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Mathematical theory of signal analysis vs. complex

analysis method of harmonic analysis

QIAN Tao1 ZHANG Li-ming2

Abstract. We present recent work of harmonic and signal analysis based on the complex Hardy

space approach.

§1 Introduction

Professor Gong Sheng shared with the first author his view: “On the unit circle it is harmonic
analysis, and inside the unit circle it is complex analysis” ([16]). This is, in fact, common sense
among analysis. In general, we regard the following as what we mean by complex method of
harmonic analysis. Suppose that one is to study analysis on a closed and finite-dimensional
manifold. One can then imbed the manifold into a space of one more (or several more) dimension
(dimensions) with a complex analysis structure, and, in such way, one treats the manifold
understudy as a co-dimension 1 (or co-dimension p) space. By a complex structure it means
that there exist a Cauchy kernel and a Cauchy formula, and the related complex analysis
objects. With the complex structure one can define Hardy spaces of good complex holomorphic
functions in the regions enclosed by the manifold. Functions on the manifold then can be split
into a sum of the boundary limits of the related Hardy space functions. Those boundary limits
constitute boundary Hardy spaces. Such idea was, in fact, taught by M.-T. Cheng and D.-G.
Deng when the first author was in his Ph.D. program in Beijing University around 1980. It
is also hinted by the book of Gorusin translated by Jian-Gong Chen ([17]). The author also
learned this idea from the works by C. Kenig and, separately, by A. McIntosh on complex Hardy
spaces and singular integrals on Lipschitz curves and surfaces. This article gives a survey on the
results that the authors and their collaborators obtained by implementing the complex analysis
approach to signal analysis.

It has been a controversial issue to the present time about what is instantaneous frequency
(IF), or, in brief, frequency. People tend to believe for a general signal there is a certain frequency

Received: 2013-10-16.
MR Subject Classification: 42A50, 32A30, 32A35, 46J15.
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at any moment of time. This belief is hinted and supported by sinusoidal signals that possess
the constant frequencies. To justify this idea is to define what is frequency. For a general
signal a well acceptable and reasonable way to define instantaneous frequency has not been
found. Our view is that there does not exist a frequency concept for a general signal. Our work
proposes a definition under which some signals have well defined instantaneous frequencies, and
some not. Signals possessing IF are called mono-components, and otherwise, multi-components.
For multi-components one seeks for mono-component decompositions. We now review the story
started from Gabor.

In 1946 Gabor proposed his analytic signal approach ([15]). Throughout this article we
restrict ourselves to only signals with finite energy, or L2-functions. Let s(t) be a real-valued
signal of finite energy. The associated analytic signal, denoted by s+(t), is defined as

s+(t) =
1
2

(s(t) + iHs(t)) ,

where H is the Hilbert transformation. We note that analytic signals are non-tangential bound-
ary limits (the Plemelj formula) of Hardy space functions in the related domain, the latter con-
sisting of holomorphic functions with good control close to the boundary. For the real line case
the related domain is the upper-half complex plane. The Hardy space functions in the domain
are given by the Cauchy integral of the signal s(t) on the boundary. We note that through out
the paper, except in the final section for multivariate signals, we use the terminology Hardy
space only for the complex Hardy H2 spaces in either the contexts inside or outside of the unit
disc, or the contexts of the upper- or lower-half complex planes. There are essentially parallel
theories in the four contexts. We will feel free in below to switch from one context to another.
From paragraph to paragraph we will make sure that we give clear indication to which con-
text we are referring. We will use the notations L2(R), H2(C+), L2(∂D), H2(D), etc., where
R,C,D and C+ denote, respectively, the real line, the complex plane, the unit disc and the
upper-half- complex plane. When we use H2 and L2 we mean that we refer to all the four
contexts.

On the real line, the Fourier transform of Hs is −isgn(·)ŝ(·). As consequence, the Fourier
transform of s+ is supported on [0,∞), and, in particular,

s+(t) =
1
2π

∫ ∞

0

eitξ ŝ(ξ)dξ.

This shows that s+ is a “linear combination” of some terms of non-negative frequencies, viz.,
of those eitξ with ξ ≥ 0. It hence has reason to believe that in a single-term-amplitude-phase
representation, viz., s+(t) = ρ(t)eiθ(t), one should have that the phase derivative of s+, or
alternatively, the analytic phase derivative of s, satisfies θ′(t) ≥ 0. But, unfortunately, this is
not true. To make clear the terminology, we note that if s = s+, then s++ = s. This amounts
that analytic phase derivatives of boundary values of the Hardy space functions coincide with
the phase derivatives of the functions. It is a fact that phase derivatives of any non-trivial
analytic outer function are negative in a set of positive Lebesgue measure [26]. Such examples
can be simply constructed as follows. Consider a fractional linear transform, f, in the complex
plane that maps the unit disc centered at the origin onto a disc that dose not contain the origin
in its topological closure. Restricted to the unit circle the mapping has an amplitude-phase
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representation f(eit) = ρ(t)eiθ(t). One observes that θ(t) is not a monotone function in the
range [0, 2π] when t traverses from 0 to 2π. But, instead, in an interval the phase derivative
strictly increases and in an adjacent interval strictly decreases. This implies that the phase
derivative θ′(t) changes sign in a pair of adjacent open intervals, and, in particular, negative
in an open interval. Such functions can be constructed from their corresponding real parts by
Gabor’s analytic signal method.

Why positivity of frequency of a signal is important? The primary importance is that the
frequency concept is generated from physical practice: it is an extension of vibrating frequency.
Secondly, the positivity has a great significance in signal analysis. For instance, the mean of
frequency of a real valued signal is zero if we do not restrict to positive frequencies, that makes
the mean concept to be useless.

We note that the Hilbert transformation in various contexts play a crucial role when dealing
with boundary values of holomorphic functions. We adopt the definition of Hilbert transforma-
tion from S. Bell ([3]). Suppose that we deal with a simply-connected domain Ω in the complex
plane. Let f be a holomorphic function in the domain. Assume that f has a non-tangential
boundary limit, while this is always true when f is in the Hardy space of the domain. Denoting
the boundary limit of f by f = u + iv, where u and v are scalar-valued. Then the Hilbert
transformation H is defined through H : u → v, or v = Hu. This mapping in some cases should
modulo a constant. In different contexts the Hilbert transformation has different representa-
tion. On the real line it is given by the principal value singular integral with the kernel 1

π
1
t ,

or, in the inverse Fourier transform formulation, given by the Fourier multiplier −isgn(ξ). In
the unit circle case it is the so called circular Hilbert transformation, or induced by the same
Fourier multiplier via Fourier series expansion. The general Hilbert transformation on mani-
folds in higher dimensional Euclidean spaces may be defined similarly via the Clifford algebra
formulation ([1], [46]).

The first task of the study is to find a pool of the functions that have non-negative analytic
phase derivative. Precisely, we are to find signals s(t) ∈ L2 such that s+(t) = ρ(t)eiθ(t) has
non-negative phase derivative, viz., θ′(t) ≥ 0. We call such signals s mono-components or
real-mono-component, and, without ambiguity, call s+ mono-component, too, and sometimes
complex-mono-component [27], [28].

Definition 1. (Tao Qian 2006) Let s be a real- or complex-valued signal with finite energy.
We call s a mono-component if its analytic signal, or its projection into the Hardy space H2,

viz., s+(t) = 1
2 (s(t) + iHs(t)) , in its phase-amplitude representation s+(t) = ρ(t)eiθ(t) satisfies

θ′(t) ≥ 0, where the phase derivative θ′(t) is defined through the non-tangential limit of the
same quantity but inside the region. Precisely, in the unit circle case,

θ′(t) = lim
r→1−

θ′r(t), s+(reit) = ρr(t)eiθr(t), 0 < r < 1;

and, in the upper plane case,

θ′(t) = lim
y→0+

θ′y(t), s+(t + iy) = ρy(t)eiθy(t), y > 0.

s is called a normal mono-component if it is mono-component and, further more, there exists
1 > δ > 0 such that θ′r(t) ≥ 0, if for all t and 1 > r > 1 − δ, in the unit disc case; or exists
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h > 0 such that θ′y(t) ≥ 0, if for all t and 0 < y < h, in the upper-half plane case.
We note that if s is a real-valued signal, then s = 2Res+ or s = 2Res+− c0 in the respective

two cases. This, in particular, shows that an approximation to s+ leads to an approximation
of s.

There was a march to find various types of mono-components by several research groups.
The group led by Yue-Sheng Xu at Syracuse University was among the first to study the
related subjects. Many of the researchers, including Xu’s group, were motivated by Norden
Huang’s algorithm EMD (Empirical Mode Decomposition) ([18]). The clearly exposed idea
of adaptive decomposition of signals into basic signals of positive frequency in the paper is
brilliant, and, as a matter of fact, has been motivating many studies. From the mathematical
point of view, however, there are mainly two obstacles with EMD: One is the convergence of
the algorithm, and the other is analytic property of the obtained “basid signal” IMF (Intrinsic
Mode Function): It is claimed by [18] that IMFs are what we defined mono-components, but
actually not the case, proved by [48]. In [48] it is shown that an IMF does not necessarily
possess a.e. non-negative analytic phase derivative. In principle, since the algorithm throws
away errors of unknown types, the convergence is a problem, and the resulted signals cannot be
guaranteed to have good analytic properties. It is an engineering algorithm to obtain a discrete
signal from discrete data. Besides Syracuse University, researchers in Beijing University, Beijing
Normal University, the Chinese Academy of Sciences, Hubei University, University of Macau,
Zhongshan University, etc., also participated to the march of finding mono-components.

To the author’s knowledge it was Yuesheng Xu who first proposed, around 2005, to charac-
terize all the amplitude functions ρ ≥ 0 in a mono-component signal ρeiθ in which the phase
signal itself, viz., eiθ, is already a mono-component ([58], [24]). The characterization is in terms
of the phase function θ. This can be interpreted as amplitude retrieving problem (See Subsec-
tion 5 below). The product form of the amplitude-phase representation leads to a new phase
of the study of Bedrosin identity that deals with the conditions on f and g to ensure

H(fg) = fHg,

where H is the Hilbert transformation of the context. Indeed. a signals f is an analytic
signals if and only if Hf = −if. If we already have H(eiθ) = −ieiθ, in order to also have
H(ρeiθ) = −iρeiθ, a sufficient condition is H(ρeiθ) = ρH(eiθ). This question now is better
understood, and a complete solution can be drown when the phase signal eiθ is from a Blaschke
product. For general inner functions this is still open. Qian’s result in 2009 [26] shows that
if eiθ is the non-tangential boundary of an inner function, then θ′ > 0, a.e. The proof is an
application of the Julia-Wolff-Carathéodory Theory. We have
Theorem 1. (Tao Qian 2009) Let θ be a Lebesgue measurable function. Then the phase
function eiθ is a mono-component if and only if eiθ is the non-tangential boundary limit of an
inner function, or, equivalently, if and only if H(eiθ) = −ieiθ.

The above theorem is valid in both the unit circle and the real contexts.
Instead of listing all the important references in relation to the recent developments of

Bedrosian identity studies I list the main relevant authors. An incomplete list includes, in the
alphabetical order, Q.H. Chen, T. Qian, L.H. Tan, R. Wang, S.L. Wang, Y.S. Xu, D.Y. Yan,
L.X. Yan, L.H. Yang, B. Yu, H. Z. Zhang. However, only a moderate percentage of the relevant
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literature devote to solve the mentioned mono-component problem ([59], [45], [50], etc.). Most,
in fact, develop their own interests in finding out conditions for the Bedrosian identity. We
have the following basic result: If the phase function part is from a finite or infinite Blaschke
product, then the desired amplitude part has to be in the closure of the linear span of the
related Takenaka-Malmquist (TM) system, that is a backward-shift invariant subspace of H2

([54]). Precisely, we have

Theorem 2. If

eiθ(t) =
∞∏

k=1

−ak

|ak|
eit − ak

1 − akeit
,

then ρ(t)eiθ(t) ∈ Hp(D), 1 ≤ p ≤ ∞, if and only if

ρ ∈ spanp{Bk}∞k=1,

where

Bk(z) =

√
1 − |ak|2
1 − akz

k−1∏
l=1

z − al

1 − alz
.

Note that a TM system is orthonormal under the inner product

< f, g >=
1
2π

∫ π

−π

f(eit)g(eit)dt

([56]). It becomes a basis in H2 if and only if the non-separable hyperbolic distance condition

∞∑
k=1

(1 − |ak|) = ∞ (1)

holds. A basic function Bk in a TM system, called a weighted Blaschke product, consists of
two parts of which one is a Blaschke product

∏k−1
l=1

z−al

1−alz
, being a product of k − 1 Möbius

transforms that is a mono-component, and the other part is the classical Szegö kernel, being
an outer function. Szegö kernel is the reproducing kernel of the Hardy H2 space. A detailed
analysis show that if al = 0, then all the basic functions Bl, Bl+1, . . . , Bl+k, . . . are mono-
components.

The stated result for infinite Blaschke products gives rise to sufficient and necessary con-
ditions on real and non-negative amplitudes ρ for ρeiθ being new mono-components ([54]).
The relation between weighted Blaschke products and p-starlike function in complex analysis
functions are indicated in [55].

A great variety of mono-components can be identified based on Theorem 1 and the Bedrosian
identity results. The next question is how to express a signal in terms of mono-components.
Before giving our answer we first draw the reader’s attention to some observations and argu-
ments. First, if a function f in the Hardy space H2(D), then we can show, for any given ε > 0,

there exist two mono-components, m1 and m2 such that([34])

‖f − (m1 − m2)‖2 < ε.
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We show that m1 and m2 can be chosen as boundary values of starlike functions. The
construction of the approximating starlike functions do not reflect any frequency nature of the
function f being approximated. This shows that seeking for “arbitrary fastest” decomposition
without restricting to a certain type of mono-components does not contribute to understanding
of frequency. On the other hand, if a decomposition is restricted to a certain type of mono-
component and requires to have a small number of terms, then the decomposition is stable: the
extremal case is, if a function itself is a mono-component of such type, then the decomposition
into a single mono-component term will be unique. Based on such observation one would restrict
to certain type of mono-components, and at the same time seek for fast decomposition. For a
practical multi-component a best decomposition up to some fixed n terms should be unique.

Below we give three types of mono-component decompositions. They are all based on
weighted Blaschke product type, and give rise to fast decompositions. They are of of individual
merits in signal analysis. Approximating by using rational functions cannot avoid TM systems.
TM systems have the advantages of simplicity and adaptability. A weighted Blaschke product
Bk is often a mono-component; and, if not, can be easily modified to become a mono-component.
It is based on the fact that the analytic phase derivative of each of its factor Möbius transforms
is a Poisson kernel ([25], [32]).

Division of work between the two authors is as follows. The first author is responsible for
the basic writing of the paper, while the second author is responsible for all the experiments
with diagrams.

§2 Mono-component decompositions of the AFD type

1. AFD (Core AFD)
We use the abbreviation AFD for Adaptive Fourier Decomposition. AFD adaptively uses

the TM system: the parameters ak are selected according to the signals to be decomposed.
By AFD a signal is decomposed in a fast way into a sum of mono-components or pre-mono-
components. By a pre-mono-component we mean a signal that becomes mono-component after
being multiplied an exponential function of the form exp iMt with some M > 0. For any
parameters a1, . . . , al in the unit disc, all Bk, k = 1, . . . , l, are pre-mono-components. If ak = 0,

then Bk, Bk+1, . . . , are mono-components. If all a1, . . . , al, . . . are zero, then the corresponding
TM system becomes Fourier.

Suppose we are given a signal f in the Hardy H2(D) space, that is f(z) =
∑∞

l=1 clz
l,∑∞

l=1 |cl|2 < ∞. Now we seek for a decomposition into a TM system with adaptively selected
parameters. We will use the collection of the functions

ea(z) =

√
1 − |a|2
1 − az

, a ∈ D

which are normalized Szegö kernels of the unit disc in which a is a parameter. Set f = f1. First
write the identity

f(z) =< f1, ea1 > ea1(z) +
f1(z)− < f1, ea1 > ea1(z)

z−a1
1−a1z

z − a1

1 − a1z
.
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We note that in this step a1 can be any complex number in the unit disc. The above can be
further written as

f(z) =< f1, ea1 > ea1(z) + f2(z)
z − a1

1 − a1z
(2)

with

f2(z) =
f1(z)− < f1, ea1 > ea1(z)

z−a1
1−a1z

.

We call the transformation from f1 to f2 the generalized backward shift via a1 and f2 the
generalized backward shift transform of f1 via a1. The notion is related to the classical backward
shift operator

S(f)(z) = a1 + a2z + · · · + ck+1z
k + · · · =

f(z) − f(0)
z

.

Recognizing that f(0) =< f, e0 > e0(z), the operator S is generalized backward shift operator
vis 0.

In the decomposition f2 is called a reduced reminder. The purpose now is to extract the
maximal energy portion from the term < f1, ea1 > ea1(z). The energy of the latter, due to the
reproducing kernel property of ea, is given by

‖ < f1, ea1 > ea1‖2 = (1 − |a1|2)|f1(a1)|2.

The orthogonality between the two term in the right hand side of (2) and the unimodular
property of Möbius transform on the circle imply

‖f‖2 = (1 − |a1|2)|f1(a1)|2 + ‖f2‖2.

This shows that to minimize the remainder ‖f2‖2 is to maximize (1 − |a1|2)|f1(a1)|2.
Fortunately, one can show that there exists a1 in the open disc D such that

a1 = argmax{(1 − |a|2)|f1(a)|2 : a ∈ D}

([36]). The existence of such maximal selection is called Maximal Selection Principle. Under
such a maximal selection of a1 we call the decomposition (2) a maximum sifting. Selecting such
a1 and repeating the process for f2, and so on, we obtain

f(z) =
n∑

k=1

< fk, eak
> Bk(z) + fn+1

n∏
k=1

z − ak

1 − akz
,

where for k = 1, . . . , n,

ak = arg max{(1 − |a|2)|fk(a)|2 : a ∈ D},

and, for k = 2, . . . , n + 1,

fk(z) =
fk−1(z)− < fk−1, eak−1 > eak−1(z)

z−ak−1
1−ak−1z

.
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It can be shown that

lim
n→∞ ‖fn+1(exp(i·))

n∏
k=1

exp(i·) − ak

1 − ak exp(i·)‖ = 0.

There holds the following theorem.

Theorem 3. For any give function f in the Hardy H2 space, under the maximum sifting
process we have([36])

f(z) =
∞∑

k=1

< fk, eak
> Bk(z).

The following relations are noted:

< fk, eak
>=< gk, Bk >=< f, Bk >, (3)

where gk is the standard reminder:

gk(z) = f −
k−1∑
i=1

< fi, eai > Bi(z).

Remark 1. We note that the selected parameters a1, . . . , an, . . . in AFD do not have to satisfy
the condition (1), and the induced TM system {Bk} may not be a basis. The decomposition
process exhibit that one is not interested in whether the resulted system is a basis, but interested
in whether it can expand the given signal f. One is indeed able to do so, and, in fact, achieves
fast convergence.

Remark 2. If we choose a1 = 0, then all Bk are mono-components, and AFD offers a mono-
component decomposition. For arbitrary selections of a1, . . . , an, . . . , we arrive a pre-mono-
component decomposition, of which after multiplying eit all entries in the infinite sum become
mono-components.

Remark 3. Based on the same dictionary of Szegö kernels AFD is different from greedy
algorithm or orthogonal greedy algorithm in two aspects. One is that at every step we can
get a maximal energy portion but not α time of it as in greedy algorithm situation. The
second is that we can repeatedly choose the same parameter if necessary to get best possible
approximation. Using a cyclic AFD algorithm we can get a conditional solution to the n-best
rational function approximation (see subsection 3).

Remark 4. The convergence rate for AFD is 1/
√

n where n is the order of the approximating
AFD partial sum. One has to note that this is a convergence rate for bad functions, includ-
ing those being discontinuous. This convergence estimation, therefore, has a different nature
compared with the traditional convergence theorems: the latter are for smooth functions.

Several other mono-component decompositions are based on AFD. To emphasis this funda-
mental role we sometimes call the above defined AFD as Core AFD.

2. Unwending AFD

In DSP there is the following assertion: If f = hg, where f, g are Hardy H2(D) functions,
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Figure 1: Original signal and reconstructed signal of order 65 AFD decomposition
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Figure 2: Original signal and reconstructed signal of order 65 FD decomposition
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Figure 3: Original signal and reconstructed signal of order 210 FD decomposition
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and h is an inner function. Let f and g be expanded into their respective Fourier series, viz.,

f(z) =
∞∑

k=1

ckzk, g(z) =
∞∑

k=1

dkzk.

Then one has, for any n,
∞∑

k=n

|ck|2 ≥
∞∑

k=n

|dk|2

(see, for instance [8], [5]).

This amounts to say that after factorizing out an inner function factor the remaining Hardy
space function series converges faster. This suggests that in the above AFD process if one
incorporates a factorization process then the convergence becomes faster. This is reasonable:
when a signal by its nature is of high frequency, one should first “unwending” it but not extract
from it a maximal portion of lower frequency. We proceed it as follows ([29], [35]). First
we do factorization f = f1 = I1O1, where I1 and O1 are, respectively the inner and outer
function factors of f. The factorization is based on Nevanlinna’s factorization theorem. The
outer function has the explicit integral representation

O1(z) = e
1
2π

∫ 2π
0

eit+z

eit−z
log |f1(e

it)|dt
.

In the computation we find the boundary value of the outer function by using the boundary
value of f1 in which the above integral is taken to be of the principal integral sense. The
imaginary part of the integral reduces to the circular Hilbert transform of log |f1(eit)|. Next,
we do a maximum sifting to O1. This gives

f(z) = I1(z)[< O1, ea1 > ea1(z) + f2(z)
z − a1

1 − a1z
],

where f2 is the backward shift of O1 via a1 :

f2(z) =
O1(z)− < O1, ea1 > ea1(z)

z−a1
1−a1z

.

By factorizing f2 into its inner and outer factors, f2 = I1O2, we have

f(z) = I1(z)[< O1, ea1 > ea1(z) + I2(z)O2(z)
z − a1

1 − a1z
].

Next, we do a maximum sifting to O2, and so on. In such way we obtain the decomposition

Theorem 4. Under the assumptions as in Theorem 2, we have the unwending AFD decompo-
sition

f(z) =
n∑

k=1

k∏
l=1

Il(z) < Ok, eak
> Bk(z) + fn+1(z)

n∏
k=1

z − ak

1 − akz

n∏
l=1

Il(z),

where fk+1 = Ik+1Ok+1 is the backward shift of Ok via ak, k = 1, . . . , n, and Ik+1 and Ok+1
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are respectively the inner and outer functions of fk+1. Furthermore,

f(z) =
∞∑

k=1

k∏
l=1

Il(z) < Ok, eak
> Bk(z).

Remark 5. In most cases unwending AFD is automatically a mono-component decomposition
because of the inner function factors generated in the process. As in AFD we can manually
set a1 = 0 to guarantee that all the terms of the unwending AFD are mono-components.
Unwending AFD converges very fast. This is shown through comparison of the performances
of AFD, unwending AFD, double-sequence AFD, as well as Fourier series on singular inner
functions ([35]).
Remark 6. There are other AFD variations that first extract factor signals of high frequencies.
Those include a double-sequence unwending AFD ([39]) and one using what we call high-order
Szegö kernels ([40]). With a similar effectiveness as unwending AFD the algorithm of double-
sequence unwending AFD is, however, more complicated. The high-order Szegö kernel method
in [40] can get a maximal energy portion as AFD but with a suitable frequency level. It,
however, does not have a generalized backward shift structure.
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Figure 4: Original signal and reconstructed signal of order 5 Unwending AFD decomposition

3. Optimal approximation by rational functions of order not larger than n

AFD and unwending AFD offer fast decomposition of signals into mono-components. They,
however, are not fastest. They are of certain uniqueness only from the algorithm. Due to these
obstacles the question on simultaneous selection of n-parameters a1, . . . , an, in an approximating
n-Blaschke form, viz.,

n∑
k=1

< f, Bk > Bk(z),

arises. Simultaneous selection of the parameters but not one by one in a sequel certainly offers
better approximate to the given signal. Simultaneous selection of the parameters in an ap-
proximating n-Blaschke form is equivalent with the so called optimal approximation by rational
functions of order not larger than n. We phrase the problem as best n-rational approximation.
It is a long standing open problem till now, formulated as follows.
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Let p and q denote polynomials of one complex variable. We say that (p, q) is an n-pair if p

and q are co-prime, both of degrees less than or equal to n. Denote the set of all n-pairs by Rn.

If (p, q) ∈ Rn, then the rational function p/q is said to be a rational function of degree less or
equal n. Let f be a function in the Hardy H2 space in the unit disc. To find a best n-rational
approximation to f is to find an n-pair p1, q1) such that

‖f − p1/q1‖ = min{‖f − p/q‖ : (p, q) ∈ Rn}.

By using a so called cyclic AFD algorithm we can get a solution of the above mentioned
problem if there is only one critical point for the objective function ([30]). We call such a
solution a conditional solution. Besides cyclic AFD, to the author’s knowledge, there exists
another algorithm, RARL2, by the French institute INRIA, that also can only get a conditional
solution [2]. The theory and algorithm of cyclic AFD are both explicit. It directly finds out
the poles of the approximating rational function. The other rational approximation models
all use the coefficients of p and q as parameters in order to set up and solve the optimization
problem. Using coefficients of polynomials involves tedious analysis and computation. The
ultimate solution of the optimization problem lays on optimal selection of an initial status to
start with. Finding an optimal initial status itself is, however, an NP hard problem.

We will call
n∑

k=1

ckBk(z)

an n-Blaschke form where the parameters a1, . . . , an defining Bn are arbitrary complex numbers
in D. As shown in the literature, with an abuse of terminology, the parameters a1, . . . , an are
often called “poles” although they are, in fact, zeros. An n-Blaschke form is said to be non-
degenerate if cn 	= 0. It is easy to see that a non-degenerate n-Blaschke form is either an
n-rational function or an (n − 1)-rational function, depending on whether 0 is a pole of Bn.

This shows a little inconsistence with the notion of n-rational functions. If, instead, we work
on the parallel context outside the unit disc, then the set of all n-Blaschke forms coincides with
the set of all n-rational functions. Some researchers, including L. Baratchart, choose to work
in the context outside the unit disc. To simplify the writing we ignore the inconsistence and
still work on inside the unit disc.

For any given natural number n the objective function for the optimization problem is

A(f ; a1, . . . , an) = ‖f‖2 −
n∑

k=1

|〈f, Bk〉|2. (4)

Definition 2. An n-tuple (a1, . . . , an) is said to be a coordinate-minimum point of an objective
function A(f ; z1, . . . , zn) if for any chosen k among 1,. . . ,n, whenever we fix the rest n − 1
variables, being z1 = a1, . . . , zk−1 = ak−1, zk+1 = ak+1, . . . , zn = an, and select the kth variable
zk to minimize the objective function, we have

ak = argmax{A(f ; a1, . . . , ak−1, zk, ak+1, . . . , an) : zk ∈ D}.
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In the AFD algorithm we repeat the following procedure: Along with choosing a1, . . . , ak−1

in D, we produce the reduced remainders f2, . . . , fk. Then to fk we apply the Maximal Selection
Principle to find an ak giving rise to max{|〈fk, ea〉| : a ∈ D}. The Cyclic AFD Algorithm repeats
such procedure for k = n : For any permutation P of 1, . . . , n, whenever aP (1), . . . , aP (n−1)

are fixed from previous steps we accordingly and inductively obtain the reduced remainders
f2, . . . , fn, and, next, use the Maximal Selection Principle to select an optimal aP (n).

Denote by LMP a local minimum points, by CMP a coordinate-minimum point, and CP
a critical point of an objective function. Denote by LM, CM and C the sets, of, respectively,
all the LMPs, CMPs and CPs of an objective function. Then we have the following inclusion
relations.
Proposition 5.

LM ⊂ CM ⊂ C. (5)

The proposed cyclic AFD algorithm is contained in the following theorem.
Theorem 6. Suppose that f is not an m-Blaschke form for any m < n. Let s0 = {b(0)

1 , . . . , b
(0)
n }

be any n-tuple of parameters inside D. Fix some n − 1 parameters of s0 and make an optimal
selection of the single remaining parameter according to the Maximal Selection Principle based
on the objective function (4). Denote the obtained new n-tuple of parameters by s1. We repeat
this process and make cyclic optimal selections over the n parameters. We thus obtain a sequence
of n-tuples s0, s1, . . . , sl, . . . , with decreasing objective function values dl that tend to a limit
d ≥ 0, where, in the notation and formulation of (4) and (3),

dl = A(f ; b(l)
1 , . . . , b(l)

n ) = ‖f‖2 −
n∑

k=1

(1 − |b(l)
k |2)|f (l)

k (b(l)
k )|2. (6)

Then, (i) If s, as an n-tuple, is a limit of a subsequence of {sl}∞l=0, then s is in D; (ii) s is a
CMP of A(f ; · · · ); (iii) If the correspondence between a CMP and the corresponding value of
A(f ; · · · ) is one to one, then the sequence {sl}∞l=0 itself converges to the CMP, being dependent
of the initial n-tuple s0; (iv) If A(f ; . . . ) has only one CMP, then {sl}∞l=0 converges to a limit
s in D at which A(f ; · · · ) attains its global minimum value.

For further details including examples on cyclic AFD we refer the reader to [30].
Remark 7. Various types of AFD related signal expansions have applications in practices of
different areas. For applications in system identification, for instance, see ([22], [21]).
Experiments.

The experimental function is in the Hardy H2 space with non-trivial singular inner part
given by

f = (
1 − x2

(x − 3
2 )(x + 5

2 )
− 1

(x + 2)(x + 3)
)e( x−1

x+1 + x+i
x+i ).

With this example we compare performances of Fourier series decomposition (FD), Core AFD,
Unwending AFD and n-Best AFD. We also include comparison between their corresponding
time-frequency distributions (with FD replaced by Short Time Fourier Transform or STFT).
It is well known that convergence of Fourier series of Hardy space functions with non-trivial
singular inner parts is very slow. The experiments show that to reach a similar accuracy of
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Figure 5: Original signal and reconstructed signal of n-Best AFD decomposition for n=35

approximation of 65 iterations of Core AFD one needs to run 210 iterations of FD. To reach
almost the same accuracy one needs to run n-Best AFD for n = 35, and only run 5 iterations
of Unwending AFD (We note that electronic version of the pictures gives considerably better
illustrations of the accuracy comparison due to the easily seen colors). In the time-frequency
aspect we see that all of those give two peaks at almost the same time instants. They, however,
have different carrier frequencies. This can be understood. In fact, decomposition is not
unique. For instance, a mono-component can have many different decompositions into other
mono-components. By considering both aspects we recommend Unwending AFD: If a signal is
essentially of a certain frequency (or say to have a certain carrier frequency), then Unwending
AFD can first factorize the corresponding inner function. The approximation accuracy and
time-frequency representation of Unwending AFD can be further improved if computation of
the Hilbert transform can be improved: Circular Hilbert transform is encountered to work out
the corresponding outer function.

§3 The mathematical theory of phase derivative and its impacts to

digital signal processing

Signal analysis practice has been longing to have a frequency theory. Many signal ana-
lysts tend to believe that frequency, or instantaneous frequency, should be defined as the phase
derivative of a complex signal associated with the given real-valued signal. While this seems
to be reasonable, there, however, exist a number of obstacles associated with this idea. First,
how to associate a real-valued signal with a complex-valued signal so that we can well define
a frequency concept as the phase derivative of the complex signal. Gabor proposed his ana-
lytic phase derivative method through Hilbert transform of the signal. Ever since then, signal
analysts have been justifying the analytic signal approach through enormous experiments and
arguments, but till now there has been no major progress with this method. Gabor’s approach,
in fact, cannot be easily implemented due to at least two problems. One is that given a general
signal, how to mathematically define the analytic phase derivative. The point is that a signal it-
self is usually not smooth, and neither is the associated analytic signal. A general signal should



QIAN Tao, et al. Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis 519

be assumed to be only a function in the Lebesgue L2 space. L2 functions are not considered as
functions precisely and pointwisely defined. Functions that defer in their values in a Lebesgue
null set are considered to be the same L2 function. This completely rules out smoothness of
L2 functions. The phase derivative approach in such case amounts to get smooth objects from
non-smooth objects. When dealing with a discrete signal one methodology is to treat the data
as the Fourier coefficients through Z-transformation; and the other methodology is to treat
the data as sampling of a continuous or smooth signal. Both of these methodologies run into
the same smoothness verses non-smoothness problem. The following is a concrete example
concerning definition of such phase derivative. In L. Cohen’s book [7] he proves the following
formula

∫ ∞

−∞
ω|ŝ(ω)|2dω =

∫ ∞

−∞
θ′(t)|s(t)|2dt (7)

under the assumptions that s(t) = ρ(t)eiθ(t), and s, ρ(t) and θ(t) are all smooth in t and
‖s‖2 = 1. This formula gives a reason why phase derivative should, in general, be considered
as instantaneous frequency. The question is, for non-smooth signals s, for which the phase
derivative θ′ may not exist, in what capacity the above relation or a similar one would still hold
true?

The second problem is that although non-negativity of analytic phase derivative is desired,
it is not always available. The non-negativity of analytic phase derivative is necessary not
only because the physical meaning of the frequency concept, but also because that analysis of
positive and negative frequencies together sometimes does not give meaningful results. This can
be seen, for instance, from the mean of frequencies. If one does not require non-negativity, the
mean of Fourier frequency of any real-valued signal is zero. The task is to construct a coherent
analytic signal theory that solves the mentioned and not mentioned problems. The author
and his collaborators have built up such a theory. In the previous sections we introduced the
mono-component and mono-component decomposition theory. In this section we give a brief
summary on phase derivative vs. frequency and some related results.

From our study there are two cases in which we can define phase derivative. One is for
some classes of functions defined in complex analysis and the other is based on Sobolev space
conditions.
1. Inner and outer functions

If f is a function in the Hardy H2 space, then f has the following canonical factorization
decomposition, called Nevanlinna factorization:

f = OBS,

where O, B and S are, respectively, the outer, the Blaschke product and the singular inner
function part of f . Such classes of functions and the related factorizations are available for
all the concerned contexts: the unit disc and outside the closed unit disc, and the upper- and
lower half complex planes. The function I = BS is called the inner function part of f. For any
inner function Theorem 1 shows that its phase derivative as the limit of the same quantity but
from inside of the disc always exists, and be positive, if non-trivial. For the outer function part,
under certain conditions it exists, and has the zero-mean property. This shows that it should be
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sometimes positive and sometimes negative. Here “sometimes positive (sometimes negative)”
means that it is positive (negative) in a set of Lebesgue positive measure. There exist results
for amplitude derivatives, too. For details we refer the reader to [26].

The inner and outer function theory given by Theorem 1 gives a great impact to the theory
of all-pass filters, energy delay and signals of minimum phase [8]. It is noticeable that textbooks
of DSP claim that inner functions have positive phase derivative (see [5]), but this fact had never
been rigorously proved until the publication of Theorem 1 in [26].
2. Signals in the Sobolev spaces

For a function in the L2 space on the boundary one can proceed the Hardy space decompo-
sition, viz.,

s = s+ + s−.

The functions s± are holomorphic functions in the respective domains in which they are defined.
In the real line case the respective domains are the upper and lower half planes, and we have,
as a basic and important property of Hardy space functions,

lim
±y→0+

s±(x + y) = s±(x), a.e.

In order to make
lim

±y→0+
(s±)′(x + iy)

also exist a.e. it suffices that (s±)′ belong to the Hardy space H2(C±). Fourier analysis shows
that a sufficient and necessary condition for (s±)′ belonging to the Hardy space H2(C±) is that
s belongs to the Sobolev space

L2
1 = {s ∈ L2(R) :

d∗s
dt

∈ L2(R)},

where d∗
dt stands for the distributive derivative [11]. Under such condition we have non-

tangentially
lim

±y→0+
s±(x + iy), lim

±y→0+
(s±)′(x + iy)

both exist a.e. and the limits are a.e. non-zero. Therefore, by definition,

(θ±)′(t) = lim
±y→0+

(θ±y )′(t) = lim
±y→0+

Im
(

(s±)′(x + iy)
s±(x + iy)

)

exist and being non-zero and finite a.e. Under the Sobolev condition the formula (7) is gener-
alized to ∫ ∞

−∞
ω|ŝ(ω)|2 =

∫ ∞

−∞
(θ+)′(t)|s+(t)|2dt +

∫ ∞

−∞
(θ−)′(t)|s−(t)|2dt

(see [11]).
What is amazing is that under the same assumption we are able to define the so called

Hardy-Sobolev phase derivative

θ∗(t) = χ{s++s− �=0}(t)Im
(

(s+)′(t) + (s−)′(t)
s+(t) + s−(t)

)
,
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where s± are understood as a.e. determined through non-tangential boundary limits. Under
the Hardy-Sobolev phase derivative notion we can show the ultimate relation (see [8])

∫ ∞

−∞
ω|ŝ(ω)|2 =

∫ ∞

−∞
θ∗(t)|s+(t)|2dt.

It is to a great satisfaction to notice that if s(t) = ρ(t)eiθ(t) and the classical derivatives
s′(t0), ρ′(t0) and θ′(t0) all exist, then θ′(t0) = θ∗(t0). Similar generalizations for higher order
moments and deviations are available under the notion of Hardy-Sobolev derivatives ([11], [8]).

We finally note that with various notions of the phase and amplitude derivatives we are able
to prove truly stronger uncertainty principle for the classical setting, the LCT setting, as well
as for the general self-adjoint operator setting ([9], [10]).

§4 Time-frequency distribution based on mono-components

Suppose that m(t) = ρ(t)eiθ(t) is a complex signal, then the ideal time-frequency distribution
is one of the Dirac type defined as a function of two variables, viz.,

P (t, ω) = ρ(t)δ(ω − θ′(t)).

Here the Dirac function δ is understood as being with value 1 at the zero point and value zero
otherwise. The implementation of this idea, however, brings in great controversies. One is that
a practical signal, no matter complex-valued or real-valued, cannot be simply expressed in such
form with well defined phase derivative, let alone the requirement for θ′(t) ≥ 0, a.e. Only in
the latter case such time-frequency distribution has properties like a probability distribution
for ω > 0.

This formulation is valid and practical only for mono-component signals: Although this
has been desired by many signal analysts for many years, it can never be implemented, for
there were no clearly defined notions of mono-component and instantaneous frequency. Signal
analysts generally admit that a signal is said to be a monocomponent (with a little difference in
spelling from what we defined mono-component), “if for this signal, there is only one frequency
or a narrow range of frequencies varying as a function of time; and, it is a multicomponent if it
is not a monocomponent” (Boashash, [4]). The ambiguity of such definition of monocomponent
lays on the fact that it is based on the notion of frequency and its narrow range. What they
call “frequency” and “narrow range”, however, are not defined in signal processing knowledge
system. In such way signal analysis has been established based on intuition with undefined
concepts but not on rigorous mathematics. This not only restricts signal analysis practice,
but also restrict the theoretical and concept development. There has been no agreement among
signal analysts on what is frequency or instantaneous frequency: it depends on personal discrete
understanding. Most signal analysts tend to believe that something called frequency objectively
exist, and what human being can do is just to “estimate” the frequency. Boashash proposed the
above definition in 1990’s which adopted the idea of Gabor. Until the present time, however,
there has been no progress and the situation stays as the same as that more than a half century
ago.

Our way to get out of the frequency paradoxes is to define frequency (instantaneous fre-
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quency) as a function to be the analytic phase derivative if the latter can be well defined
and non-negative almost everywhere in the Lebesgue measure sense. Signals that possess in-
stantaneous frequency are mono-components. In such way not every signal has instantaneous
frequency. For general signals that do not have a global instantaneous frequency function, or,
not a mono-component, one seeks for appropriate mono-component decompositions. In such
way we have, for a complex-valued signal s in the Hardy space,

s(t) =
∞∑

k=1

mk(t),

where for each k, mk is a mono-component. In the AFD decomposition case, for instance,
we have mk(t) =< f, Bk > Bk = ρk(t)eiθk(t) with θ′k(t) ≥ 0, a.e. If s is real-valued in L2,

we use the relation s = 2Res+ − c0, and get mk(t) = ρk(t) cos θk(t), θ′(t) ≥ 0, a.e. In both
cases we define P (t, ω) =

∑∞
k=1 Pk(t, ω), Pk(t, ω) =

∑∞
k=1 ρk(t)δ(ω − θ′k(t)). Such defined time-

frequency distributions enjoy almost all of the commonly desired properties for time-frequency
distributions. For details we refer the reader to paper [60].
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§5 Further study on TM systems and backward shift operator

invariant spaces

Shift and backward shift operator analysis was developed with the cornerstone Beurling
Theorem and Beurling-Lax Theorem. Many of the studies are related to Russian mathemati-
cians. The proposed AFD has a close relationship with backward shift invariant spaces. For
any sequence of complex numbers in the unit disc, a1, . . . , an, . . . , there exist two classifications.
1. The hyperbolic non-separable condition (1) holds

In such case the related TM system is dense in the Hp spaces for 1 ≤ p ≤ ∞, viz.,

Hp = span{Bk}∞k=1.

On the other hand, if the span of {Bk} is dense in Hp for any p ∈ [1,∞], then the complex
numbers in the sequence must satisfy (1).
2. The hyperbolic non-separable hyperbolic condition (1) does not hold

In such case a Blaschke product φ with the complex numbers a1, . . . , an, . . . as zeros (to-
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gether with the multiplicities if there are repeatings) can be defined, and

H2(D) = span{Bn} ⊕ φH2(D).

This is to say that a sequence a1, . . . , an, . . . obtained from an AFD process may not satisfy
the non-separable condition, and the span of the related TM system {Bk} may not be dense.
In such case for the signal s based on which the AFD process is done there holds the relation
s ∈ span{Bn}.

For general Hp(D) spaces we have [53]
Theorem 7. Assume that

∑∞
k=1(1 − |ak|) < ∞, and φ is the Blaschke product defined by the

ak’s in the sequence, then for any p ∈ (1,∞) there holds

Hp(D)
⋂

φHp(D) = (φHp′
(R))⊥ = span{Bn}∞n=1, (8)

where the closure span is in the Lp(∂D) topology and (φHp′
(D))⊥ = {f ∈ Hp(D)|〈f, φg〉 =

0, ∀ g ∈ Hp′
(D)}.

In [51] we give pointwise convergence results of TM system corresponding to the classic
Dini, Dirichlet type results in the Fourier series case. In [6] we give a constructive proof of
Beurling-Lax Theorem. In [31] we prove that a TM system {Bk} is a Schauder basis in the
closure of the span{Bk}.

Restricted to bandlimited functions we satisfactorily characterized the solutions of the band
preserving, phase and amplitude retrieving problems, as well as solutions of the Bedrosian
equation when one of the product function is bandlimited. The band preserving and phase
retrieving problems mainly arise from optics, and the amplitude retrieving problem and the
Bedrosian equation problems are related to signal analysis. These problems are described as
follows.

Let A > 0.

(i) Knowing suppf̂ ⊂ [0, A], characterize all functions g in Lp, 1 ≤ p ≤ ∞, such that
supp(fg)̂ ⊂ [0, A]. We phase this as band preserving problem.

(ii) Knowing suppf̂ ⊂ [0, A], characterize all functions g such that |g| = 1, a.e., and supp(fg)̂ ⊂
[0, A]. We phase this as phase retrieving problem.

(iii) Let f(t) = ρ(t)eiθ(t) be a complex mono-component. Characterize all real-valued func-
tion g such that fg is again a complex mono-component. We call this as amplitude
retrieving problem.

(iv) Characterize all solutions for the Bedrosian equation H(fg) = fHg, where f or g is
bandlimited. We call this as bandlimited Bedrosian equation.

Particular cases of amplitude retrieving problem (iii) have been addressed in the previous sec-
tions. It is obvious that Problem (ii) can be considered as a particular case of Problem (i). Both
problems have been attacked by researchers. The results that the other researchers obtained are
based on Weierstrass’ infinite product formula for entire functions. Our approach to Problem
(i) and (ii), as well as to problem (iv) are based on backward shift invariant spaces that is more
explicit and computable.
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Denote by FHq[A, B] the space of functions in Lq(R) whose distributional Fourier transform
is supported in [A, B]; by Lq

H(R) the space of functions in Lq(R) whose Hilbert transform is
also in Lq(R). The notation ∂−1f denotes the Laplace transform of f whenever definable. The
bandlimited Bedrosian problem (iv) is treated in the following three theorems ([53]).
Theorem 8. Let f ∈ Lp

H(R) and g ∈ Lq
H(R), where 1 ≤ p, q ≤ ∞ and 0 ≤ r−1 = p−1+q−1 ≤ 1.

Then the following assertions are equivalent.
(1) H(fg) = fHg;
(2) H(f−g+) = −if−g+ and H(f+g−) = if+g−;
(3) f−g+ ∈ Hr(R) and f+g− ∈ Hr(R);
(4) f−g+ ∈ FHr(R+) and f+g− ∈ FHr(R+);
(5) f− ∈ Hp(R)∩Ig+Hp(R+) and f+ ∈ Hp(R)

⋂
Ig−Hp(R) if g+ and g− are nonzero functions.

(6) g+ ∈ ϕ1Hq(R), g− ∈ ϕ′
1Hq(R) and

Of−
Of−

If− = ϕ1
ϕ2

,
Of+

Of+
If+ = ϕ′

1
ϕ′

2
, where f+ and f− are

nonzero functions, ϕ1 and ϕ2 is a pair of co-prime inner functions, ϕ′
1 and ϕ′

2 is also a pair of
co-prime inner functions.
Theorem 9. Let f ∈ FHp[A, B] and g ∈ Hp(R) be nonzero functions. If A, B ∈ supp f̂ and
A < 0 < B. Then H(fg) = fHg if and only if g+ ∈ e−iAxHq(R) and g− ∈ eiBxHq(R).
Theorem 10. Let g ∈ FHq[A, B], where A, B ∈ supp ĝ, and f ∈ Lp

H(R) be nonzero functions.
Then H(fg) = fHg if and only if

f ∈ spanp

{
1

(x − λ)j
, λ ∈ E1 ∪ E2, j = 1, · · · , m(λ)

}
,

where E1 is the set of all different zeros of G+(z) := (∂−1g+)(z) in the upper half plane, E2 is
the set of all different zeros of G−(z) := (∂−1g−)(z) in the lower half plane and m(λ) be the
multiplicity at λ. The above representation is with the convention that if one of g+ and g− is
zero, then the corresponding set of zeros is the empty set.

The next two theorems treat the band preserving problem (i) ([52], [53]).
Theorem 11. Suppose that 0 	≡ g ∈ FHq[A, B] and f ∈ Lp

H(R). Then fg ∈ FHr[A, B] if and
only if

f− ∈ Hp(R)
⋂

Ig1 (x)Hp(R) = FHp[0, a2]
⊕

⊕
eia2xspanp

{
1

(x − λ)j
, λ ∈ E1, j = 1, · · · , m(λ)

}
,

and

f+ ∈ Hp(R)
⋂

Ig2(x)Hp(R) = FHp[0, a1]
⊕

⊕
eia1xspanp

{
1

(x − λ)j
, λ ∈ E2, j = 1, · · · , m(λ)

}
,

where Ig1(x) and Ig2 (x) are, respectively,

Ig1 (x) := eia1x
∏

λ∈E1

( |λ2 + 1|
λ2 + 1

· z − λ

z − λ

)m(λ)

, Ig2(x) := eia2x
∏

λ∈E2

( |λ2 + 1|
λ2 + 1

· z − λ

z − λ

)m(λ)

.
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Theorem 11 gives a characterization of the solutions f ∈ Lp(R),1 < p < ∞, in terms of
backward shift invariant subspaces. It, however, does not cover the cases p = 1 and p = ∞
due to the failure of the relevant Hardy spaces decomposition. Below we will treat the two
exceptional cases by using an alternative approach.

Theorem 12. Suppose that function 0 	≡ g ∈ FHq[A, B] and f ∈ Lp(R),1 ≤ p ≤ ∞, be
nonzero functions. Then fg ∈ FHr[A, B] if and only if

f ∈ Ig1H
p(R)

⋂
Ig2Hp(R) = Ig1

[
Hp(R)

⋂
Ig1Ig2Hp(R)

]
,

where Ig1(x) := ei(a1x+b1)B1(x) is the inner function of g1(x) := e−iAxg(x) and Ig2(x) :=
ei(a2x+b2)B2(x) is the inner function of g2(x) := eiBxg(x).

The next three theorems treat phase retrieving problem (ii) ([52]).

Theorem 13. Assume that 0 	= f ∈ Hp(R) and its Laplace transform f(z) is holomorphic
across R. Then there exists an analytic signal g(x) ∈ Hp(R) whose Laplace transform g(z) is
holomorphic across R such that |f(x)| = |g(x)| if and only if

g(x) = eiax+ib

( ∞∏
n=1

|β′2
n + 1|

β′2
n + 1

x − β′
n

x − β′
n

) ( ∞∏
n=1

α′2
n + 1

|α′2
n + 1|

x − α′
n

x − α′
n

)
Bf (x)f(x), (9)

where a and b are some real constants, {α′
n}∞n=1 are partial zeros of f(z) in the upper half

plane, {β′
n}∞n=1 is a complex sequence satisfying

∞∑
n=1

2Im(β′
n)

1+|β′
n|2 < ∞, {β′

n}∞n=1 can only have an

accumulation point at ∞ and {β′
n}

⋂{α′
n} = ∅.

Theorem 14. Assume that analytic signal 0 	= f ∈ Hp(R) and its Laplace transform f(z) be
an entire function. Then there exists an analytic signal g(x) ∈ Hp(R) whose Laplace transform
g(z) is an entire function such that |f(x)| = |g(x)| if and only if

g(x) = eiax+ib

( ∞∏
n=1

|β′2
n + 1|

β′2
n + 1

x − β′
n

x − β′
n

) ( ∞∏
n=1

α′2
n + 1

|α′2
n + 1|

x − α′
n

x − α′
n

)
f(x),

where a and b are some real constants, {α′
n}∞n=1 are partial zeros of f(z) in the upper half plane,

{β′
n}∞n=1 are partial zeros of f(z) satisfying

∞∑
n=1

2Im(β′
n)

1+|β′
n|2 < ∞,and {β′

n}
⋂{α′

n} = ∅.
The following theorem completely solves the phase retrieving problem for bandlimited sig-

nals.

Theorem 15. Let nonzero analytic signals f ∈ Hp(R) and Suppf̂ ⊆ [0, A]. Then there exists
an analytic signal g ∈ Hp(R) with Suppĝ ⊆ [0, A] such that |f(x)| = |g(x)| if and only if

g(x) = eib+iax
∏
α′

k

α′
k

2
+ 1

|α′
k

2
+ 1|

· x − α′
k

x − α′
k

∏
β′

k

|β′
k

2
+ 1|

β′
k

2
+ 1

· x − β′
k

x − β′
k

f(x), (10)

where b and a are some real constants,{α′
k} are partial zeros of f(z) in the upper half plane,

{β′
k} are partial zeros of g(z) in the lower half plane and {β′

n}
⋂{α′

n} = ∅.
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§6 Higher dimensional generalizations

In higher dimensional spaces there are mainly two types of complex structures of which one
is several complex variables which is essentially of the tensor form and the other is Clifford
algebra that treats a vector variable as a complex variable. Quaternionic algebra is a Clifford
algebra. It has a particular position not because it is the only commutative or non-commutative
field of a finite dimension apart from the real and the complex number fields (Frobenius)
but because that the quaternionic space offers an “non-canonical” imbedding of R3 into the
span of the Clifford algebra generated by two Clifford basis elements e1 and e2 satisfying
e2
1 = e2

2 = −1, e1e2 = −e2e1. The canonical imbedding of R3 is the one that identifies R3

with the set {x1e1 + x2e2 + x3e3} in which e1, e2, e3 are independent Clifford basic elements.
By complex structure we mean a Cauchy type structure, including at least a Cauchy kernel, a
Cauchy theorem and a Cauchy formula. There may also be a related Hardy space in the context,
and correspondingly a Szegö kernel as reproducing kernel in the boundary L2-space, etc. In
principle, one can develop an approximation theory by using linear combinations of sampled
Szegö kernels. We in below mention some particulars in each of the concerned contexts.

With the several complex variable setting we have been studying two contexts, the n-torus
and the tubes in the sense of Stein and Weiss [49]. In the n-torus we use the direct product
of the TM systems associated with each of the complex variables. Taking n = 2, we show that
for any function f in the Hardy space of the two-disc, we can choose adaptively two sequences
a = {an} and b = {bn} such that the corresponding direct product of the two TM systems,
Ba⊕Bb = {Ba

k ⊕Bb
k } offer fast decomposition of the given signal [33]. For the tubes case there

is a parallel theory.
In the Clifford algebra setting, for the quaternionic case we can construct a theory very

similar to the one complex variable case. Although there is no backward shift operator in the
context we can show a mechanism similar to (3) ([41]). For a general Clifford algebra this has
not been done. The obstacle is that in the Clifford case in the Gram-Schmidt scalar-valued.
This gives rise to a technical difficulty. Instead, in the general Clifford algebra setting we use
an improved greedy algorithm to get one of the best parameters at each selection ([44]). In
the multi-dimensional case we also developed a higher order Szegö kernel method to extract
suitable basic functions of high frequency with the maximal energy [57].

These results offer a theory of rational function approximation in higher dimensions. Pre-
cisely, the related reproducing kernels are not necessarily rational functions but with square
root of polynomials. We also developed compressed sensing with Szegö kernels [19], supporting
vector machine with Szegö kernels [23]), as well as adaptive Aveiro discretization method by
using Szegö kernels [20].
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