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Abstract. In this article, we consider a class of Dirichlet problems with Lp

boundary data for polyharmonic functions in the unit ball. By introducing a
sequence of new kernel functions for the unit ball, which are called higher order

Poisson kernels, we give the integral representation solutions of the problems.

1. Introduction

In recent years, there has been a great deal of investigation on various bound-
ary value problems (simply, BVPs) for polyanalytic, polyharmonic, metaanalytic
and metaharmonic functions etc. in some plane domains. Those include Riemann,
Hilbert, Dirichlet, Neumann, Schwarz and Robin problems [2–5,8–10,14]. The main
objective is to obtain integral representation solutions of BVPs in various settings
such as Hölder continuity, continuity, Sobolev boundary data and so on. All of those
works are to generalize the classical integral representation theory for analytic and
harmonic functions in planar domains. Among other things, Dirichlet problems for
polyharmonic functions (for short, PHD problems) attract considerable interest. In
the higher dimensional cases, there were also a lot of studies published on Dirich-
let, Neumann, and mixed problems etc., with different boundary data including
Lp, Hölder, Hardy, Sobolev, Besov and so forth, in various types of domains of
Rn and Riemann manifolds, such as regular, polyhedral, convex, semiconvex, C1,
Lipschitz domains and so on [6,7,17,20–24,29–31]. However, there have been little
research in PHD problems of higher dimension ( [20,25,30] and references therein)
to get the estimates, existence, and uniqueness under appropriate assumptions, of
the solutions for the problems. In [18], Kalmenov, Koshanov and Nemchenko have
obtained a Green function representation of solutions to a class of Dirichlet prob-
lems of the inhomogeneous polyharmonic equation in a ball. By the method of
layer potentials, Verchota studied the representation of solutions of a biharmonic
Neumann problem in Lipschitz domains in [31].

The main purpose of this article is to solve the following PHD problems with Lp

boundary data in the unit ball, i.e.,

(1.1)

{
∆mu = 0 in Bn,

∆ju = fj on Sn−1,
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where n ≥ 3, ∆ ≡ ∆n :=
∑n

k=1
∂2

∂x2
k

for any x = (x1, x2, . . . , xn) ∈ Rn, Bn is the

unit ball, Sn−1 is the unit sphere in Rn, fj ∈ Lp(Sn−1), m ∈ N consisting of all
positive integers, 0 ≤ j < m, and 1 ≤ p ≤ ∞. In [2], Begehr, Du and Wang studied
the same PHD problems with Hölder continuous boundary data in two-dimensional
plane R2, that is, there all fj were Hölder continuous. The main technique of [2] was
transformation of the PHD problems to the classical Riemann problems for analytic
functions on the unit circle. That was done by means of certain decompositions
of polyanalytic and polyharmonic functions originated by the authors, as well as
Schwarz reflection principle. By introducing a class of kernel functions, integral
representation solutions of the problems were given. Those kernel functions are
higher order analogs of the Poisson kernel for the unit disc (So they are called
higher order Poisson kernels). Explicit formulas for the kernels were not available
due to the complexity until the presence of [10] in which they were given for the
continuous boundary data setting. By establishing a new decomposition theorem
for polyharmonic functions, Du et al gave explicit representations of higher order
Poisson kernels, and further extended the integral representation results in [2] to
the continuous boundary data setting [10] and Lp data setting [11, 12]. In the
present paper, we introduce a sequence of new kernel functions, which are higher
dimensional analogues to the higher order Poisson kernels in the unit disc. Using
these kernels, we shall give the integral representation solutions of PHD problems
(1.1) in Lp boundary data setting.

2. Higher order Poisson kernels

Definition 2.1. Let D be a simply connected (bounded or boundless) domain
in Rn with smooth boundary ∂D and k ∈ N ∪ {∞}, Ck(D) denotes the set of
all functions that have continuous partial derivatives of k order in D. If f is a
continuous function defined on D × ∂D satisfying f(·, v) ∈ Ck(D) for any fixed
v ∈ ∂D and f(x, ·) ∈ C(∂D) for any fixed x ∈ D, then f is said to be of Ck × C
smoothness on D × ∂D and written as f ∈ (Ck × C)(D × ∂D).

Definition 2.2. A sequence { gm(x, v) }∞m=1 of real-valued functions defined on
Bn × Sn−1 is called a sequence of higher order Poisson kernels, or more precisely,
gm(x, v) is an mth order Poisson kernel, if it satisfies the following conditions.
1. For any m ∈ N, gm ∈ (C∞ ×C)(Bn × Sn−1), ∂gm

∂xj
and ∂2gm

∂x2
j

belong to C(Bn ×
Sn−1), 1 ≤ j ≤ n; the non-tangential boundary value

lim
x→u

x∈Bn, u∈Sn−1

gm(x, v) = gm(u, v)

exists for all v but v 6= u, where u is any fixed unit vector belonging to Sn−1.
Moreover, gm(·, u) can be continuously extended to Bn \ {u} for all u ∈ Sn−1;
2. ∆g1(x, v) = 0 and ∆gm(x, v) = gm−1(x, v) for m > 1;
3. limx→u, x∈Bn, u∈Sn−1

∫
Sn−1 g1(x, v)γ(v)dv = γ(u) a.e. for any γ ∈ Lp(Sn−1),

p ≥ 1;
4. limx→u, x∈Bn, u∈Sn−1

∫
Sn−1 gm(x, v)γ(v)dv = 0 for any 2 ≤ m ≤ n − 1 and

γ ∈ Lp(Sn−1), p ≥ 1; and
5. limx→u, x∈Bn, u∈Sn−1 gm(x, v) = 0 uniformly on v ∈ Sn−1 for any fixed u ∈
Sn−1, m ≥ n,
where all the limits are non-tangential [27].
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Higher order Poisson kernels are the key in our approach to solve the PHD
problems (1.1). In what follows, we shall show their explicit expressions of power
series of |x| with coefficients in terms of ultraspherical (or Gegenbauer) polynomials,
P

(λ)
l . The latter can be defined through a generating function [1, 27]. Let

(2.1) (1− 2rξ + r2)−λ =
∞∑

l=0

P
(λ)
l (ξ)rl,

where 0 ≤ |r| < 1, |ξ| ≤ 1 and λ > − 1
2 , then P

(λ)
l is called the ultraspherical

polynomials of degree l associated with λ. P
(λ)
l is a polynomial of precise degree l,

and has the following explicit expression (see [16,28]):

(2.2) P
(λ)
l (ξ) =

[ l
2 ]∑

j=0

(−1)j Γ(l − j + λ)
Γ(λ)j!(l − 2j)!

(2ξ)l−2j .

Introduce the spherical coordinate

(2.3)





x1 = r cos θ1,
x2 = r sin θ1 cos θ2,
x3 = r sin θ1 sin θ2 cos θ3,
...
xn−1 = r sin θ1 sin θ2 · · · sin θn−2 cos θn−1,
xn = r sin θ1 sin θ2 · · · sin θn−2 sin θn−1,

and set
(2.4)

u = (cos θ1, sin θ1 cos θ2, sin θ1 sin θ2 cos θ3, . . . , sin θ1 sin θ2 · · · sin θn−2 sin θn−1),

then the polar coordinate is

(2.5) x = ru,

where r = (x2
1 + x2

2 + · · ·+ x2
n)1/2, 0 ≤ θ1, θ2, . . . , θn−2 ≤ π and 0 ≤ θn−1 ≤ 2π. By

a straightforward calculation, the polar coordinate form of the Laplacian is

∆ =
1

ρn−1

∂

∂ρ
(ρn−1 ∂

∂ρ
) +

1
ρ2

∆Sn−1 ,(2.6)

where the Laplace-Beltrami operator

∆Sn−1 =
∂2

∂θ2
1

+
1

sin2 θ1

∂2

∂θ2
2

+ · · ·+ 1
sin2 θ1 · · · sin2 θn−2

∂2

∂θ2
n−1

(2.7)

+(n− 2) cot θ1
∂

∂θ1
+ (n− 3)

cot θ2

sin2 θ1

∂

∂θ2

+(n− 4)
cot θ3

sin2 θ1 sin2 θ2

∂

∂θ3
+ · · ·

+
cot θn−2

sin2 θ1 · · · sin2 θn−3

∂

∂θn−2
.

Consider the partial differential equation on the unit sphere,

(2.8) ∆Sn−1Φ = λΦ,
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where Φ is a function defined on the unit sphere, λ is a constant. If the above partial
differential equation has a nonzero solution for some λ, then λ is called an eigenvalue
of ∆Sn−1 and the nonzero solutions Φ are called eigenfunctions corresponding to
such λ.

In [16,17], Hua established some excellent results, one of which is the following

Lemma 2.3 ( [17]). All eigenvalues of the Laplace-Beltrami operator ∆Sn−1 given
by (2.7) are

(2.9) λl = −l(l + n− 2),

where l = 0, 1, 2, . . . . The eigenfunctions corresponding to any such λl are P
( n

2−1)

l (u·
v) on u ∈ Sn−1 for any fixed v ∈ Sn−1, where u · v =

∑n
k=1 ukvk is the euclidian

inner product of the unit vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in
Sn−1.

Remark 2.4. If we define

(2.10) Z(l)
v (u) = cl,nP

( n
2−1)

l (u · v),

where the constant (see [16])

(2.11) cl,n =
1

2π
n
2

(
l +

n

2
− 1

)
Γ

(n

2
− 1

)
,

Z
(l)
v is called the zonal harmonic of degree l with pole v [27]; the space Hl consisting

of all zonal harmonics is called the space of spherical harmonics of degree l; the
dimension of Hl is finite, more precisely,

(2.12) dimHl =
(

n + l − 1
l

)
−

(
n + l − 3

l − 2

)
, al.

So the dimension of the eigenspace corresponding to eigenvalue λl is finite and
equals to dim Hl. Such eigenspace consists of all P

( n
2−1)

l (u · v). From [27],

|Z(l)
v (u)| ≤ |Z(l)

v (v)| = alω
−1
n−1(2.13)

for any u, v ∈ Sn−1, where ωn−1 is the surface area of the unit sphere Sn−1,
ωn−1 = 2π

n
2

Γ( n
2 ) . Therefore, by (2.10), (2.11) and (2.13),

|P (l)(u · v)| ≤ |P (l)(v · v)| = n− 2
2l + n− 2

al(2.14)

for any u, v ∈ Sn−1.

Set x = ru, u ∈ Sn−1. From the generating function (2.1), by a direct calculus,
the Poisson kernel for the unit ball in Rn can be expanded as (see [17])

Pn(x, v) =
1

ωn−1

1− |x|2
|x− v|n(2.15)

=
1

ωn−1

1− r2

(1− 2ru · v + r2)
n
2

=
1

ωn−1

∞∑

l=0

2l + n− 2
n− 2

rlP
( n

2−1)

l (u · v),

where r = |x| < 1 and v ∈ Sn−1.
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Lemma 2.5.

∆
(
rsP

( 1
2 n−1)

l (u · v)
)

= (λl − λs)rs−2P
( 1
2 n−1)

l (u · v),(2.16)

for any nonzero s ∈ R and l ∈ N ∪ {0}.
Proof. As l = 0, for any nonzero s ∈ R, the LHS of (2.16) = ∆rs =

(
∂2

∂r2 + n−1
r

∂
∂r

)
rs =

s(s + n − 2)rs−2 = −λs; For any nonzero s ∈ R and positive integer l, by Lemma
2.3,

∆
(
rsP

( 1
2 n−1)

l (u · v)
)

=
(

∂2

∂r2
+

n− 1
r

∂

∂r
+

1
r2

∆Sn−1

)
rsP

( 1
2 n−1)

l (u · v)

= (λl − λs)rs−2P
( 1
2 n−1)

l (u · v).

Thus (2.16) is established. ¤
In what follows, for any positive integer l, we denote

(2.17) Λ(l)
k = λl − λl+2k,

(2.18)
(

1
Λ(l)

)

0

= {1},

(2.19)
(

1
Λ(l)

)

k

=

{
1

Λ(l)
1

,
1

Λ(l)
2

, . . . ,
1

Λ(l)
k

}

for any positive integer k, and

(2.20)
(

1
Λ(l)

)

∞
=

{
1

Λ(l)
1

,
1

Λ(l)
2

, . . . ,
1

Λ(l)
k

, . . .

}
.

Introduce a class of index transformation operator, which is defined as follows:

A
(l)
j :

∏(
1

Λ(l)

)

∞
−→

∏(
1

Λ(l)

)

∞
(2.21)

m∏
p=1

(
1

Λ(l)
p

)kp

7−→ 1

Λ(l)
j

×
m∏

p=1

(
1

Λ(l)
p

)kp

,

where 1 ≤ j < ∞, and the set
∏ (

1
Λ(l)

)
∞ =

{
∏m

p=1

(
1

Λ
(l)
p

)kp

: m ∈ N, kp ∈ N ∪ {0}
}

.

Namely,
∏ (

1
Λ(l)

)
∞ is composed of the products of all the members in the set(

1
Λ(l)

)
m

(⊂ (
1

Λ(l)

)
∞) with non-negative integer indices for any m ∈ N; the operator

A
(l)
j makes the index of the factor 1

Λ
(l)
j

in any such product increase by 1. (It is

noteworthy that
∏m

p=1
1(

Λ
(l)
p

)kp
=

∏j
p=1

1(
Λ

(l)
p

)kp
with kp = 0, m + 1 ≤ p ≤ j as

m ≤ j. Of course, in the following, we only consider the products as some part of
the members of the set

∏ (
1

Λ(l)

)
∞.)

Moreover, define a formal operation of vector operators:

(2.22) (T1, T2, . . . , Tq) ◦ (h1, h2, . . . , hq) = (T1h1, T2h2, . . . , Tqhq),

where q ∈ N, Tq is an operator on some appropriate linear space Hq and hq ∈ Hq.
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Set

A(l)
m =

(
A

(l)
m−1, A

(l)
m−2︸ ︷︷ ︸

20 term

, A
(l)
m−3, A

(l)
m−3︸ ︷︷ ︸

21 terms

, . . . , A
(l)
k , . . . , A

(l)
k︸ ︷︷ ︸

2m−2−k terms

,(2.23)

. . . , A
(l)
3 , . . . , A

(l)
3︸ ︷︷ ︸

2m−5 terms

, A
(l)
2 , . . . , A

(l)
2︸ ︷︷ ︸

2m−4 terms

, A
(l)
1 , . . . , A

(l)
1︸ ︷︷ ︸

2m−3 terms

)
,

and

Xm =
(
|x|2(m−1) − 1, |x|2(m−2) − 1︸ ︷︷ ︸

20 term

, . . . , |x|2k − 1, . . . , |x|2k − 1︸ ︷︷ ︸
2m−2−k terms

,(2.24)

. . . , |x|2×2 − 1, . . . , |x|2×2 − 1︸ ︷︷ ︸
2m−4 terms

, |x|2×1 − 1, . . . , |x|2×1 − 1︸ ︷︷ ︸
2m−3 terms

)T

for any m ∈ N and m ≥ 3, where and in what follows, either (· · · )T or [· · · ]T
always denotes the transpose operation. With the above preliminaries, we can give
the following definitions:

c
(l)
1 := 1,(2.25)

c
(l)
2 := A

(l)
1 c

(l)
1 =

1

Λ(l)
1

,(2.26)

and for any m ≥ 3,

c(l)
m := A(l)

m ◦

 c

(l)
m−1

−c
(l)
m−1


 .(2.27)

Therefore, we have

Lemma 2.6. For any x ∈ Rn and fixed v ∈ Sn−1, let

(2.28)
(
H(l)

v

)
1
(x) = |x|lP ( n

2−1)

l

(
x

|x| · v
)

,

(2.29)
(
H(l)

v

)
2
(x) = c

(l)
2

(|x|2 − 1
) (

H(l)
v

)
1
(x)

and

(2.30)
(
H(l)

v

)
m

(x) =
(
H(l)

v

)
1
(x)

[(
c(l)
m

)T

Xm

]
,

where m = 3, 4, . . ., l = 0, 1, 2, . . ., and λl given by (2.9) are the eigenvalues of the
Laplace-Beltrami operator ∆Sn−1 defined in (2.7). Then

(2.31) ∆
(
H(l)

v

)
1

= 0

and

(2.32) ∆
(
H(l)

v

)
m

=
(
H(l)

v

)
m−1

, m ≥ 2.
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Proof. It is immediat from Lemma 2.5 that ∆
(
H

(l)
v

)
1
(x) = ∆

[
|x|lP ( n

2−1)

l

(
x
|x| · v

)]
=

0. Similarly, as m = 2, by Lemma 2.5,

∆
(
H(l)

v

)
2
(x) = ∆

[
1

Λ(l)
1

(|x|l+2 − |x|l) P
( n

2−1)

l

(
x

|x| · v
)]

(2.33)

= |x|lP ( n
2−1)

l

(
x

|x| · v
)

=
(
H(l)

v

)
1
(x).

That is to say that (2.32) holds for m = 2. For any m ≥ 3, noting the definitions
(2.23)-(2.27) and (2.30), we can write that

(
H(l)

v

)
m−1

(x) =
{[

d0,m−2[|x|2(m−2) − 1]− Λ(l)
m−2

Λ(l)
1

d0,m−2

[|x|2 − 1
] ]

(2.34)

−
m−3∑

j=2

2m−3−j∑
p=1

[
dp,j [|x|2j − 1]− Λ(l)

j

Λ(l)
1

dp,j

[|x|2 − 1
] ]}

×
(
H(l)

v

)
1
(x),

where the coefficients d0,m−2 and dp,j depend only on Λ(l)
s , s = 1, 2, . . . , m − 2.

Therefore, by the definitions (2.27) and (2.30),

(
H(l)

v

)
m

(x) =
[
c(l)
m

]T [((
H(l)

v

)
1
(x)

)
Xm

]
(2.35)

=
{ 1

Λ(l)
m−1

[
d0,m−2(|x|2(m−1) − 1)− Λ(l)

m−2

Λ(l)
1

d0,m−2

(|x|2 − 1
) ]

−
m−2∑

j=3

2m−2−j∑
p=1

1

Λ(l)
j

[
dp,j−1(|x|2j − 1)− Λ(l)

j−1

Λ(l)
1

dp,j−1

(|x|2 − 1
) ]

− 1

Λ(l)
1

[(
d0,m−2 −

Λ(l)
m−2

Λ(l)
1

d0,m−2

)
−

m−2∑

j=3

2m−2−j∑
p=1

(
dp,j−1 −

Λ(l)
j−1

Λ(l)
1

dp,j−1

)]

× (|x|2 − 1
) }(

H(l)
v

)
1
(x).

So, by Lemma 2.5 and a straightforward calculation,

∆
(
H(l)

v

)
m

=
(
H(l)

v

)
m−1

. ¤

Remark 2.7. Define an ordering relation ¹ in Rn: For any α = (a1, a2, . . . , an)
and β = (b1, b2, . . . , bn), comparing the corresponding components in the order of
1 to n, if there exists the first j ∈ {1, 2, . . . , n} such that aj < bj , then α ≺ β;
otherwise, α = β. In (2.34), the coefficients d0,m−2 =

∏m−2
s=1

1

Λ
(l)
s

and dp,j =

(−1)k1,p,j
∏m−3

s=1
1(

Λ
(l)
s

)ks,p,j
, with the indices (k1,p,j , k2,p,j , . . . , km−3,p,j) satisfying
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the following properties:

k1,p,j + k2,p,j + · · ·+ km−3,p,j = m− 2,(2.36)

k1,p,j ≥ k2,p,j ≥ · · · ≥ km−3,p,j ,(2.37)

(k1,s,j , k2,s,j , . . . , km−3,s,j) ¹ (k1,s+1,j , k2,s+1,j , . . . , km−3,s+1,j)(2.38)

and

(k1,1,t, k2,1,t, . . . , km−3,1,t) ¹ (k1,1,t+1, k2,1,t+1, . . . , km−3,1,t+1),(2.39)

where 2 ≤ j, t, t + 1 ≤ m− 3 and 1 ≤ p, s, s + 1 ≤ 2m−2−j .

If we define a vertical sum as in [10]:

(2.40)
∑





a1

a2

...
an

=: a1 + a2 + · · ·+ an,

then, for example, we have the following expressions

(
H(l)

v

)
4
(x) =

(
H(l)

v

)
1
(x)×

∑





1
Λ1Λ2Λ3

(|x|6 − 1)

− 1
Λ2

1Λ2
(|x|4 − 1)

−∑




1
Λ2

1Λ2
(|x|2 − 1)

− 1
Λ3

1
(|x|2 − 1)

,(2.41)

(
H(l)

v

)
5
(x) =

(
H(l)

v

)
1
(x)×

∑





1
Λ1Λ2Λ3Λ4

(|x|8 − 1)

− 1
Λ2

1Λ2Λ3
(|x|6 − 1)

−∑




1
Λ2

1Λ
2
2
(|x|4 − 1)

− 1
Λ3

1Λ2
(|x|4 − 1)

−∑





1
Λ2

1Λ2Λ3
(|x|2 − 1)

− 1
Λ3

1Λ2
(|x|2 − 1)

−∑




1
Λ3

1Λ2
(|x|2 − 1)

− 1
Λ4

1
(|x|2 − 1)

(2.42)
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and

(
H(l)

v

)
6
(x) =

(
H(l)

v

)
1
(x)×

∑





1
Λ1Λ2Λ3Λ4Λ5

(|x|10 − 1)

− 1
Λ2

1Λ2Λ3Λ4
(|x|8 − 1)

−∑




1
Λ2

1Λ
2
2Λ3

(|x|6 − 1)

− 1
Λ3

1Λ2Λ3
(|x|6 − 1)

−∑





1
Λ2

1Λ
2
2Λ3

(|x|4 − 1)

− 1
Λ3

1Λ
2
2
(|x|4 − 1)

−∑




1
Λ3

1Λ
2
2
(|x|4 − 1)

− 1
Λ4

1Λ2
(|x|4 − 1)

−∑





1
Λ2

1Λ2Λ3Λ4
(|x|2 − 1)

− 1
Λ3

1Λ2Λ3
(|x|2 − 1)

−∑




1
Λ3

1Λ
2
2
(|x|2 − 1)

− 1
Λ4

1Λ2
(|x|2 − 1)

−∑





1
Λ3

1Λ2Λ3
(|x|2 − 1)

− 1
Λ4

1Λ2
(|x|2 − 1)

−∑




1
Λ4

1Λ2
(|x|2 − 1)

− 1
Λ5

1
(|x|2 − 1)

.

(2.43)

Lemma 2.8. Let K is a compact subset of Rn, R is a positive real number.
Assume that the variable coefficient power series

∑∞
l=0 al(u)rl with al ∈ C(K),

l = 0, 1, 2, . . ., is uniformly convergent on any compact set K × [0, R′], where
0 < R′ < R, and the limit

lim
r→R−

K3u′→u∈K

∞∑

l=0

al(u′)rl

exists for some u ∈ K, then for such u ∈ K, the limit

lim
r→R−

K3u′→u∈K

∞∑

l=0

1
Al + B

al(u′)rl

also exists for any nonzero constants A,B ∈ R with B
A ≥ 0.

Proof. It is enough to deal with the special case A = 1 and B > 0. To do so, set

(2.44) F (r, u) =
∞∑

l=0

al(u)rl
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and

(2.45) G(r, u) =
∞∑

l=0

1
l + B

al(u)rl,

where 0 ≤ r < R and u ∈ K. Then, as 0 < r < R, by termwise integrations,

G(r, u) =
∞∑

l=0

1
l + B

al(u)rl(2.46)

= r−B
∞∑

l=0

1
l + B

al(u)rl+B

= r−B
∞∑

l=0

∫ r

0

al(u)sl+B−1ds

= r−B

∫ r

0

∞∑

l=0

al(u)sl+B−1ds

= r−B

∫ r

0

sB−1F (s, u)ds.

By the assumption, limr→R−, K3u′→u∈K F (r, u′) exists. If F (R, u) is defined by this
limit, we get that F ∈ C([0, R] ×K). Thus, from (2.46), by elementary calculus,
the limr→R−, K3u′→u∈K G(r, u′) also exists.

¤
As a simple consequent, we have

Corollary 2.9. The same conditions as in the above lemma are provided, then for
any m ∈ N,

(2.47) lim
r→R−

K3u′→u∈K

∞∑

l=0

m∏
p=1

1

(Apl + Bp)
kp

al(u′)rl

also exists for any nonzero constants Ap, Bp ∈ R with Bp

Ap
≥ 0, and kp ∈ N, 1 ≤

p ≤ m.

Theorem 2.10. Let

gm(x, v) =
1

ωn−1

∞∑

l=0

2l + n− 2
n− 2

(
H(l)

v

)
m

(x),(2.48)

where m ∈ N, x ∈ Bn, v ∈ Sn−1, and
(
H

(l)
v

)
m

(x) given as in Lemma 2.6. Then

{ gm(x, v) }∞m=1 is a sequence of higher order Poisson kernels defined as in Definition
2.2.

Proof. Since
(
H

(l)
v

)
1
(x) = |x|lP ( n

2−1)

l (x · v/|x|) is a homogeneous polynonials of

degree l with respect to x ∈ Rn [27], gm given by (2.48) is a power series in n
variables [19].

Owing to (2.15) and (2.28), g1 is just the Poisson kernel for unit ball in Rn. So
g1 satisfies the related properties stated in Definition 2.2. By (2.30),

gm(x, v) =
1

ωn−1

∞∑

l=0

2l + n− 2
n− 2

(
H(l)

v

)
1
(x)

[(
c(l)
m

)T

Xm

]
.
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By (2.14),

(2.49)
∣∣∣
(
H(l)

v

)
1
(x)

∣∣∣ ≤ n− 2
2l + n− 2

al|x|l,

where al is given by (2.12). Since from (2.12) and (2.17),

Λ(l)
k = 2k(2l + 2k + n− 2) = O(l + 1) (l → +∞),

by (2.24) and (2.28), for any x ∈ Bn,

(2.50)
∣∣∣∣
(
c(l)
m

)T

Xm

∣∣∣∣ ≤ C
1

(l + 1)m−1

(
1− |x|2) ,

where C is a positive constant, and in which we use the basic facts as

(2.51) |x|2p − 1 = (|x|2 − 1)(1 + |x|2 + · · ·+ |x|2p−2)

and

(2.52) (m− 1) + (m− 2)× 20 + (m− 3)× 21 + · · ·+ 1× 2m−3 = 2m−1.

From (2.30), (2.49) and (2.50), due to the fact

(2.53) al =
2l + n− 2

l

(
n + l − 3

l

)
= O

(
(l + 1)n−2

)
(l →∞),

∣∣∣∣
2l + n− 2

n− 2

(
H(l)

v

)
m

(x)
∣∣∣∣ ≤ C(1− |x|2)min{m−1,1} al

(l + 1)m−1 |x|l(2.54)

for any m ∈ N, x ∈ Bn and v ∈ Sn−1. Especially, when m ≥ n,

∣∣∣∣
2l + n− 2

n− 2

(
H(l)

v

)
m

(x)
∣∣∣∣ ≤ C(1− |x|2) al

(l + 1)m−1 |x|l(2.55)

≤ C(1− |x|2) 1
(l + 1)m+1−n |x|l.

Therefore, The power seriers of RHS of (2.48) is uniformly convergent on K×Sn−1

for any m ∈ N, where K is any closed set of Bn. So gm is real analytic in Bn×Sn−1

(see [19]). Then, the following facts are obtained:
(1) By Lemma 2.6 and termwise differentiations (also see [19]),

∆g1(x, v) = 0 and ∆gm(x, v) = gm−1(x, v), m ≥ 2;

(2)
lim

x→u,
x∈Bn, u∈Sn−1

gm(x, v) = 0

uniformly on v ∈ Sn−1 for any fixed u ∈ Sn−1, m ≥ n.
Thus the properties 2 and 5 in Definition 2.2 are established.

Denote

(2.56) [pl(γ)](u) =
∫

Sn−1
P

( n
2−1)

l (u · v)γ(v)dv

for any γ ∈ Lp
(
Sn−1

)
and fixed u ∈ Sn−1. By Hölder inequality,

(2.57) |[pl(γ)](u)| ≤ n− 2
2l + n− 2

alω
p−1

p

n−1||γ||p < +∞,
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where al is given by (2.12), and ωn−1 is the surface area of the unit sphere Sn−1.
Then, by termwise integrations, for any γ ∈ Lp

(
Sn−1

)
,

F γ
1 (ru) : =

∫

Sn−1
g1(ru, v)γ(v)dv(2.58)

=
1

ωn−1

∞∑

l=0

2l + n− 2
n− 2

[pl(γ)](u)rl,

F γ
2 (ru) : =

∫

Sn−1
gm(ru, v)γ(v)dv(2.59)

= ω−1
n−1

(
r2 − 1

) ∞∑

l=0

1

Λ(l)
1

2l + n− 2
n− 2

[pl(γ)](u)rl

and

F γ
m(ru) : =

∫

Sn−1
gm(ru, v)γ(v)dv(2.60)

=
1

ωn−1

∞∑

l=0

[(
c(l)
m

)T

Xm

]
2l + n− 2

n− 2
[pl(γ)](u)rl

= ω−1
n−1

(
r2 − 1

) ∞∑

l=0

[(
c(l)
m

)T

X̃m

]
2l + n− 2

n− 2
[pl(γ)](u)rl,

where x = ru, r = |x|, m ≥ 3, X̃m =
(|x|2 − 1

)−1
Xm, Xm is given by (2.24). By

the definitions of c
(l)
m and X̃m, similar to (2.34), we can write that

(
c(l)
m

)T

X̃m = d̃0,m−1

m−2∑
q=0

|x|2q +
m−2∑

j=1

2m−2−j∑
p=1

d̃p,j

j−1∑
q=0

|x|2q(2.61)

where the coeficients d̃0,m−1 =
∏m−1

s=1
1

Λ
(l)
s

and dp,j = (−1)k1,p,j
∏m−2

s=1
1(

Λ
(l)
s

)ks,p,j
, in

which the indices (k1,p,j , k2,p,j , . . . , km−2,p,j) have the properties stated in Remark
2.7. Since limr→1−, Sn−13u′→u∈Sn−1 F γ

1 (ru′) = γ(u) a.e. on u ∈ Sn−1 [27], by
Corollary 2.9 and (2.58)-(2.61), we obtain

(2.62) lim
r→1−

Sn−13u′→u∈Sn−1

F γ
m(ru′) = 0, a.e. on u ∈ Sn−1

for any m ≥ 2. That is, the property 4 in Definition 2.2 is verified.
Finally, it is noted that the non-tangential boundary value

lim
x→u

x∈Bn, u∈Sn−1

g1(x, v) = g1(u, v)

exists for all v but v 6= u, where u is any fixed unit vector belonging to Sn−1.
Moreover, g1(·, u) can be continuously extended to Bn \ {u} for all u ∈ Sn−1. By
an argument similar to (2.62), for m ≥ 2, the non-tangential boundary value

lim
x→u

x∈Bn, u∈Sn−1

gm(x, v) = gm(u, v)
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exists for all v but v 6= u, where u is any fixed unit vector belonging to Sn−1; and
gm(·, u) can be continuously extended to Bn \ {u} for all u ∈ Sn−1. The property
1 in Definition 2.2 is also established. Thus we complete this theorem. ¤
Remark 2.11. As n = 2, set x = (x1, x2) = rϑ, where ϑ = (cos θ, sin θ) ∈ S1, θ ∈
[0, 2π), S1 is the unit circle. Let T = S1 and D denotes the unit disc, and introduce
the Chebyshev polynomials of the first kind Tl(x) = cos(l arccos x), x ∈ [−1, 1] and
l = 0, 1, 2, . . . (see [28]). Then we have the the following expression of the Poisson
kernel for the unit disc in R2;

P2(rϑ, ϕ) =
1
2π

1− r2

|rϑ− ϕ|2(2.63)

=
1
2π

[
1 + 2

∞∑

l=1

rl cos(l(θ − φ))

]

=
1
2π

∞∑

l=0

(
1− δl0

2

)
Tl (cos(l(θ − φ))) rl,

where ϕ = (cos φ, sinφ), φ ∈ [0, 2π), and δl0 is the Kronecker’s symble. Denote
P

[0]
l (x) = |x|lTl

(
x
|x|

)
, where x ∈ R2, then, by the properties of Chebyshev poly-

nomials of the first kind and some direct calculations, P
[0]
l have the following nice

properties:

A: P
[0]
l is a homogenous polynomials of degree l;

B: ∆P
[0]
l (x) = 0, where ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

= ∂2

∂ρ2 + 1
ρ

∂
∂ρ + 1

ρ2
∂2

∂θ2 , which is the
Laplacian in R2;

C: ∂2

∂θ2 P
[0]
l (cos θ) = −l2P

[0]
l (cos θ).

It must be pointed out that the above P
[0]
l is different from the Gegenbauer poly-

nomials P
(0)
l since the latter vanishs identically for l ≥ 1 [28]. Based on the above

facts, by a similar argument, we can give alternative explicit expressions (similar
to (2.48)) of the higher order Possion kernels for the unit disc, which are expressed
by some vertical sums detailed in [10].

3. Polyharmonic Dirichlet problems in the unit ball

In this section, we solve the PHD problem (1.1), i.e.,
{

∆mu = 0 in Bn,

∆ju = fj on Sn−1,

where Bn is the unit ball, Sn−1 is the unit sphere in Rn, fj ∈ Lp(Sn−1), m ∈ N,
0 ≤ j < m, and p ≥ 1.

To do so, at first, as a special case extension of Theorem 2.27 in [13], we establish

Lemma 3.1. Let D be a simply connected bounded domain in Rn with smooth
boundary ∂D. If f ∈ (C1 × C)(D × ∂D) and ∂f

∂xj
∈ C(D × ∂D), 1 ≤ j ≤ n, then

(3.1)
∂

∂xj

(∫

∂D

f(x, v)dv

)
=

∫

∂D

∂f

∂xj
(x, v)dv

for any x = (x1, x2, . . . , xn) ∈ D and 1 ≤ j ≤ n.
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Proof. Fix X = (x1, x2, . . . , xn) ∈ D and j ∈ {1, 2, . . . , n}, take Xl = X + tlej with
liml→+∞ tl = 0, and ej = (0, . . . , 1, . . . , 0) ∈ Rn whose the jth element is 1 and the
other ones are zero. Denote

Dl(X, v) =
f(Xl, v)− f(X, v)

tl
(3.2)

=
∂

∂xj
f(X + θtlej , v),

where 0 < θ < 1, then from f ∈ (C1 × C)(D × ∂D),

(3.3) lim
l→+∞

Dl(X, v) =
∂f

∂xj
(X, v), v ∈ ∂D

and by ∂f
∂xj

∈ C(D × ∂D),

(3.4)
∣∣∣∣
∂f

∂xj
(X, v)

∣∣∣∣ ≤ M

holds on the compact set Dc×∂D for any 1 ≤ j ≤ n, where Dc is any compact subset
of D including X, M is a positive constant depending on Dc and n. Therefore, as
Xl ∈ Dc, by (3.3), (3.4) and Lebesgue’s dominated convergence theorem,

lim
l→+∞

∫

∂D

Dl(X, v)dv =
∫

∂D

∂f

∂xj
(X, v)dv,

i.e.,

lim
l→+∞

∫
∂D

f(Xl, v)dv − ∫
∂D

f(X, v)dv

tl
=

∫

∂D

∂f

∂xj
(X, v)dv.(3.5)

Since X and the sequence Xl are arbitrarily chosen, then

∂

∂xj

(∫

∂D

f(X, v)dv

)
=

∫

∂D

∂f

∂xj
(X, v)dv

for any 1 ≤ j ≤ n and X ∈ D. ¤

A natural consequent is obtained as the following

Corollary 3.2. Let D be a simply connected bounded domain in Rn with smooth
boundary ∂D. If f ∈ (C2 × C)(D × ∂D), ∂f

∂xj
and ∂2f

∂x2
j

belong to C(D × ∂D),
1 ≤ j ≤ n, then

(3.6)
∂2

∂x2
j

(∫

∂D

f(x, v)dv

)
=

∫

∂D

∂2

∂x2
j

f(x, v)dv

for any x = (x1, x2, . . . , xn) ∈ D and 1 ≤ j ≤ n. Immediately, it follows that

(3.7) ∆
(∫

∂D

f(x, v)dv

)
=

∫

∂D

∆f(x, v)dv.

Secondly, we establish an important theorem concerning the differentiability of
integrals of higher order Poisson kernels as follows.
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Theorem 3.3. Let { gm(x, v) }∞m=1 be the sequence of higher order Poisson kernels
defined in Theorem 2.10, then for any m > 1 and γ ∈ Lp(Sn−1), p ≥ 1,

(3.8) ∆
(∫

Sn−1
gm(x, v)γ(v)dv

)
=

∫

Sn−1
gm−1(x, v)γ(v)dv.

Proof. Set x = ru and r = |x|. Applying (2.58)-(2.60), similar to (2.54), we have

∣∣∣∣
2l + n− 2

n− 2

(
H(l)

v

)
m

(x)
∣∣∣∣ ≤ C(1− |x|2)min{m−1,1} al

(l + 1)m−1 ω
p−1

p

n−1||γ||prl(3.9)

for any m ∈ N, where C is a positive constant and al is given by (2.12). Note (2.53),
liml→∞ l

√
al

(l+1)m−1 = 1. Therefore, the power series
∑∞

l=0
1

(l+1)m−1 alr
l convergents

uniformly on the compact sets of [−1, 1]. Then the power series in n variables given
in (2.58)-(2.60) are uniformly convergent on K × Sn−1 for any m ∈ N, where K
is any closed subset of Bn. So

∫
Sn−1 gm(x, v)γ(v)dv is real analytic in Bn × Sn−1

(see [19]). Certainly, it belongs to (C2×C)(Bn×Sn−1) and satisfies the assumptions
as in Corollary 3.2. Therefore, (3.8) immediately follows from Corollary 3.2. ¤

Now we can give the main result for polyharmonic Dirichlet problems in the unit
ball as follows.

Theorem 3.4. Let { gm(x, v) }∞m=1 be the sequence of higher order Poisson kernels
defined on Bn×Sn−1, given by (2.48), then for any m > 1, the PHD problem (1.1)
is solvable and its general solution is given by

(3.10) u(x) =
m∑

j=1

∫

Sn−1
gj(x, v)fj−1(v)dv + uh(x), x ∈ Bn,

where uh(x) denotes the general solution of the accompanying homogeneous PHD
problem

(3.11)

{
∆mu = 0 in Bn,

∆ju = 0 on Sn−1

where 0 ≤ j ≤ m− 1.

Proof. Note the inductive property of higher order Poisson kernels stated as in
Definition 2.2, and let the polyharmonic operators ∆l, 1 ≤ l ≤ n − 1, act on two
sides of (3.10), by Theorem 3.3, we have

(3.12) ∆lu(x) =
n∑

j=l+1

∫

Sn−1
gj−l(x, v)fj−1(v)dv + ∆luh(x).

Thus, since ∆luh = 0 on Sn−1, the non-tangential boundary value

(3.13) ∆lu(s) = fl(s), s ∈ Sn−1, 0 ≤ l ≤ m− 1

follows from (2.62) and the nice property of g1, i.e.,

(3.14) lim
x→s

x∈Bn,s∈Sn−1

∫

Sn−1
g1(x, v)γ(v)dv = γ(s)

for any γ ∈ Lp(Sn−1), p ≥ 1. Similarly, letting the polyharmonic operators ∆n

act on two sides of (3.10), we have ∆nu(x) = 0 for any x ∈ Bn. Thus (3.10) is a
solution of the PHD problem (1.1).
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Denote

(3.15) u∗(x) =
m∑

j=1

∫

Sn−1
gj(x, v)fj−1(v)dv,

the above argument show that u∗ is a special solution of the PHD problem (1.1).
Since uh is the general solution of the accompanying homogenous PHD problem
(3.11), then it is immediate from linear algebra that (3.10) is the general solution
of the PHD problem (1.1). ¤
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