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1 Introduction

Rational approximation has a long history. In the one-dimensional case it is naturally related to complex

approximation (see [25]). Given a real-valued function f ∈ Lp(R) (1 < p < ∞), it has the Hardy space

decomposition f = f+ + f−, where f+ and f− are non-tangential boundary limits of analytic functions

belonging to, respectively, the Hardy space in the upper half plane and that in the lower half plane.

For f+, we use holomorphic rational functions with poles in the lower half plane to approximate. The

real part of f+, being 1
2f , then is approximated by the real part of the complex approximating rational

functions.

This paper is restricted to the case p = 2. In one dimension the criterion “best n-rational approxima-

tion” is formulated as follows. Let f be in the Hardy space H2(R2
+) on the upper half plane R2

+, find

co-prime polynomials p and q, both having degrees less or equal to n, and q does not have zero in R2
+,

such that ∥∥∥∥f − p

q

∥∥∥∥
H2(R2

+)

attains the minimum value of all the possible ones under the conditions of p and q. The existence of

the solution was proved many decades ago (see [25]). A practical algorithm of it, however, has not been

found. There have been several partial solutions (e.g. [1–3,15,20]). Solutions in the series approximation

form may be found, for instance, in the literature of orthogonal rational systems. Recently, the so-called

adaptive Fourier decomposition (AFD) based on Takenaka-Malmquist (TM) systems incorporating a

generalized backward shift process was proposed by Qian et al. in [15] and [20]. The decomposition
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obtained through this method offers a fast rational approximation of the given signal, besides, each

component has a well-defined instantaneous frequency function. The Newton gradient method based on

AFD gives a solution of the best n-rational approximation under the assumption that there is only one

local minimum. We note that AFD is more delicate and effective than matching pursuit (see below).

For higher-dimensional questions may be similarly formulated. Solutions, however, are not obvious.

The present paper will discuss some of these problems and give solutions.

Generalization of part of the works on AFD into higher dimensional spaces with dimensions not larger

than four was treated in [17], in the context of quaternionic analysis.

In general n-dimensional spaces with n > 4, the counterpart of the TM system has not been studied yet.

A natural way to do this is to use the Clifford algebra, but usually a Clifford number is not divisible, which

makes the problem still open. In spite of this, we note that the TM system can be generated from the set

of shifted Cauchy kernel functions (Szegö kernel functions). From this point of view and the matching

pursuit algorithm, in the Clifford algebra setting we obtained the adaptive decomposition of functions

in the monogenic Hardy spaces using dictionaries consisting of Szegö kernels (see [19]). The matching

pursuit algorithm was introduced in [13]. It is a powerful tool in signal analysis and decomposition of

functions. In that algorithm, a dictionary D is given, which is a subset of a prescribed Hilbert space H
and consists of a set of unit vectors, D = {gλ : λ ∈ Λ, ∥gλ∥ = 1} with spanD = H. Let f ∈ H, then in

the spirit of matching pursuit,

f =

n∑
l=0

gλl
⟨Rlf, gλl

⟩+Rn+1f, (1.1)

where gλl
is chosen to fulfill the optimal projection principle

|⟨Rlf, gλl
⟩| > α sup

g∈D
|⟨Rlf, g⟩|, (1.2)

with the optimality factor α lying between 0 and 1, and the residues are inductively defined by

R0f := f, Rn+1f := Rnf − gλn⟨Rnf, gλn⟩. (1.3)

That is to say, in each iteration the matching pursuit algorithm aims at minimizing as much as possible

the energy of the residue, so that Rnf decays rapidly to zero as n tends to infinity. The algorithm thus

provides a flexible and efficient way for decomposition of functions. Although (1.1) is not an orthogonal

expansion, there still holds the energy conservation law

∥f∥2 =
n∑

l=0

|⟨Rlf, gλl
⟩|2 + ∥Rn+1f∥2.

As for the convergence under the matching pursuit, the convergence rate, and some of its variations, we

refer the reader to [5, 7, 8, 22–24].

In [19], we proved that in each iteration of decomposition the optimality factor α can attain 1. Thus

our scheme results in a fast decomposition and we get a kind of nonlinear rational approximation in even

dimensions.

Meanwhile, we also note that AFD may not perform well for the highly oscillatory signals or those

signals of high frequencies, since each basic function is a weighted Blaschke product of an exact order.

In order to fill this gap, Qian et al. [16] suggested some variations of AFD by unwinding process through

factorizing out the inner function factors. In [26] the authors proposed a simpler method for adaptive

decomposition of holomorphic functions by rational mono-components, which differs from those in [15],

[16] and [20], is essentially the matching pursuit among higher order Szegö kernels (higher order partial

derivatives of Szegö kernels) and therefore it is not necessary to get orthogonal decomposition. The

method is valid for a rather large amount of signals (functions), since the Fourier system {zn}∞n=0 and

the Szegö kernel functions are incorporated into the dictionary. In some sense it is an extension of AFD

and the work in [19] on finding faster and more efficient ways for decomposition of functions.
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In this paper, we will investigate the higher-dimensional analogue of the cases studied in [26]. We

will use the collection of higher order Szegö kernels which take values in a Clifford algebra and are (left)

monogenic (see Section 2 for its definition) as a dictionary for the decomposition, because this dictionary

is extremely redundant, and what is more, the inner product of a function and a higher order Szegö kernel

can be easily computed out by a unified closed formula (see (3.7) and (4.1)). Unlike the case for complex-

valued functions, the higher order Szegö kernel functions for this setting do not have concrete or explicit

expressions, since the higher order partial derivatives are involved. Therefore the difficulties rise not only

in the computation, but also in proving the corresponding maximum selection criterion (1.2) with α = 1

being optimal. By Fourier transform and changing variables via Möbius transformation, we solve these

problems and thus obtain a more flexible way for nonlinear approximation of monogenic functions and

signals. As a consequence, we get a constructive proof for a kind of approximation theorems (Theorems 3.6

and 4.9) that is similar to the Runge’s approximation theorem (cf. [4]). However, the related convergence

rate remains open.

We will treat two kinds of monogenic Hardy spaces, namely, the monogenic Hardy spaces for the unit

ball and half space. The higher order Szegö kernel function in the dictionary in each context contains

two parameters. One is the discrete parameter k (a multi-index) which is exactly the order of the kernel

function. The other is the continuous parameter a which lies in the underlying spaces. It is interesting

to note that selection criterion (1.2) with α = 1 for the cases we study is an outcome of the fact that the

bound of the linear functional Tk,a (see Sections 3 and 4) on H2 increases to infinity as the parameters

tend to the boundary. These two parameters in fact correspond to the “frequency” and “amplitude”

respectively, hence our method provides an adaptive coherent representation of the given signal, from

which the implicit structure information of the signal can be easily detected.

If a scalar (real-valued) signal (or L2 function) U is defined on the boundary of the unit ball or the half

space, then one can construct a non-scalar field V which is conjugate to U (see [19]), such that the pair

U+V is the boundary limit of some monogenic H2 function F , in the sense of L2 and almost everywhere.

This enables us to apply our method to F inside the domain. The recovery of U can be obtained by

taking the scalar part of the trace (boundary values) of the adaptive decomposition of F through higher

order Szegö kernels. Note that another simple but not adaptive approach for rational approximation of

F is to directly use the Taylor series, where the set of basic functions consists of Fueter polynomials (in

complex analysis they reduce to complex power functions). But in the case of half space the Taylor series

usually just converges in a smaller region. For example, F (z) = (z + i)−1 (z ∈ R2
+) is an H2 function in

the upper half plane R2
+, its Talyor series is convergent only in D∩R2

+, where D stands for the unit disc.

The paper is organized as follows. In Section 2, we give a quick review on Clifford analysis and

monogenic Hardy spaces. In Sections 3 and 4 we discuss the problems of adaptive decomposition by

higher order Szegö kernels in the monogenic Hardy spaces for the unit ball and half space respectively.

2 Preliminaries

2.1 Clifford algebra and Clifford analysis

We shall use the real Clifford algebra Am of dimension 2m, generated from Rm = {x = x1e1+· · ·+xmem :

xi ∈ R, 1 6 i 6 m}, where {e1, . . . , em} forms an orthonormal basis of Rm, with the anti-commutative

relationship

eiej + ejei = −2δij , i, j = 1, . . . ,m,

in which δij is the Kronecker delta function. Am is an associative algebra whose element is of the form

x =
∑

T xT eT , where T = {1 6 i1 < i2 < · · · < il 6 m} runs over all ordered subsets of {1, . . . ,m},
xT ∈ R with x∅ = x0, and eT = ei1ei2 · · · eil with the identity element e∅ = e0. Scx := x0 and NScx :=

x− Scx are respectively called the scalar part and non-scalar part of x. The conjugate and the norm of

x are respectively defined by x :=
∑

T xT eT and |x| := Sc(xx) = (
∑

T x2
T )

1/2, where eT = eil · · · ei2 ei1
with e0 = e0 and ei = −ei for i ̸= 0. We have for any x, y, z ∈ Am, xy = y x, (xy)z = x(yz) and
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|xy| 6 2m/2|x||y|. A0 = R, A1 = C and A2 coincides with the quaternion algebra H. Am is no longer

a division algebra when m > 3, but if x ∈ Am is of the special form like x =
∑m

i=0 xiei ∈ Rm+1, then

obviously its inverse is given by x−1 = x/|x|2.
A function f(x) =

∑
T fT (x)eT ∈ C1(Ω,Am) is said to be left (right) monogenic in the open set

Ω ⊂ Rm+1 if and only if it satisfies the generalized Cauchy-Riemann equation

Df =
m∑
i=0

ei
∂f

∂xi
= 0

(
fD =

m∑
i=0

∂f

∂xi
ei = 0

)
,

where the Dirac operator D is defined by D = ∂
∂x0

+∇ =
∑m

0 ei
∂

∂xi
. If f is left (right) monogenic, then

from D(Df) = (fD)D = △f we know that each component of f is a real-valued harmonic function.

Obviously, the set of the left (right) monogenic functions in Ω is a right (left) Am-module.

The theory of Clifford analysis founded and developed by Brackx et al. is about the theory of monogenic

functions, which is a generalization of the complex analysis into higher-dimensional spaces. Now it plays

an important role in modern analysis and becomes a powerful tool for many applications. A Cauchy-type

integral formula for this setting is:

Lemma 2.1 (See [4]). Let S ⊂ Ω be an (m + 1)-dimensional compact differentiable and oriented

manifold with boundary. If f is left monogenic in Ω, then

f(x) =
1

ωm

∫
y∈∂S

E(y − x)n(y)f(y)dS, x ∈ int(S),

where E(x) = x
|x|m+1 is the Cauchy kernel, ωm = 2π

m+1
2 /Γ(m+1

2 ) stands for the area of the unit sphere

Sm = {x ∈ Rm+1 : |x| = 1}, n(y) is the outward-pointing unit normal vector on ∂S, dS is the surface

area element on ∂S and int(S) is the interior of S.

2.2 Monogenic Hardy spaces

Since there is no essential difference between left monogenic functions and right monogenic functions, we

will work only on left monogenic functions in this paper.

Denote the unit ball {x ∈ Rm+1 : |x| < 1} by Bm, and the half space {x ∈ Rm+1 : Scx > 0} by Rm+1
+ .

For 0 < p 6 ∞ and a function f , we say f ∈ Hp(Bm) (resp. f ∈ Hp(Rm+1
+ )), if f is left monogenic in

Bm (resp. Rm+1
+ ), and satisfies

∥f∥Hp := sup
06r<1

(
1

ωm

∫
Sm

|f(rη)|pdS(η)
)1/p

< ∞,(
resp. ∥f∥Hp := sup

x0>0

(
1

ωm

∫
Rm

|f(x0 + x)|pdx
)1/p

< ∞
)

with a usual modification at p = ∞, where x = x1e1 + · · · + xmem, dx = dx1 · · · dxm is the volume

element of Rm.

If m−1
m < p 6 ∞, then for any f ∈ Hp(Bm) (resp. Hp(Rm+1

+ )), the non-tangential limit of f on Sm

(resp. Rm) exists and belongs to Lp(Sm) (resp. Lp(Rm)). What we will be of particular interest is the

Hilbert space H2(Bm) (resp. H2(Rm+1
+ )), which is associated with the inner product

⟨f, g⟩ := 1

ωm

∫
η∈Sm

g(η)f(η)dS(η), f, g ∈ H2(Bm),(
resp. ⟨f, g⟩ := 1

ωm

∫
Rm

g(y)f(y)dy, f, g ∈ H2(Rm+1
+ )

)
.

We note that

∥f∥H2 = (Sc⟨f, f⟩)1/2,
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and there holds the quasi-Cauchy-Schwarz inequality

|⟨f, g⟩| 6 2m/2∥f∥H2∥g∥H2 .

Moreover, the Cauchy’s integral formula holds for H2(Bm) and H2(Rm+1
+ ).

For more information about the monogenic Hardy spaces, please see [9, 14].

3 The case for the unit ball

For a multi-index k = (k0, k1, . . . , km) ∈ Nm+1 and a point a =
∑m

l=0 alel ∈ Bm, the associated higher

order Szegö kernel function is

φk,a(x) = ∂k
a

(
1− ax

|1− ax|m+1

)
=

∂|k|

∂ak0
0 ∂ak1

1 · · · ∂akm
m

(
1− ax

|1− ax|m+1

)
,

where |k| =
∑m

i=0 ki. It is easy to check that φk,a is left monogenic on the closure of Bm, and hence φk,a

belongs to the Hardy space Hp(Bm) (0 < p 6 ∞). Moreover, for any f ∈ Hp(Bm) (1 6 p 6 ∞), there

holds

(∂k
xf)(a) =

1

ωm

∫
Sm

φk,a(η)f(η)dS(η), ∀a ∈ Bm.

In particular, for f ∈ H2(Bm) we have

⟨f, φk,a⟩ = (∂k
xf)(a). (3.1)

The key property for φk,a that is crucial to this section is:

Proposition 3.1. For any 0 < p 6 ∞,

∥φk,a∥Hp =
∥|x+ a|(

1
p′ −

1
p )mφk,0(x+ a)∥Lp(Sm)

(1− |a|2)
m
p′ +|k| , (3.2)

where p′ = p
p−1 is the Hölder conjugate of p.

Proof. First, we assume that p ̸= ∞, then

∥φk,a∥pHp =
1

ωm

∫
Sm

∣∣∣∣∂k
a

(
1− aη

|1− aη|m+1

)∣∣∣∣p dS(η) = 1

ωm

∫
Sm

∣∣∣∣∂k
a

(
η − a

|η − a|m+1

)∣∣∣∣p dS(η)
=

1

ωm

∫
Sm

∣∣∣∣ Pk(η − a)

|η − a|m+2|k|+1

∣∣∣∣p dS(η),
where Pk is a homogeneous polynomial of degree |k|+ 1. Changing variables by setting (cf. [10])

η = τa(ω) = (ω + a)(1 + aω)−1 = (1− |a|2) ω + a

|ω + a|2
+ a,

which is in fact a special kind of Möbius transformation mapping the unit sphere Sm to itself, with the

inverse being given by

ω = τ−1
a (η) = τ−a(η) = (1− |a|2) η − a

|η − a|2
− a.

The corresponding change of the surface area element reads

dS(η) =

(
1− |a|2

|ω + a|2

)m

dS(ω).

So,

∥φk,a∥pHp =
1

ωm

∫
Sm |Pk(ω + a)|p|ω + a|pm−p−2mdS(ω)

(1− |a|2)pm−m+p|k|
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=
1

ωm

∫
Sm |φk,0(ω + a)|p|ω + a|pm−2mdS(ω)

(1− |a|2)pm−m+p|k|

=
∥|x+ a|(

1
p′ −

1
p )mφk,0(x+ a)∥pLp(Sm)

(1− |a|2)
pm
p′ +p|k| .

As to the H∞ norm, it follows from

∥φk,a∥H∞ = lim
p→∞

∥φk,a∥Hp =
∥|x+ a|mφk,0(x+ a)∥L∞(Sm)

(1− |a|2)m+|k| .

Corollary 3.2.

∥φk,a∥H2 >
∥Wk(x)∥L2(Sm)

(1− |a|2)m
2 +|k| , (3.3)

where Wk(x) = ∂k
xE(x) is an outer spherical monogenic (see [4]). And for m

m+|k| < p 6 ∞, there exist

two positive constants ck,m,p and Ck,m,p depending on k,m, p, such that

ck,m,p

(1− |a|2)
m
p′ +|k| 6 ∥φk,a∥Hp 6 Ck,m,p

(1− |a|2)
m
p′ +|k| . (3.4)

Proof. Observe that φk,0(x+ a) is a polynomial of degree |k|, so when p > m
m+|k| we have

||x+ a|(
1
p′ −

1
p )mφk,0(x+ a)| 6 Ck,m,p|x+ a|(1−

2
p )m+|k| ∈ Lp(Sm)

even for a ∈ Sm, which implies that ∥|x + a|(
1
p′ −

1
p )mφk,0(x + a)∥Lp(Sm) is a continuous function with

respect to a ∈ Bm. Consequently,

0 < ck,m,p = min
a∈Bm

∥|x+ a|(
1
p′ −

1
p )mφk,0(x+ a)∥Lp(Sm)

6 max
a∈Bm

∥|x+ a|(
1
p′ −

1
p )mφk,0(x+ a)∥Lp(Sm) = Ck,m,p < ∞.

(3.4) is now proved. To prove (3.3), in view of (3.2) it suffices to show that

∥φk,0(x+ a)∥L2(Sm) = ∥φk,0(x+ a)∥H2 > ∥Wk(x)∥L2(Sm).

First, from

φ0,a(x) =
1− ax

|1− ax|m+1
= E(x)E(x−1 − a)

we know that

φk,0(x+ a) = (−1)k0(K(Wk(y)))|y=x+a,

where (Kf)(x) := E(x)f(x−1) is the Kelvin transform (see [6]). Secondly, the Taylor expansion of

φk,0(x+ a) reads

φk,0(x+ a) =
∑

α=(α1,...,αm)∈Nm

Vα(x)((∂
α
xφk,0(x+ a))|x=0) =

|k|∑
l=0

∑
|α|=l

Vα(x)((∂
α
xφk,0(x))|x=a),

where Vα(x) is an inner spherical monogenic of order |α| (see [4, 6]), ∂
α
x = ∂|α|

∂x
α1
1 ···∂xαm

m
. It follows that

(see [4, 21])

∥φk,0(x+ a)∥2L2(Sm) =

|k|∑
l=0

∥∥∥∥ ∑
|α|=l

Vα(x)((∂
α
xφk,0(x))|x=a)

∥∥∥∥2
L2(Sm)

.
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Note that ∂
α
xφk,0(x) is a homogeneous polynomial of order |k| − |α|, so, if l < |k|, the norm∥∥∥∥ ∑

|α|=l

Vα(x)((∂
α
xφk,0(x))|x=a)

∥∥∥∥2
L2(Sm)

will take the minimum value 0 at the point a = 0. Therefore, for all a ∈ Bm we have

∥φk,0(x+ a)∥L2(Sm) > ∥φk,0(x)∥L2(Sm) = ∥K(Wk(x))∥L2(Sm) = ∥Wk(x)∥L2(Sm).

The proof of (3.3) is complete.

Corollary 3.3. For each (k, a) ∈ Nm+1 × Bm, define the linear functional Tk,a on H2(Bm) by

Tk,af = ⟨f, φk,a⟩ = (∂k
xf)(a), f ∈ H2(Bm),

then

∥Tk,a∥ ≍ (1− |a|)−m
2 −|k| as |a| → 1−,

where by A ≍ B we mean that A = O(B) and B = O(A) simultaneously hold.

Proof. Since

φk,aφk,a = φk,aφk,a ∈ R, (3.5)

we have the Cauchy-Schwarz inequality

|⟨f, φk,a⟩| 6 ∥f∥H2∥φk,a∥H2 ,

and

∥φk,a∥2H2 = ⟨φk,a, φk,a⟩ = (∂k
xφk,a(x))|x=a.

Hence, ∥Tk,a∥ = ∥φk,a∥H2 , and (3.4) in Corollary 3.2 tells us that

∥φk,a∥H2 ≍ (1− |a|)−m
2 −|k| as |a| → 1−.

Let

Pk,a(x) = ∂k
a

(
1− |a|2|x|2

|1− ax|m+1

)
, (k, a) ∈ Nm+1 × Bm

be the higher order Poisson kernel function for the harmonic Hardy space H2(Bm) (consisting of all

functions that are harmonic on Bm and satisfy the same norm condition for H2(Bm)). Define the linear

functional Tk,a on H2(Bm) by

Tk,af = ⟨f, Pk,a⟩ = (∂k
xf)(a), f ∈ H2(Bm).

Then we have

Corollary 3.4. ∥Tk,a∥ ≍ (1− |a|)−m
2 −|k| as |a| → 1−.

Proof. It is clear that

∥Tk,a∥ = ∥Pk,a∥H2 = ∥Pk,a∥L2(Sm).

From

|⟨φk,a, Pk,a⟩| 6 ∥φk,a∥H2∥Pk,a∥H2 ,

we conclude that

∥Pk,a∥H2 > |⟨φk,a, Pk,a⟩|
∥φk,a∥H2

=
(∂k

xφk,a(x))|x=a

∥φk,a∥H2

= ∥φk,a∥H2 .

On the other hand, the following estimate (see [18])

(1− |a|)m
2 +|k||(∂k

xf)(a)| 6 Ck,m∥f∥H2 , ∀f ∈ H2(Bm)

implies that ∥Tk,a∥ = O((1− |a|)−m
2 −|k|) as |a| → 1−.
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Next we will study the adaptive decomposition for functions in H2(Bm). We shall use the following

dictionary

D =

{
ek,a =

φk,a

∥φk,a∥H2

: (k, a) ∈ Nm+1 × Bm

}
.

Note that if each element ek,a is regarded as a function of a, then it satisfies ek,aD = 0, which means

that ek,a is a finite linear combination of the elements in {el,a : l0 = 0, |l| = |k|}. Hence D is a redundant

dictionary. In addition, D is complete, because

H2(Bm) = span{e0,a : a ∈ Bm} ⊂ spanD.

For any f ∈ H2(Bm), according to the matching pursuit algorithm, there is an associated decomposition

(like (1.1))

f =

n∑
l=0

ekl,al
⟨Rlf, ekl,al

⟩+Rn+1f = Snf +Rn+1f, (3.6)

with the residues being similarly defined as in (1.3). From (3.1) we get the formula which will be

convenient for the computation of each coefficient:

⟨Rlf, ekl,al
⟩ = (∂kl

x Rlf)(al)

∥φkl,al
∥H2

. (3.7)

Although generally a Clifford number is not invertible, owing to (3.5) the energy conservation law for

(3.6) still holds, i.e.,

∥f∥2H2 =
n∑

l=0

|⟨Rlf, ekl,al
⟩|2 + ∥Rn+1f∥2H2 . (3.8)

So, to make the decomposition converge as fast as possible, at every step we should select ekl,al
from D

such that

|⟨Rlf, ekl,al
⟩| = sup

g∈D
|⟨Rlf, g⟩|. (3.9)

The reachability of the supremum in (3.9) is a corollary of the following theorem.

Theorem 3.5. Suppose f ∈ H2(Bm), then

lim
|k|→∞

|⟨f, ek,a⟩| = 0 (3.10)

holds uniformly with respect to a ∈ Bm. Write a = |a|ξ, then

lim
|a|→1−

|⟨f, ek,a⟩| = 0 (3.11)

holds uniformly with respect to (k, ξ) ∈ Nm+1 × Sm.

Proof. Let

Tf,N (x) =
N∑
l=0

∑
|α|=l

Vα(x)(∂
α
x f)(0)

be the Taylor series of f up to order N . For any ϵ > 0, there exists an N such that

∥f − Tf,N∥H2 < ϵ.

Therefore, if |k| > N , we will get

|⟨f, ek,a⟩| = |⟨f − Tf,N , ek,a⟩+ ⟨Tf,N , ek,a⟩| = |⟨f − Tf,N , ek,a⟩| 6 ∥f − Tf,N∥H2 < ϵ,
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where we have used the fact that ⟨Tf,N , φk,a⟩ = (∂k
xTf,N )(a) = 0, since Tf,N is a polynomial of order less

than |k|. (3.10) is now proved. To show (3.11), in view of (3.10), it is enough to show the case for any

fixed k. Now, for each k ∈ Nm+1, we have

|⟨f, ek,a⟩| 6 |⟨f − Tf,N , ek,a⟩|+ |⟨Tf,N , ek,a⟩| 6 ∥f − Tf,N∥H2 +
|(∂k

xTf,N )(a)|
∥φk,a∥H2

.

Then (3.11) follows by observing that ∂k
xTf,N is a bounded function, and ∥φk,a∥H2 → ∞ as |a| → 1−

(Corollary 3.2).

The proof of the theorem is complete.

For the adaptive decomposition (3.6) subject to the constraint (maximum selection criterion) (3.9), we

have the following theorem.

Theorem 3.6.

∥Snf − f∥H2 = ∥Rn+1f∥H2 → 0 (n → ∞), (3.12)

and for any k ∈ Nm+1 and any compact subset Ω of Bm, the pointwise convergence∣∣(∂k
xSn)(a)− (∂k

xf)(a)
∣∣ = ∣∣(∂k

xR
n+1f)(a)

∣∣ → 0 (n → ∞) (3.13)

uniformly holds with respect to a ∈ Ω.

Proof. (3.12) follows from [13, Theorem 1] and the fact that D is a complete dictionary. (3.13) is a

consequence of (3.12) and the estimate

∣∣(∂k
xR

n+1f)(a)
∣∣ = |⟨Rn+1f, φk,a⟩| 6 ∥Rn+1f∥H2∥φk,a∥H2 6 Ck,m∥Rn+1f∥H2

(1− |a|2)m
2 +|k| .

4 The case for the half space

In this section, we will propose two methods for step by step optimal decomposition for functions in

H2(Rm+1
+ ). One is to use the isomorphism between H2(Bm) and H2(Rm+1

+ ). To this end, we let

(T f)(x) = 2
m
2

1 + x

|1 + x|m+1
f((1− x)(1 + x)−1).

It was showed in [19] that T is a unitary operator from H2(Bm) to H2(Rm+1
+ ), and T −1 = T . So, it is

natural to consider the following dictionary

D =

{
ek,a = T

(
∂k
a

1− ax

|1− ax|m+1

)
: (k, a) ∈ Nm+1 × Bm

}
.

One can easily show that for any f ∈ H2(Rm+1
+ ), there exists at least one g⋆ ∈ D such that

|⟨f, g⋆⟩| = sup
g∈D

|⟨f, g⟩|.

Under this setting, the adaptive decomposition problem for H2(Rm+1
+ ) can be in fact converted to the

same problem for H2(Bm). However, except for the Szegö kernel itself, D contains no other higher order

Szegö kernel functions for Rm+1
+ .

The dictionary consisting of the higher order Szegö kernel functions for this case should be

D =

{
ek,a =

φk,a

∥φk,a∥H2

: (k, a) ∈ Nm+1 × Rm+1
+

}
,

where

φk,a(x) = ∂k
a

(
x+ a

|x+ a|m+1

)
.
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D is a complete and redundant dictionary. Moreover, as a consequence of the Cauchy’s integral formula,

for any f ∈ H2(Rm+1
+ ) we have

⟨f, ek,a⟩ =
(∂k

xf)(a)

∥φk,a∥H2

, (4.1)

and therefore

∥φk,a∥2H2 = Sc((∂k
xφk,a(x))

∣∣
x=a

) =

(
∂k
x∂

k
a

x0 + a0
|x+ a|m+1

) ∣∣∣∣
x=a

. (4.2)

Proposition 4.1.

∥φk,a∥2H2 =
Γ(m+ 2|k|)

∏m
l=1 Γ(kl +

1
2 )

(2
√
π)m−1Γ(m+1

2 )Γ(m2 + |k|)
(2a0)

−m−2|k|, (4.3)

where |k| = |k| − k0.

Lemma 4.2 (See [11,12]). Let a ∈ Rm+1
+ , f(x) = x+a

|x+a|m+1 , x ∈ Rm. Then

f̂(x) =
π

m+1
2

Γ(m+1
2 )

e−2πi⟨x,a⟩e−2πa0|x|
(
1 +

ix1

|x|
e1 + · · ·+ ixm

|x|
em

)
,

where the Fourier transform is defined by

f̂(x) :=

∫
Rm

f(ξ)e−2πi⟨x,ξ⟩dξ.

Proof of Proposition 4.1. By Plancherel theorem and Lemma 4.2,

∥φk,a∥2H2 =
Γ(m+1

2 )

2π
m+1

2

∫
Rm

∣∣∣∣∂k
a

x+ a

|x+ a|m+1

∣∣∣∣2 dx
=

Γ(m+1
2 )

2π
m+1

2

∫
Rm

∣∣∣∣∣
(
∂k
a

·+ a

| ·+a|m+1

)∧

(x)

∣∣∣∣∣
2

dx

=
Γ(m+1

2 )

2π
m+1

2

2πm+1

Γ2(m+1
2 )

∫
Rm

∣∣∣∂k
ae

−2πi⟨x,a⟩e−2πa0|x|
∣∣∣2 dx

=
π

m+1
2

Γ(m+1
2 )

(2π)2|k|
∫
Rm

|x|2k0x2k1
1 · · ·x2km

m e−4πa0|x|dx

=
Γ(m+ 2|k|)

∏m
l=1 Γ(kl +

1
2 )

(2
√
π)m−1Γ(m+1

2 )Γ(m2 + |k|)
(2a0)

−m−2|k|,

where the last step is derived by virtue of the usual spherical coordinate transform.

Remark 4.3. It is easy to verify from (4.3) that (2a0)
m+2|k|∥φk,a∥2H2 is a rational number.

Corollary 4.4. For each (k, a) ∈ Nm+1 × Rm+1
+ , define the linear functional Tk,a on H2(Rm+1

+ ) by

Tk,af = ⟨f, φk,a⟩ = (∂k
xf)(a), f ∈ H2(Rm+1

+ ),

then

∥Tk,a∥ = ∥φk,a∥H2 ≍ a
−m

2 −|k|
0 as a0 → 0+.

Let

Pk,a(x) = 2∂k
a

(
x0 + a0

|x+ a|m+1

)
, (k, a) ∈ Nm+1 × Rm+1

+

be the higher order Poisson kernel function for the harmonic Hardy space H2(Rm+1
+ ). Define the linear

functional Tk,a on H2(Rm+1
+ ) by

Tk,af = ⟨f, Pk,a⟩ = (∂k
xf)(a), f ∈ H2(Rm+1

+ ),

then we have the following corollary.
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Corollary 4.5.

∥Tk,a∥ = ∥Pk,a∥H2 ≍ a
−m

2 −|k|
0 as a0 → 0+.

Proof. We conclude from (4.2) that

∥Pk,a∥2H2 = ⟨Pk,a, Pk,a⟩ = (∂k
xPk,a)(a) = 2∥φk,a∥2H2 .

Theorem 4.6. Suppose f ∈ H2(Rm+1
+ ), then

lim
|k|→∞

|⟨f, ek,a⟩| = 0 (4.4)

holds uniformly with respect to a ∈ Rm+1
+ ;

lim
a0→0+

|⟨f, ek,a⟩| = lim
a0→∞

|⟨f, ek,a⟩| = 0 (4.5)

holds uniformly with respect to (k, a) ∈ Nm+1 × Rm, and

lim
|a|→∞

|⟨f, ek,a⟩| = 0 (4.6)

holds uniformly with respect to (k, a0) ∈ Nm+1 × (0,∞).

This theorem can be easily proved with the aid of the following two lemmas.

Lemma 4.7 (See [19]). span{φ0,b : b ∈ Rm+1
+ } = H2(Rm+1

+ ).

Lemma 4.8. For any fixed b = b0 + b ∈ Rm+1
+ , we have

lim
|k|→∞

|⟨φ0,b, ek,a⟩| = 0 (4.7)

holds uniformly with respect to a ∈ Rm+1
+ ;

lim
a0→0+

|⟨φ0,b, ek,a⟩| = lim
a0→∞

|⟨φ0,b, ek,a⟩| = 0 (4.8)

holds uniformly with respect to (k, a) ∈ Nm+1 × Rm, and

lim
|a|→∞

|⟨φ0,b, ek,a⟩| = 0 (4.9)

holds uniformly with respect to (k, a0) ∈ Nm+1 × (0,∞).

Proof. By Plancherel theorem,

|⟨φ0,b, ek,a⟩| =
Cm|

∫
Rm(∂k

a
x+a

|x+a|m+1 )(
x+b

|x+b|m+1
)dx|

∥φk,a∥H2

=
Cm|

∫
Rm(∂k

a
·+a

|·+a|m+1 )
∧(x)Conj(( ·+b

|·+b|m+1
)∧(x))dx|

∥φk,a∥H2

,

where for a complexified Clifford number x =
∑m

l=0 xlel (xl ∈ C, 0 6 l 6 m) we define Conj(x) :=∑m
l=0 xlel.

Appealing to Proposition 4.1 and Lemma 4.2, we obtain

|⟨φ0,b, ek,a⟩| 6
Cm(2π)|k|

(∫
Rm |x|k0 |x1|k1 · · · |xm|kme−2π(a0+b0)|x|dx

)
∥φk,a∥H2

= Cm

√
Γ(m2 + |k|)Γ(m+ |k|)

∏m
l=1 Γ(

kl+1
2 )

Γ(m+|k|
2 )

√
Γ(m+ 2|k|)

∏m
l=1 Γ(kl +

1
2 )

(2a0)
m
2 +|k|

(a0 + b0)m+|k| .
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Since (2a0)
m
2

+|k|

(a0+b0)m+|k| attains its maximum at a0 = m+2|k|
m b0, (

m+2|k|
2m+2|k| )

m+|k| 6 e−
m
2 , and Stirling’s formula

gives Γ(z) ∼
√
2π/z(z/e)z, we have

|⟨φ0,b, ek,a⟩| 6 Cb0,m

2|k|
√
Γ(m2 + |k|)Γ(m+ |k|)

∏m
l=1 Γ(

kl+1
2 )

Γ(m+|k|
2 )

√
Γ(m+ 2|k|)

∏m
l=1 Γ(kl +

1
2 )

(
m

2
+ |k|

)−m
2

6 Cb0,m

|k|m2 − 1
4

√
Γ(m2 + |k|)

∏m
l=1 Γ(

kl+1
2 )

Γ(m+|k|
2 )

√∏m
l=1 Γ(kl +

1
2 )

(
m

2
+ |k|

)−m
2

6 Cb0,m|k|m2 − 1
4

(
m

2
+ |k|

)−m
2

2−
|k|
2

√
Γ(m2 + |k|)
Γ(m+|k|

2 )

6 Cb0,m|k|m2 − 1
4

(
m

2
+ |k|

)−m
2

|k| 14−m
4

6 Cb0,m|k|− 1
4 .

Hence we get (4.7), and we only need to show (4.8) and (4.9) for any fixed k ∈ Nm+1.

By (4.1) and (4.3),

|⟨φ0,b, ek,a⟩| = Ck,ma
m
2 +|k|
0

∣∣∣∣∂k
a

(
a+ b

|a+ b|m+1

)∣∣∣∣ = Ck,ma
m
2 +|k|
0

|Pk(a+ b)|
|a+ b|m+2|k|+1

6


Cb,k,ma

m
2 +|k|
0 if a0 is small,

Ck,ma
−m

2
0 if a0 is large,

Cb,k,ma
m
2 +|k|
0 |a|−m−|k| if |a| is large,

where Pk is a homogeneous polynomial of degree |k|+ 1. (4.8) and (4.9) now become obvious.

Theorem 4.6 thus enables us to adaptively decompose a function f ∈ H2(Rm+1
+ ) in the form

f =
n∑

l=0

ekl,al
⟨Rlf, ekl,al

⟩+Rn+1f, (4.10)

subject to

|⟨Rlf, ekl,al
⟩| = sup

g∈D
|⟨Rlf, g⟩|. (4.11)

Similar to Theorem 3.6, we accordingly have

Theorem 4.9.

∥Rn+1f∥H2 → 0 (n → ∞), (4.12)

and for any k ∈ Nm+1 and any t > 0,

(∂k
xR

n+1f)(a) → 0 (n → ∞) (4.13)

uniformly holds on {a ∈ Rm+1
+ : Sc(a) > t}.
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