds. O

Definition 3.4. Assume s(1) = p(1)e!?") € L?(R) and w§(w) € L*(R). We can define the Fourier
transform derivative for p(¢) and ¢(t) as follows:

(Dp) (1) = { p(ORe G, if (1) 0,

0, if s(t) =0,
and

(D) (t) = { Im (22)([), if s(t) £0,
0, if s(r) = 0.

We note that the L? space consists of equivalent classes of almost everywhere equal functions
and the definition is based on a representation of the equivalent class of s. If we take an alternative
representation of the same equivalent class, then the defined amplitude and phase derivative are in
the respective but the same equivalent classes of almost everywhere equal measurable functions.

The relations (2.20) and (2.11) for the classical derivative case are generalized in the following

Lemma 3.5. Assume s(t) = p(1)e'?® € L*(R), ||s|l2 = 1 and w§(w) € L*(R). Then the mean of
the Fourier frequency and the bandwidth of s are, respectively, given by

_ / (D)) p* (1) d,

and

9]

of= / (Dp)*(t) dt + / [(De)(1) — (@ )]2;02(0 dr. (3.28)
Proof. Since s(1) = p(t)e'¥") € L*(R) and w§(w) € L*(R), () and o2 are well defined.

o0 oo

(a))=/a)|§(a))|2da)=/a)§(a))§(—a))da)

—0o0 —00

=i /(Ds)(t)s(t)dt / m(Ds)(t)| ()| dt = /(D(p)(l)p (1) dt,

R\E
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where E ={t e R|s(t) =0}.
oaz) = / (a) - (w))z}f(w)|2dw

= / (0 — (@))§ (@) (0 — (®))§ () do

= /Oo (i (D5)(1) — (@)s)][<i(Ds) (1) — (@)s (D] dt
= 7 (Ds)(1)(Ds) (1) d1 + 7 i) (Ds) (D)5 (D) dr
~ 7 i(@)s()(Ds)(0) dr + f ()]s dt
_imm ? )

|s@)| dt —2(w) [ Im[(Ds)(t)s(_t)]dt+f(w)2|s(t)|2dt

R\E
:/R [uzi)(t)p ol dt+/ [(Dsm)}l ofd
R\E

R\E
w) f (DO)(D)|s ()] dr + 7 ()]s dt
= f (Dp)*@)]s)|*dr + 7 (D)2 ()]s ()| dr
—2() ]O(Dw)(f)|s(l)|2dt+ 7<w>2|s(r>|2dt
/ (D2 ()]s () [* dr + f (D)) — (@) [s)[dr. O

Theorem 3.6. Let s(t) = p(1)e'?", ts(t) and ws(w) € LX(R), |Is|l> = 1. Then

+o0 2
1
0’cl> 2 + [ / |t = ()| |(De) (1) — (a))||s(t)|2dt:| . (3.29)
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Under the extra assumptions that s(t) = p(1)e'?® has the classical derivatives s'(t), ¢’ (t), p' (1),
where ¢'(t) is continuous and p is almost everywhere non-zero, then the equality is attained if
and only if s(t) has one of the following four forms

5(t) = e ¢ =P+ il 4 (=0 + (@)r-+da].
s(t) = ™ T U=+ il 3 (=) H@)r+d3]

e_%(l—(l‘»z'f'dl ei[%(l—(l))2+(a))[+d4] l:ft > (t),
s(t) =
e

_é(t—(t>)2+d1ei — L (1= (1)) +(w)1+ds5] ift < (1),

and

— L N2 ady T— L r—(1))2 ,
s(t) _ {6‘ ;(f ()" + lel[ 25(1 ()" +{w)t+de] lft 2 ([),
e

_%(t—<l))2+d1ei[%(r—(z))z_,_(w)t-ﬁ—dﬂ ift < (I),

for some dy,dy, d3,dy,ds, ds,d7,¢, ¢ €R, ¢, e >0, where ezdl\/ %ﬂ =1L

Note that this theorem is of the same type as Theorem 2.2. But there are two main differences
between them. The first is that Theorem 3.6 extends the inequality part of Theorem 2.2 to gener-
alized signals s(¢) € L? with t5(t), w§(w) € L>(R). The second is that we, essentially, can only
verify some sufficient conditions giving equality in (3.29). We, however, cannot show the same
conditions to be necessary. This is caused by the distribution nature of the Fourier derivative. To
prove the necessity of the conditions we have to assume the same smoothness conditions on s
and the related objects as we do in Theorem 2.2.

Proof. By recalling Lemma 3.5, we have

02 = / (Dp)*(r)dt + /[(Dw)(t)—<w)]2pz(t)dt-

As in the proof of Theorem 2.2, to prove the inequality (3.29) it suffices to prove

+00

/ (e = 0)’[so] ar / (Dp)z(ndt% (3.30)
and
+00 o0
/ (t — (0)°|s@)| ar / [(De)(1) — ()]’ (1) di

+o00 2
>{ /\r—<r>||<D¢>(r>—<w>||s(r>|2dr} : (3.31)
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We first prove (3.30).

By Lemma 3.3, we may assume that so(¢) is an absolutely continuous function that is equal
to s(t) almost everywhere. Then, for two particular sequences of numbers, M,,, N, tending to
infinity as n — oo,

— 00 2
1 1

- —Q

_1 00 2
— 5/|s0(t)|2dt:|

- —0o0

= nglgo— / |so(®)] dt:|

2
1 - -
flfvn}—nlin;o[i / (t—(t))[s{)(t)so(t)+so(t)s()(t)]dt”

—N,

2
(r = ) [s5 @50 + s0(t)s(1)] dr}

17 2
=1= /(t—<t>)[(Ds)(t)@+s(t)(Ds)(t)]dt}

2
_|! (Ds)(1)  (Ds)(D)
{5 [ -kl ST S e }
R\E
D
=1 [ e mlsololre 220 0 )
R\E

N

¥ 2
/ (e - (t))p(t)(Dp)(t)|dt}

- —00

o0

f|(r—<r>)p(r)|2dt f |(Dp) [ dr,

N

where E = {t e R | s(t) #0}.

The proof of (3.31) is the same as that for Theorem 2.2, except that we need to replace ¢’ (r)
with (D) ().

It is clear that the four types of signals in the statement of the theorem give equality in (3.29).
When consider necessity of the four types, the assumptions that s’(z), p’(r) and ¢’ (¢) all exist in
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the classical derivative sense, and ¢’(¢) is continuous, and p is almost everywhere non-zero are
needed. In the case

(Dp)(1)=p'(t) and (De)(t) =¢'(1).
Based on these assumptions, the same proof as in that of Theorem 2.2 is valid. O
4. Hardy-Sobolev derivative and uncertainty principle

In this section we will be working in Hardy spaces. For an introduction to these spaces
see [13]. We adopt the Hardy—Sobolev spaces decomposition technique developed in [7] and [6].
Some closely related work may be found in [5].

Ifse L%(R), then we have Hardy—Sobolev decomposition (see [6]) s = s+ + s—, where

11 +o0
si(t)zﬁ/ei’wﬁ(w)dw
0

and

oo

+1 s(u)

WO =0 ] iz
—0o0

du, ze€ Cc*.

The decomposition is orthogonal and unique. In [7] we show that s4(z), s/, (z) € H 2(C*), where
H?*(C*) and H*>(C™) denote the H? Hardy spaces in the upper-half and lower-half complex
planes.

Below we define a new type of derivatives, called Hardy—Sobolev derivatives [6].

Definition 4.1. If 5(t) = p(t)e'*") € L3(R), then the Hardy-Sobolev derivatives of s(t), p(t)

and ¢(¢) are defined to be
sl (1) +s_(t) if s/, (¢) and s”_(¢) are defined,
0 if s, () or s”_(z) is not defined,

s*(t)z{

st ()+s" (1) .
0 (1) = pORe[Ta—m] ifreR\L,
0 iftelL,

and
s (O+sL (D)

0 iftelL,

where L = {r € R | at least one of sy (r), s_(r), s(t), ors’ (¢) is not defined; or s, (r) +
s_ (1) =0},

Note that the above definition is based on non-tangential boundary limits of functions in the
Hardy spaces and hence the respective Hardy—Sobolev derivatives are uniquely defined without
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using any representative of the L? functions. We also note that if a function s(¢) = p(t)ei‘”(’ ) e
L%(]R) has the classical derivatives s'(¢), o' (f) and ¢’ (¢), then the Hardy—Sobolev derivatives of
s(t), p(t) and p(¢) coincide with the classical ones [6].

In [6], there are corresponding results about the mean of Fourier frequency and bandwidth.

Lemma 4.2. Assume s(t) = p(t)e'?® ¢ L%(R) and ||sll2 = 1. The mean Fourier frequency is
identical with

() = / @* (1 p*(t) dt, (4.32)
and the bandwidth
g = / P2 (1) dt + f [0*(t) — (@) 0% (@) 1. (4.33)

Theorem 4.3. Let s(t) = p()e'") € L}(R), zs+(z) € H*(CE), and ||s||> = 1. Then,

1
Gt20£>z+|: /

—00

2
(= ) (0™ @) — (@) | 0> (@) dt:| . (4.34)

Ifs(t) = p(t)e'?D has the classical derivatives s'(t), ¢' (1), p'(t), ¢'(t) is continuous, p(t) is a.e.
non-zero, then the equality holds if and only if s(t) has one of the following four forms, namely,

s(t) = o~ T U= 1 il (1= (1) 4 @)1+ ]

9

s(t) = ef%(tf(t))2+d1ei[—zl—g(t—(t))2+(w)t+d3]’

o~ T A= 1 il L (1= (1) >+ {w)t+da) ift> ),
S(Z) = 1 2 . 1 2
e TN il — 5 (1= (1) +Hw)t+ds] ift < (1),
or
o~ P il =L (1= (1)) + (@) 1+ do) ift > (1)
s(t) = ’
e

_%(l—<t>)2+dlei[zl—g(t—(l>)2+(w)t+d7] lf[ < ([),

for some i, da. d3, da, ds, dg, d7, € € R, ¢, & > 0, where 1[5 = 1.

Proof. Besides replacing (D¢)(t) and (Dp)(t) with ¢*(¢) and p*(¢) in the proof of Theorem 3.6
the only essential difference is the proof of the inequality

o8]

/(t—(t))2|s(t)|2dt/p*z(l‘)dl>

—00

ENgS
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We proceed as follows:

(1 7 2
2
1= Efys(z)| dz}
- —00

x 2
1 _—
=13 f [S+(t)+S—(t)]s+(f)+s_(t)dt:|
1 r 2
zylvii%M,l,iVIEw{g /[S-hy(t)+S—,—y(t)]S+’y(l)+S_,_y(t)d[}

—-N

1
=1lim lim {—(l — ) [543 () + 5 —y ()]s () + s_,_y(t)WN

y—=>0M,N—o | 2
| M

- /(t— O)[(5hy O + - ()57 T 53—y D)
—N

2
+ (5. (0 +5- —y ()5 (1) + s’_,_y(t)]dt}

2
(t = N[ (@) + 52 @) s (@) + 5s— (1) + (s4-() +5-(1))s' (1) + 5. (1) ] dt}

NSRR

Il
e, — e,

N =

é\g é\g

S0 45 (1) s/+<t>+s/_(r)} dtr

(1 =) [s+® +s-O]s () + S‘(t)[sm) 0 noo

I
|
g 2T—g

(t— )]s+ +s(t)}2Re{

S0 45 (1) } i
Sy () +s-(t)

r 2
L)+ s (t
< __/ [t = (0)]Js:(8) + 5 ()]s (1) + 5] Re{%”m}
oo oo L)+ /_[
g_{o (t_(t>)2|s+(t)+s(t)‘zdt_i‘“(twrs(t)‘zRez{%}
= f(t—(t))2|s(t)}2dtfp*z(t)dt. 0

Remark 4.4. There is an error in the proof of uncertainty principle in [7]. In [7] we thought
that the condition s(¢), § € L%(R) would imply zs+(z) € H Z(Ci), the latter being necessary in
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the proof of uncertainty principle in [7], and we gave a wrong proof. A counter example is as

follows. Let (1) = ﬁ Then s(1), £5(1), §(w), w$(w) are all in L2(R). We have s4(z) = 1%1 €

H?(C%), but zs(z), for instance, does not belong to H2(C1).

Remark 4.5. To avoid using zs+(z) € H>(C?F) in the proof of the uncertainty principle, The-
orem 3.6 uses, instead, the Fourier transform derivative, and obtains a stronger uncertainty
principle than that in [7]. In Theorem 4.3, by assuming zs+(z) € H>(C¥) we obtain the same
stronger form of uncertainty principle for the Hardy—Sobolev derivative.

Remark 4.6. Hardy—Sobolev derivatives are concrete representatives in the precise point-wise
value sense of the corresponding distributional derivatives. The respective phase derivatives are

. &t
just formal formulations Im[ xR\ 7 u&%] and Im[XS;é();é—;)]. With Theorem 4.3, the cost of
the precise point-wise expression is the condition zs+(z) € H 2(0).
5. Uncertainty principle for self-adjoint operator

Let H be a Hilbert space with inner product (-,-) and with norm | - || £ (~,~)%. Let A, B be
two self-adjoint operators on H, with domains D(A) and D(B). Then the domain of the product
AB is

D(AB) ={s € D(B): Bs € D(A)},

and likewise for D(B A). The commutator and the anticommutator are, respectively, defined as

[A,B]£AB—BA onD([A, B])=D(AB) N D(BA),
[A,Bl+ £ AB+BA onD([A, Bly)=D(AB) N D(BA).

Definition 5.1. Let s(r) € L2 and A, B be two self-adjoint operators on L2, with domains D(A)
and D(B). Then the mean of the operator is defined by

(A)s = (As, s) =/§As dt, (5.35)
and the variance is
o3 2((A- (A)SI)2)=/§(A — (A1) s dt, (5.36)
and the covariance of operators A and B is defined by

1
COVA,B(S) £ §<AB + BA)y — (A)s(B)s
1

= 5([A. Bl4), = (A)s(B)s
1
= 5[4~ (A)1. B~ (B)1],). (5.37)

where [ is the identity operator.
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Lemma 5.2. (See [3].) Let s(t) € L? and B be a self-adjoint operator on L? with domain D(B).

Then
2
a,%@):/[lm(i )} ls(@)] dt—i—/[Re(%) —(B)s] ys(,)|2dz,

where Im(%) and Re(%) denote, respectively, the imaginary part and real part of %.

Proof.

ag(s)zfs(_t)(B — (B),)s(t)dt

/| s(t)| dt

= f |Bs(t) — (B)ys(0)[*dt

B Bs(t) 2

‘f<s(z> _<B>S)s(t)

_/ Bs(t) 2

)] s@)
Bs Bs 2 2

2/ Im( - )} ls(@)| dt—i—/[Re(T) —(B)s} ls(0)|"dt. O

Theorem 5.3. Let A, B be two self-adjoint operators on L2, with domains D(A) and D(B).
Assume that s € D(AB) N D(BA) and (As)(Bs) =sABs. Then

“(2)-

The equality is attained if and only if there exist positive numbers ¢, € such that

1

a3 ($)o3(s) = (1A, BI), | + [/|As<r> — {A)s(0)]

2
1 B); |s(t)\dt} . (5.38)

Bs Bs
[(A—(A))s| = ;“Im(T)s = [Re(T) - (B){|s ) (5.39)
Proof. Since
2
ag(s)zf[lm(B )} ls@)] dt—i—/[Re(&) —(B)S] |s(t)|2dt,
s s
we need to prove the following two inequalities:
Bs 1
/[Im(Tﬂ |s@)|*dr o} > Z\([A B))|? (5.40)

and
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2
/[Re(?) - (B)S} |s@)|>dr o3 (s)
Re(ﬁ) — (B);
S

2
> U]As(z) — (A)ss(D)| ’s(t)|dt:| . (5.41)

Now we prove the inequality (5.40).

WV

2

)

2
/ [50Bs — s(Bs| A AW 4,

N

2

_ /[mBsM_Sﬂ —Bs(A- (A)S)si| di

2

f[s(_t)(A — (A)s)Bs —SB(A — (A))s]dt

2

fﬁ[(/{ — (A)s)B — B(A — (A))]s dt

2
(A, B1).|". (5.42)
To prove the inequality (5.41), we have

Bs
Re( > - (B>s
S

/|AS(I) — (A)ys (1))

|s(0)|dt
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2
</|As(t)— (A)ss(z)|2dz/[Re(?> _ (B)s} |s@)|* ar
5 Bs 2 2
:aA(s)/[Re(T> — (B)S:| ls()|"dt. (5.43)

Owing to the Holder inequality, the equality in (5.42) holds if and only if there exists a positive
number ¢ such that

Bs

(4= (a12)s] =¢]m( 2 )

and the equality in (5.43) is attained if and only if there exists a positive number ¢ such that

Bs
Rel — ) — (B)s [s].
s
Remark 5.4. It is of interest to consider the following question. Let A, B be two self-adjoint

operators on L?(R), with domains D(A) and D(B), and (As)(Bs) = sABs. Assume that [A, B]
is closable. Whether we have, for any s € D([A, B]) N D(A) N D(B),

Re(ﬁ) — (B)s
s

Pointed by [11] that a weaker form of the above relation is generally false. In fact, the counter
example constructed in [11] serves also as a counter example for the above relation. The problem
is that we are not sure whether for any s € D([A, B]) N D(A) N D(B) there exists a sequence
sp € D(AB) N D(BA) such that s,, — s, As, — As, and Bs,, — Bs. We, however, can show
that in case

)

|As(t) — (A)gs| =& m

o3(5)o3(s) = |([A, BI),|*/4

2
+ [/\(AS)(I) —(A)ss ()| |s(t)‘dt:| . (5.44)

As(t) =ts(t), Bs(t) = —is'(t),

then the uncertainty principle can be extended to the closure of [A, B], which, in fact, is il.
The latter is, in fact, an alternative proof of Theorem 3.6. We first note that [A, B] is densely
defined. Secondly, on a dense subset of L? we have [A, B] = il that is bounded. Therefore,
D[A, B]=L?, and [A, B] = il. The operators A, B themselves are self-adjoint on L*(R), with
domains D(A) and D(B). Since self-adjoint operators are dense and then closable (see [19]), we
are with the understanding that A = A, B = B. The conditions s € D[A, B], s € D(A) and s €
D(B) amount s € L2, ts(t) € L2, Ds € L*>. Now we show that for s € D[A, B] N D(A) N D(B)
we can find s, € D([A, B]) satisfying s, — s, 5, = Ds, t5,(t) — ts(¢). We take, for instance,
h be the heat kernel, and €, — 0+. Then 4, (¢) = éh(é) is an approximation to identity. Let

Sn =hy % s. Then s, — s in L2. (s/)(w) = (i®)h, (w)§(w) and k, being bounded and tending
to 1 imply that s, — Ds (the Dominated Convergence Theorem). To show ts,(¢) — ¢s() in L2,
we first have the decomposition

tsp(t) = /(r —why(t —u)s(u) du + / ho(t — wyus(u) du = I} (1) + I2(1).
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Then, in the L2 sense,

lim I'(r) :/uhn(u)dus(t) =0,
n—>oo
and
lim 12(r) =ts(r)
n— o0
(see [18]). The above proof is valid for any even kernel # with the extra integrability condition
th(t) e L.
In a similar way, from Theorem 5.3, we can also obtain Theorem 4.3. In the case we take
Yn = O+, s, = 54y, + 5— _y,. Note that the s, are essentially Poisson integrals, and hence
sp — 5. In the proof of s, — s/, + s = s*, along with an application of the Dominated Con-
vergence Theorem, we use the Sobolev space assumption. The proof of s, (f) — #s(¢) uses the
condition zs+(z) € H 2(C#*), and, in applying the Dominate Convergence Theorem, uses the
property that any maximal function of a Hardy H? space function belongs to the L? space on
the boundary, 1 < p < oco.
Essentially, the above extensions of Theorem 5.3 for the case As(t) =ts(t) and Bs(t) =

—is’(¢) are the extensions of Theorem 2.2 to Theorem 3.6 and Theorem 4.3.

Example 5.5. We take
1 /
As(t) =1ts(t), B=—-5'(t)
i

for all s(r) = p(t)e'*® e L2(R) with ts(¢), s'(r) € L*(R), where s'(¢), ¢'(t) exist as classical
derivative, and ||s||; = 1. Then

a3(s) =((A = (A)s1)?), =/§(A— (A)sl)zsdtzf(t — (A)) IsPdt,
o3 (s) =/§(B — (B)1)sdt
1, 1
:/(l—.s t) — (B)Ss> =5'(0) = (B)ss di
= /(wf(a)) - (B)s§)w§(a)) —(B)sSdw

:/(a)— (B)s) 1512 doo,

([A, Bl), =((AB — BA)s, s)

1, 1 1, 0\
=/<t-—.s(t)——.-s—7~ts(t)>sdl

l l l
=/<—1>|s|2dr=—l||sn2,

l l
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f|As — s| Re< > B);
=/|ts = (0)s]|¢/(®) = (B)s|Is|dr

_ / (6 — (A)) (@ (1) — (B)s) s d.

and

|s|dt

Applying Theorem 5.3, we have

/(z - (A)S)2|s(t)|2dt/(w— (B)s)|3(@)]* do
2
[/| t—(A)) (9" (1) — )S)Hs(r)fdz] : (5.45)

The formula (5.45) coincides with the result of Theorem 2.2.

Example 5.6. Now we consider the operators A; and B; on L%(R), defined by
Aps()=1%s(t) and Bys(t) = sV ()

for arbitrary but fixed k,l € N, with D(Ay) = {s € L*(R): xks(t) € Lz(R)} and D(B;) ={s €
L2(R): sO(t) € L3(R), |Is]l2 = 1}. Then we have

([Ak. B) = /E(Asz — BjAp)s dt

min{k,l}

k!
N SR Sy N(E)
(— 1)/ Z cj - ek dt
min{k,l} k!
(=l J . : sik—j A—7))
=—(—i) 2} C; (k—n)!/St Ts=1) ds.
]:

Applying Theorem 5.3, we obtain

1
/ (% — (Ag)s)IsPdr / ‘ﬁs(l)(’) — (Bi)ys
min{k,/}

. k! o
> - /Etk_’s(l_])dt
k—n)!

j=1
(i - <Ak>x)|:Re<%> - (B[)S]

|

where s € D(ArB;) N D(B;Ay).

2
dt

2
1

4

=

2
\s(t)]zdt} ,
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