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1. Introduction

Since 1970s, the singular integral operators on Lipschitz curves and surfaces have been studied extensively. In 1977,
Calderón [1] first proved the L2 boundedness of the singular Cauchy integral operators on a Lipschitz curve γ , where
the Lipschitz constant is small. Later, Coifman–McIntosh–Meyer [2] eliminated this restriction. We refer the reader to
Coifman–Jones–Semmes [3], Coifman–Meyer [4] and Jerison–Kenig [5] for further information.

In higher dimensional spaces, let Σ be a Lipschitz surface given by

Σ =

g(x)e0 + x ∈ Rn+1

: x ∈ Rn ,

where g is a Lipschitz function such that ∥∇g∥∞ ≤ tanω, ω ∈ [0, π
2 ). Li–McIntosh–Semmes [6] embedded Rn+1 in

Clifford algebra R(n) with identity e0 and considered the right monogenic functions φ satisfying |φ(x)| ≤ C |x|−n on a sector
S0µ, µ > ω. C. Li, A. McIntosh and T. Qian proved that the convolution singular integral operator

T(φ,φ)u(x) = lim
ε→0+


y∈Σ,|y−x|≥ε

φ(x − y)n(y)u(y)dSy + φ(εn(x))u(x)


(1.1)
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is bounded on Lp(Σ), 1 < p < ∞. Gaudry–Long–Qian [7] gave another proof by a T (b) type theorem and a martingale
approach.

It is well-known that there exists a correspondence between the convolution singular integrals and the Fourier
multipliers. See E. M. Stein’s book [8] for details. On infinite Lipschitz curves γ , by the Fourier transform on the sectors
and H∞-functional calculus, McIntosh–Qian [9,10] established the theory of Lp-Fourier multipliers and proved that the
convolution singular integral operators on γ are equivalent to Fourier multipliers associated with Dirac operators. See also
Gaudry–Qian–Wang [11] and Qian [12] for the theory of Lp Fourier multipliers on the closed Lipschitz curves.

On a Lipschitz surface Σ , Li–McIntosh–Qian [13] generalized the Fourier transform holomorphically to a function of
m complex variables. Let −iDΣ =

m
k=1 −iekDk,Σ , where Dk,Σ = (∂/∂xk) |Σ u, k = 1, . . . ,m. Li–McIntosh–Qian [13]

proved T(φ,φ) defined by (1.1) can bewritten as T(φ,φ) = b(−iDΣ ) = b(−iD1,Σ , −iD2,Σ , . . . ,−iDm,Σ ),where b is the Fourier
transform of φ.

The above theory was further extended to the starlike Lipschitz surfaces by Qian [14,15]. Let Scω,± and Scω be the sectors
defined in Definition 3.4. The results of T. Qian are restricted to the bounded holomorphic Fourier multipliers b belonging
to the following classes

H∞(Scω,±) =


b : Scω,± → C, b is bounded holomorphic on Scω and satisfies |b(z)| ≤ Cµ, z ∈ Scµ,±, 0 < µ < ω


.

A natural question is whether there exists a relation between the convolution operators on Σ and the multipliers b
dominated by a polynomial, that is,

|b(z)| ≤ Cµ|z|s, z ∈ Scµ,±, 0 < µ < ω.

If Σ is the Euclidean space or its unit sphere, such multipliers are the classical fractional differential and integral operators
and are widely applied to the study of harmonic analysis and partial differential equations.

Li–Leong–Qian [16] obtained the following result. Let {P (k)
} be the monogenic polynomials defined in Definition 3.1. If

b ∈ Hs(Scω), then the function

φ(x) =


k∈Z\{0}

b(k)P (k)(x) ∈ K s(Hω).

See Section 3 for the definitions of Hs(Scω) and K s(Hω). If s = 0, the multipliers b become the bounded Fourier multipliers.
Hence the above-mentioned result is a generalization of those of McIntosh–Qian [9] and Qian [14,15].

In this article, we consider the converse of the result obtained in [16]. Further, we establish a correspondence between
our Fourier multipliers and the kernels of the convolution operators on starlike Lipschitz surfaces. Precisely, we prove that
the following are equivalent:
(i) φ(x) =


k∈Z\{0} bkP

(k)(x) ∈ K s(Hω,±);

(ii) There exists b ∈ Hs(Scω,±) such that bk = b(k), k ∈ Z \ {0}.

For the Fourier multipliers on Lipschitz surfaces, there exists a substantial difficulty. On the unit sphere, the L2-
boundedness of Fourier multipliers can be obtained by the Plancherel theorem directly. In the new context, i.e. the starlike
Lipschitz surfaces, the Plancherel theorem does not hold. For s = 0 and n = 3, Qian [14] obtained the equivalence of (i) and
(ii). For the case s ≠ 0, our method is similar to that of Qian [14,15] but with some necessary modification in technology.

(i)=⇒(ii). This part has been obtained by Li-Leong-Qian [16]. For the cases s > 0 and s < 0, Li-Leong-Qian [16] used the
Kelvin inversion and Fueter’s result, respectively. We point out that if the dimension n is odd, we could estimate the kernels
of the Fourier multipliers for the cases s > 0 and s < 0 by the same method. We omit the details. See Theorem 3.9.

(ii)=⇒(i). Given φ as above. For s = 0, such a relation has been obtained by Qian [14]. However, for the case s ≠ 0, if we
apply the method of [14], we can only get b ∈ Hs+2(Scω,±) rather than Hs(Scω,±). See Theorem 3.10. Applying Proposition 3.3,
we construct the function b by using zk. This method also helps us avoid the difficulties occurring in the estimate of |P (z)(x)|.
See Theorem 3.12.

Remark 1.1. In this paper, we assume that the dimension n is odd. We point out that our method cannot be applied to
the Clifford algebras with an even number of generators. In fact, our proof of Theorem 3.12 is based on a generalization of
Fueter’s result which holds when n is odd. See (6) of Proposition 3.3.

In Section 4, we give two applications of the theory of the Fourier multipliers obtained in Section 3. Let s ∈ Z+ ∪ {0}. In
Section 4.1, we introduce the Sobolev spacesW 2,s

Γξ
(Σ) on the starlike Lipschitz surfaces. We prove that if b ∈ Hs(Scω), s > 0,

r ∈ Z+ ∪ {0}, the multiplier operatorMb is bounded fromW 2,r+s1
Γξ

(Σ) toW 2,r
Γξ

(Σ). See Theorem 4.3. This result implies that
our Fourier multipliers could exert an influence on the index of the Sobolev spaces associated with Γξ .

In Section 4.2, we establish the equivalence between two classes of Hardy–Sobolev spaces on Σ . We can see that there
exist two methods to define the Hardy–Sobolev spaces associated with Γξ . By the Fourier multiplier theory, we prove the
two classes of Hardy–Sobolev spaces are equivalent. See Theorem 4.4.

Our paper is organized as follows. In Section 2, we state notations, knowledge and terminology which will be used
throughout the paper. In Section 3, we obtain the correspondence between the kernel functions φ and the multipliers b
by use of Fueter’s result. In Section 4, we give two applications of the Fourier multiplier theory on starlike Lipschitz surfaces.
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2. Preliminaries

In this paper we work with the real Clifford algebra R(n) generated by e1, e2, . . . , en as its basic vectors, over the real
number field under the multiplication relations:e0 = 1;

e2i = −e0 = −1, 1 ≤ i ≤ n;
eiej + ejei = 0, i ≠ j, 1 ≤ i, j ≤ n.

Denoted by Rn
1 and Rn the linear subspaces of R(n) generated by {e0, e1, e2, . . . , en} and by {e1, e2, . . . , en}, respectively. A

vector in Rn
1 is represented as x = x0e0 + x, where x0 ∈ R and x =

n
l=1 xlel ∈ Rn. We call x0e0 and x the real and imaginary

parts of x, respectively. There are two basic operations on the basic elements:
(ei1 · · · eil)

∗
= eil · · · ei1 ,

(ei1 · · · eil)
′
= (ei1)

′
· · · (eil)

′,

where (e0)′ = e0, (ej)′ = −ej, j = 1, . . . , n. By linearity, they can be extended to R(n), Rn
1, Rn. We define the operation

‘‘−’’ by x = (x∗)′. If x, y ∈ R(n), then xy = y x. If x = x0 + x, then x = x0 − x. If for a nonzero vector x, its inverse x−1 exists:
x−1

=
x

|x|2
.

We also use the complex Clifford algebra C(n) generated by e1, . . . , en over the complex number field, whose elements
are also denoted by x, y, . . . . The complex imaginary element i commutes with all the ej, j = 0, 1, . . . , n and i′ = −i.
Therefore we can extend the definitions of ∗, ′ and − to C(n), respectively. The natural inner product ⟨x, y⟩ between x and
y in C(n) is the complex number ΣSxSyS , where x = ΣSxSeS , y = ΣSySeS and S runs over all the ordered subsets (i1, . . . , il)
with i1 < i2 < · · · < il of the set {1, 2, . . . , n} and eS = ei1 · · · eil . Hence the norm associated with ⟨·, ·⟩ is defined as
|x| = ⟨x, x⟩1/2 = (


S |xS |2)1/2. It is easy to see that ⟨x, y⟩ =

1
4 (|x + y|2 − |x − y|2). The angle between two vectors x and y

is defined as arg(x, y) = arccos⟨x, y⟩/(|x||y|), where the function arccos takes values in [0, π). We denote the unit sphere
{x ∈ Rn

1 : |x| = 1} by SRn
1
and the unit sphere {x ∈ Rn

: |x| = 1} by SRn .
Let f =


S fSeS be a C1-function and D =

n
k=1

∂
∂xk

ek. The differential operator D =
∂

∂x0
+ D applies to f and gives

Df =

n
k=0

∂ fS
∂xk

ekeS,

fD =

n
k=0

∂ fS
∂xk

eSek.

In the polar coordinate system, the operator D can be decomposed into

D = ξ∂r −
1
r
∂ξ = ξ


∂r −

1
r
Γξ


,

where Γξ is a first order differential operator depending only on the angular coordinates known as the spherical Dirac
operator. See Delanghe–Sommen–Souc̆ek [17].

A C1-function defined on an open subset of Rn+1 with values in R(n) or C(n) is called left monogenic if Df = 0 and
right monogenic if fD = 0. All real analytic functions f in domains in Rn have both left- and right-monogenic extensions to
domains in Rn+1. These two extensions coincide if and only if Df = fD, so they coincide if f is scalar valued particularly.

One basic example of both left- and right-monogenic functions is the Cauchy kernel E(x) = x/|x|n+1. By this kernel, we
can define the Kelvin inversion I(f )(x) = E(x)f (x−1). This operation preserves the monogenicity of the functions. Take the
unit sphere SRn

1
for example, for f is a monogenic function defined on the interior of SRn

1
, I(f ) is also amonogenic one defined

on the exterior of SRn
1
. It is easy to see that |I(f )(x)| ≤ |f (x)|/|x|n.

3. The correspondence between the kernel functions and the multipliers

3.1. The kernel functions

In this subsection, we estimate the kernels of the multipliers generated by a class of monogenic polynomials.

Definition 3.1. Let Z+ be the set of positive integers. For k ∈ Z+, we define the monogenic polynomials in Rn
1 asP (−k)(x) =

(−1)k−1

(k − 1)!

 ∂

∂x0

k−1
E(x),

P (k)(x) = I(P (−k))(x).
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Given a set O in the complex plane, we could define a set
−→
O in Rn

1. Then for any function f defined on
−→
O , we establish

a relation between f and f 0, where f 0 is a function defined on O. Therefore, we can use f 0 to estimate f . Now we give the
definition of the induced functions and the induced sets.

Definition 3.2. Let f 0 be holomorphic, defined in an open set O in the upper half plane of C and f 0(z) = u(x, y) + iv(x, y),
z = x + iy, where u and v are real valued functions. Then

(1) we call
−→
f 0 the ‘‘induced function’’ from f 0, which is defined by

−→
f 0 (x0 + x) = u(x0, |x|) +

x̄
|x|

v(x0, |x|);

(2) we call
−→
O the ‘‘induced set’’ from O, which is defined by

−→
O =


(x0, x) ∈ Rn

1 : (x0, |x|) ∈ O

.

Denote by τ 0 the mapping

τ 0
: f 0 −→ k−1

n ∆(n−1)/2
−→
f 0 .

It is noted that τ 0 is linear with respect to the addition and real scalar multiplication. The main result in this subsection is
based on a generalization of Fueter’s result. We state it as the following lemma.

Proposition 3.3 ([15, Proposition 1]). Let k ∈ Z+. Then (1) P (−1)(x) = E(x); (2) P (−k)(x) =
(−1)k−1

(k−1)! ( ∂
∂x0

)k−1E(x); (3) P (−k) and
P (k−1) are monogenic; (4) P (−k) is homogeneous of degree −n + 1 − k and P (k−1) homogeneous of degree k − 1; (5) P (−k)

=

I(P (k−1)); (6) if n is odd, then P (k−1)
= τ((·)n+k−2).

We define our Fourier multipliers in the following sets in the complex plane.

Definition 3.4. For ω ∈ (0, π
2 ), let

Scω,± =


z ∈ C : | arg(±z)| < ω


,

Scω = Scω,+ ∪ Scω,−,

where arg(z) is the angle of z and takes value in (−π, π]. Let
Scω,±(π) =


z ∈ C : |Re(z)| ≤ π, z ∈ Scω,±


,

Scω(π) = Scω,+(π) ∪ Scω,−(π);

W c
ω,±(π) =


z ∈ C : |Re(z)| ≤ π and Im(±z) > 0


∪ Scω(π);

and 
Hc

ω,± =

z = exp(iη) ∈ C : η ∈ W c

ω,±(π)

,

Hc
ω = Hc

ω,+ ∩ Hc
ω,−.

Remark 3.5. In the complex plane, a starlike Lipschitz curve has the parameterization γ = γ (θ) = exp i(θ + iA(θ)), where
A is a 2π-periodic Lipschitz function. Let ∥A′

∥∞ = tan(ω0), ω0 ∈ (0, π
2 ). If z, η ∈ γ , we can write z = exp i(θ1 + iA(θ1)) and

η = exp i(θ2 + iA(θ2)). Then zη−1
= exp(iu), where u = (η1 − η2) + i(A(θ1) − A(θ2)). Hence we get | tan(arg u)| ≤ ∥A′

∥∞

and arg u ≤ ω for ω ∈ (ω0,
π
2 ). This implies u ∈ Scω,± and zη−1

= exp(iu) ∈ Hc
ω .

Remark 3.6. We call Hc
ω,+ and the complement of Hc

ω,− heart-shaped regions. Please see [14, Figure 1] for the shapes
of Hc

ω,±.

In [11,12], the authors studied a class of bounded Fourier multipliers in the complex plane. They proved that the kernels
of the Fourier multipliers belong to some function space in the heart-shaped region. To deal with our Fourier multipliers on
starlike Lipschitz surfaces, we define the following spaces.

For −∞ < s < ∞, we define the kernel function spaces and the multiplier spaces, respectively, as follows.

K s(Hc
ω,±) =


φ0

: Hc
ω,± −→ C, φ0 is holomorphic and satisfies |φ0(z)| ≤

Cν

|1 − z|1+s
in every Hc

ν,±, 0 < ν < ω


and

K s(Hc
ω) =


φ0

: Hc
ω −→ C : φ0

= φ0,+
+ φ0,−, φ0,±

∈ K s(Hc
ω,±)


.
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The corresponding multiplier spaces Hs(Scω,±) and Hs(Scω) are defined by

Hs(Scω,±) =


b : Scω,± −→ C, b is holomorphic and satisfies |b(z)| ≤ Cν |z|s in every Scν,±, 0 < ν < ω


and

Hs(Scω) =

b : Scω −→ C, b± = bχ{z∈C;±Rez>0} ∈ Hs(Scω,±)


.

Qian [18] got the following holomorphic extension result on the complex plane.

Theorem 3.7. Let −∞ < s < ∞, s ≠ −1, −2, . . .. If b ∈ Hs(Scω,±) and φ(z) =


k∈Z\{0} b(k)z
k, then φ ∈ K s(Hc

ω,±).

Define
Hω,± =


x ∈ Rn

1 :
(± ln |x|)
arg(x, e0)

< tanω


=

−−→
Hc

ω,±,

Hω = Hω,+ ∩ Hω,− =


x ∈ Rn

1 :
| ln |x||

arg(x, e0)
< tanω


.

Similar to Qian [18], we consider the Fourier multiplier operators defined on regions Hω,±. Set

K s(Hω,±) =


φ : Hω,± −→ C(n), φ =


k∈Z\{0}

ckP (k), ck ∈ C, is monogenic

and satisfies |φ(x)| ≤
Cν

|1 − x|n+s
, x ∈ Hν,±, 0 < ν < ω


and

K s(Hω) =


φ : Hω −→ R(n), φ = φ+

+ φ−, φ±
∈ K s(Hω,±)


.

As a preparatory of the main result, we state an estimate of the derivation of φ0
∈ K s(Hc

ω,±).

Lemma 3.8 ([16, Theorem 3.5]). For φ0
∈ K s(Hc

ω,±) and any 0 < v < ω, we have

|(φ0)(j)(z)| ≤
2j!Cν

δj(ν)

1
|1 − z|1+j+s

,

where Cv is a constant and δ(ν) = min
 1
2 , tan(ω − ν)


.

Based on the above preliminary definitions and lemmas, we could estimate the kernel functions of the multipliers. In the
complex plane C, the corresponding result has been obtained by Qian [18]. Hence our result generalizes that of Qian [18] to
the general Clifford algebras with an odd number of generators.

Theorem 3.9. Let n be odd and b ∈ Hs(Scω,±) with −∞ < s < ∞, s ≠ −1, −2, . . .. If φ(x) =


k∈Z\{0} b(k)P
(k)(x), we have

φ ∈ K s(Hω,±).

Proof. The proof is similar to that of [16, Theorems 3.7 and 3.9]. We point out that when the dimension is odd, we can deal
with the cases s > 0 and s < 0 by the same method. For simplicity, we omit the details. �

3.2. The converse result

On Rn, the Fourier theory justifies that there exists a correspondence between the kernels of the convolution singular
integral operators and the symbols of the multipliers. By Theorem 3.9, for b ∈ Hs(Scω), there exists a function φ ∈ K s(Hω).
Now we consider the converse of Theorem 3.9. For φ ∈ K s(Hω,±), we prove that there exists a function bν(z) ∈ Hs(Scν,±)
such that bk = bν(k), 0 < ν < ω.

Let n = 3. Such bν has been obtained by Qian [14] for the case s = 0. The main tool is the following polynomials P (k). For
any z ∈ Scω , let

P (z)
− = τ 0((·)z), z ∈ Scω,−,

P (z)
+ = τ 0((·)z+2), z ∈ Scω,+,

where (·)z = exp(z ln(·)), where in the first case the ln function is defined by cutting the positive x-axis, and in the second
case, defined by cutting the negative x-axis.

By use of the new functions P (z)
− and P (z)

+ , we can get the following result. For the ease of computation, we still assume
n = 3.
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Theorem 3.10. Let n = 3 and −∞ < s < −2. If φ(x) =


k∈Z\{0} bkP
(k)(x) ∈ K s(Hω,±), then for every ν ∈ (0, ω) there exists

a function bν
∈ Hs+2(Scν,±) such that bi = bν(i), i = ±1, ±2, . . .. Moreover,

bν(z) = lim
r→1−

1
2π2


L±(ν)

P (z)(y−1)E(y)n(y)φ(r±1y)dσ(y),

where L±(ν) =
−−−−−−−→
exp(il±(ν)) and the path l±(ν) is defined as

l±(ν) =


z ∈ C : z = r exp(i(π ± ν)), r is from π sec(ν) to 0; and then z = r exp(−(±iν)), r is from 0 to π sec(ν)


.

Proof. Because τ 0
: f 0 −→

1
4∆

−→
f 0 , write f 0 = ηz , where η = x + iy. For x = (x0, |x|) ∈ L±(ν), there exists η ∈ exp(il±(ν))

such that η = (x0, |x|). Set e = x/|x|. We have known that

∆
−→
f 0 = ∆

−−→
((·)z) =

2
|x|

∂u
∂y

(x0, |x|) + 2e


1
|x|

∂v

∂y
(x0, |x|) −

1
|x|2

v(x0, |x|)


.

Now f 0 = eiηz , where η ∈ l±(ν). Then f = u+ iv, where u and v are the real and imaginary parts of f , respectively. We have
∂
∂η

(eiηz) = izeiηz . Set η = re−iµ and z = |z|eiθ . We get

e−iηz
= exp(−ir|z|ei(θ−µ)) = exp(r|z| sin(θ − µ)) exp(−ir|z| cos(θ − µ)).

Because φ ∈ K s(Sω), we have

|φ(x)| ≤
C

|1 − x|s+3
, where x = x0 + x ∈ L±(ν).

For such an x, there exists an z = x+iy ∈ exp(il±(ν)) such that z = eiη = exp(r sinµ+ir cosµ) and |x| = er sinµ sin(r cosµ).
Then we have

|bµ(z)| ≤ C
 π secµ

0
|z|e−r|z| sin(µ−θ) 1

|1 − eiη|s+3

1
|x|

1
|x|

r2dr.

For the factor 1/|1 − eiη|s+3, we have

|1 − eiη|2 = 1 + e2r sinµ
− 2er sinµ cos(r cosµ).

Let f (r) = r2 and g(r) = 1 + e2r sinµ
− 2er sinµ cos(r cosµ), we have limr→0

f (r)
g(r) = 1. Hence we can find a constant C such

that
r

|1 − er sinµeir cosµ|
≤ C, r ∈ (0, π secµ),

that is, 1/|1 − er sinµeir cosµ
|
s+3

∼ r s+3. Finally we have

|bµ(z)| ≤ C
 π sinµ

0
|z|e−r|z| sin(µ−θ) 1

r s+3

1
e3r sinµ

r2

er sinµ sin(r cosµ)
dr

≤ C |z|
 π sinµ

0
e−r|z| sin(µ−θ) r2

r s+4
e−4r sinµdr

≤ C |z|s+2,

where in the second inequality we have used the fact that s < −2. �

Theorem 3.10 implies that by the method of Qian [14], we can only get b ∈ Hs+2(Scω,±) rather than b ∈ Hs(Scω,±) for the
case s ≠ 0. In order to get a better result, we apply a new method. Our idea is based on two observations. On one hand,
the function b which we want should be defined on Scω,± ⊂ C. On the other, by Proposition 3.3, we know that when the
dimension n is odd, the polynomials P (−k) and P (k−1), k ∈ Z+, satisfy the following relations:

P (−k)
= τ((·)−k), P (k−1)

= τ((·)k+n−2).

Hence our method is to construct a function φ0
∈ K s(Hc

ω,±) by use of φ ∈ K s(Hω,±). Then we could represent the function
b via φ0 and the technique on the complex plane. At first we introduce a lemma about the relationship between Hc

ω,±

and Hω,±.
For each element e in the vector space Q, the linear span of 1 and e over R is called the complex plane in Rn

1 induced
by e, denoted by Ce. Denote by He

ω,± and He
ω the images on Ce

⊂ R(n)
1 of the sets Hc

ω,± and Hc
ω in C, respectively, under the

mapping ie : a + bi −→ a + be. By the same method of [14, Lemma 4], we can prove the following lemma.
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Lemma 3.11.

Hω,± =


e∈J

He
ω,± and Hω,± =


e∈J

He
ω,±,

where the index set J is the set of all the unit vectors.

By Lemma 3.11, we could establish the correspondence between monogenic kernel functions and the holomorphic
multipliers stated in Section 1.

Theorem 3.12. Let n be odd and φ(x) =


k∈Z\{0} bkP
(k)(x) ∈ K s(Hω,±). If the series


k∈Z\{0} bkz

k converges in Hc
ω,±, then for

every ν ∈ (0, ω) there exists a function bν
∈ Hs(Scν,±) such that bk = bν(k), k ∈ Z \ {0}.

Proof. By Proposition 3.3, we know that if n is odd, for k ∈ Z+,

P (−k)
= τ 0((·)−k) and P (k−1)

= τ 0((·)n+k−1).

For φ(x) =


k∈Z\{0} bkP
(k)(x) on Hω,±, we define the following function φ0 on Hc

ω,± as φ0(z) =


k∈Z\{0} bkz
k, where

z ∈ Hc
ω,±. For simplicity, we only estimateφ0 in the regionHc

ω,+. Let e =
x
|x| . For any z = u+iv ∈ Hc

ω,+, we have x = u+ve =

(x0, x)∈ He
ω,+ ⊂ Hω,+ by Lemma3.11.Wehave proved that for z ∈ Hc

ω,+ there exists a constant δ(ν) = min
 1
2 , tan(ω − ν)


such that the ball Sr(z) is contained in Hc

ω,±, where z is the center and the radius r equals δ(ν)|1 − z|. We denote by B(x, r)

the ball

y ∈ R(n)

1 , |x − y| < δ(ν)|1 − x|

and have B(x, r) ⊂ He

ω,+ ⊂ Hω,+.

Assume that f and g are the real and imaginary parts of φ0(z), respectively. The induced function is defined by
−→
φ0(x) = f (x0, |x|) + eg(x0, |x|)

and satisfies ∆(n−1)/2
−→
φ0(x) = φ(x), where x = (x0, x) = u + ve. We can see that

|
−→
φ0(x)| ≤


B(x,r)

c
|x − y|2

Cν

|1 − y|n+s
dy.

For any q ∈ B(x, δ(ν)|1 − x|),

|1 − y| ≥ |1 − x| − |x − y| > (1 − δ(ν))|1 − x|.

We can get

|
−→
φ0(x)| ≤

Cν

|1 − x|n+s

 δ(ν)|1−x|

0

1
|x − y|2

|x − y|n−1d(|x − y|)

≤
Cν

|1 − x|1+s
.

By the definition of |
−→
φ0

|, we have

|φ0(z)| = |
−→
φ0(x)| ≤

Cν

|1 − x|1+s
=

Cν

|1 − z|1+s
.

By the use of the above estimate, we could construct the function b ∈ Hs(Sω
ω,±) as follows.

For s < 0 and z ∈ Scµ,±,

bµ(z) =
1
2π


λ±(µ)

exp(−iηz)φ0(exp(iη))dη,

where

λ±(µ) =


η ∈ Hc

ω,± | η = r exp(i(π ± µ)), r is from π secµ to; and then η = r exp(∓iµ), r is from 0 to π secµ


and for s ≥ 0, z ∈ Scµ,±,

bµ(z) =
1
2π

lim
ε→0


l(ε,|z|−1)∪c±(|z|−1,µ)∪Λ±(|z−1|,µ)

exp(−iηz)φ0(exp(iη))dη + φ
|s|
ε,±(z)


,

where if r ≤ π

l(ε, r) =


η = x + iy | y = 0, x is from − r to − ε, and then from ε to r


,

c±(r, µ) =


η = r exp(iα) | α is from π ± µ to π, then from 0 to ∓ µ


,
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and

Λ±(r, µ) =


η ∈ Wω,± | η = ρ exp(i(π ± µ)), ρ is from π secµ to r;

and then η = ρ exp(∓iµ), ρ is from r to π secµ


and if r > π ,

l(ε, r) = l(ε, π), c±(r, µ) = c±(π, µ), Λ±(r, µ) = Λ±(π, µ)

and in any case,

φ
[s]
ε,±(z) =


L±(ε)

φ0(exp(iη))


1 + (−iηz) + · · · +

(−iηz)[s]

[s]!


dη,

where L±(ε) is any contour from −ε to ε lying in Cω,±.
By Cauchy’s theorem and Taylor series expansion, we could prove that bν

∈ Hs(Scω) and bi = bν(i), i = ±1, ±2, . . . by
the estimate of the function φ0 obtained above. We omit the details here and refer the reader to Qian [18]. This completes
the proof. �

3.3. Unbounded holomorphic Fourier multipliers

Definition 3.13. A closed surface Σ is said to be a starlike Lipschitz surface, if it is star-shaped about the origin and there
exists a constantM < ∞ such that for any x, x′

∈ Σ ,ln |x−1x′
|


arg(x, x′)
≤ M.

The minimum value ofM is called the Lipschitz constant of Σ , denoted by N = Lip(Σ).

In the sequel, we will be working on a fixed starlike Lipschitz surface Σ and assume that ω ∈ (arctan(N), π
2 ). Denote

ρ = min

|x| : x ∈ Σ


and l = max


|x| : x ∈ Σ


.

Our Fourier multiplier operators are defined on the following dense subclass of L2(Σ) (see [14]).
A = {f : f (x) is left monogenic in an annual ρ − s < |x| < l + s for some s > 0} .

Let Mk be the finite dimensional right module of k homogeneous left monogenic functions in Rn
1, and let M−(k+n) be the

finite dimensional right module of −(k+ n) homogeneous left monogenic functions in Rn
1 \ {0}. The spacesMk andM−(k+n)

are eigenspaces of the left spherical Dirac operator. We define the projection operators onMk andM−(k+n), respectively, as
Pk : f → Pk(f ) and Qk : f → Qk(f ).

For f ∈ A, in the annuals where f is defined, we have the Laurent series expansion

f (x) =

∞
k=0

Pk(f )(x) +

∞
k=0

Qk(f )(x).

Here we have used the projection operators Pk and Qk given by

Pk(f )(x) =
1

Ωn


Σ

|y−1x|kC+

n+1,k(ξ , η)E(y)n(y)f (y)dσ(y),

Qk(f )(x) =
1

Ωn


Σ

|y−1x|−n−kC−

n+1,k(ξ , η)E(y)n(y)f (y)dσ(y),

where x = |x|ξ and y = |y|η. Here C+

n+1,k(ξ , η) and C−

n+1,k(ξ , η) are the functions defined by

C+

n+1,k(ξ , η)
1

1 − n


−(n + k − 1)C (n−1)/2

k (⟨ξ, η⟩) + (1 − n)C (n+1)/2
k−1 (⟨ξ, η⟩)(⟨ξ, η⟩ − ξη)


and

C−

n+1,k(ξ , η)
1

n − 1


(k + 1)C (n−1)/2

k+1 (⟨ξ, η⟩) + (1 − n)C (n+1)/2
k (⟨η, ξ⟩)(⟨η, ξ⟩ − ηξ)


,

where Cν
k is the Gegenbauer polynomial of degree k associated with ν.

Let b ∈ Hs(Scω). Now we introduce the unbounded Fourier multiplier operatorMb on a starlike Lipschitz surface Σ . Note
that the functions φ obtained in Theorem 3.9 satisfy |φ(x)| ≤ Cµ/|1 − x|n+s for s > 0. In order to compensate the role of s,
we need to restrict our multipliers into some subspaces of L2(Σ). Hence we introduce the following Sobolev space on the
starlike Lipschitz surface Σ .
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Definition 3.14. Let s ∈ Z+
∪ {0} and Σ be a starlike Lipschitz surface. Define the Sobolev norm ∥ · ∥Wp,s

Γξ
(Σ), 1 ≤ p < ∞,

as

∥ · ∥Wp,s
Γξ

(Σ) = ∥f ∥Lp(Σ) +

s
j=0

∥Γ
j
ξ f ∥Lp(Σ),

where Γξ denotes the spherical Dirac operator. The Sobolev space associated with Γξ is defined as the closure of the class

A under the norm ∥ · ∥Wp,s
Γξ

(Σ), that is, A
∥·∥

Wp,s
Γξ

(Σ)

.

Nowwegive thedefinition of the Fouriermultiplier operators. ByDefinition 3.14,A is dense inW s,p
Γξ

. In thenext definition,
we assume f ∈ A.

Definition 3.15. Let {bk}k∈Z be a sequence satisfying |bk| ≤ ks. We define the Fourier multiplier operatorM(bk) as follows.

M(bk)f (x) =

∞
k=0

bkPk(f )(x) +

∞
k=0

b−k−1Qk(f )(x).

Now for k ≥ 0, we define

P̃ (k)(y−1x) = |y−1x|kC+

n+1,k(ξ , η) and P̃ (−k−1)(y−1x) = |y−1x|−k−nC−

n+1,k(ξ , η).

Then the projection operators Pk and Qk can be represented as

Pk(f )(x) =
1

Ωn


Σ

P̃ (k)(y−1x)E(y)n(y)f (y)dσ(y),

Qk(f )(x) =
1

Ωn


Σ

P̃ (−k−1)(y−1x)E(y)n(y)f (y)dσ(y).

For f ∈ A, the above introduced multiplierM(bk) is well defined. For b ∈ Hs(Scω), we consider the following multiplier:

Mr
(bk)(f )(x) =

∞
k=0

bkPk(f )(rx) +

∞
k=0

b−k−1Qk(f )(r−1x), ρ − s < |x| < l + s,

where x ∈ Σ, r ≈ 1 and r < 1.
We denote by M1 and M2 the two sums in the above expression of Mr

(bk)
. For M1, |bk| = |b(k)| ≤ ks1 , we take b1(z) =

z−s1b(z). It is easy to see that b1 is also holomorphic in Scω . Then we have

M1 =

∞
k=0

bkPk(f )(rx) =

∞
k=0

b1,kks1Pk(f )(rx),

where b1,k = b1(k) =
bk
ks1 . Because the spaces Mk is the eigenspace of the left spherical Dirac operator Γξ , we have

ΓξPk(f )(rx) = kPk(f )(rx) and

M1 =

∞
k=0

b1,kΓ
s1
ξ Pk(f )(rx) = Γ

s1
ξ


∞
k=0

b1,kPk(f )(rx)


.

According to a result of [17], we give another expression of Pk(f ).

Pk(f )(x) =
1

Ωn


Σ

P̃k(y−1rx)E(y)n(y)f (y)dσ(y)

=
1

Ωn


Σ


|α|=k

Vα(rx)Wα(y)n(y)f (y)dσ(y),

where we used the Cauchy–Kovalevskaya extension

P̃ (k)(y−1x)E(y) =


|α|=k

Vα(x)Wα(y),
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where Vα ∈ Mk and Wα ∈ M−n−k (see [17, Chapter 2, (1.15)]). The above relation implies

ΓξPk(f )(x) =
1

Ωn


Σ


|α|=k

kVα(x)Wα(y)n(y)f (y)dσ(y)

=
1

Ωn


Σ


|α|=k

k
n + k − 2

Vα(x)(n + k − 2)Wα(y)n(y)f (y)dσ(y)

=
k

n + k − 2
1

Ωn


Σ


|α|=k

Vα(x)(ΓηWα)(y)n(y)f (y)dσ(y).

We denote b1,k( k
n+k−2 )

s1 by b1,k again and see that |b1,k( k
n+k−2 )

s1 | ≤ C . Because of the fast decay of the Fourier expansions
of functions in A, we have, by integration by parts,

M1 =

∞
k=1

b1,k


k

n + k − 2

s1 rk

Ωn


Σ


|α|=k

Vα(x)Wα(y)n(y)(Γ s1
η f )(y)dσ(y)

=

∞
k=1

b1,k
1

Ωn


Σ

P̃k(y−1rx)E(y)n(y)(Γ s1
η f (y))dσ(y)

=
1

Ωn


Σ


∞
k=1

b1,kP̃k(y−1rx)


E(y)n(y)(Γ s1

η f (y))dσ(y)

=:
1

Ωn


Σ

φ̃1(y−1rx)E(y)n(y)(Γ s1
η f (y))dσ(y).

Similarly, for the termM2, by the Cauchy–Kovalevskaya extension again ([17, Chapter II, (1.16)]), we have

M2 =

∞
k=0

b−k−1

(k + 1)s1


k + 1
k

s1 1
Ωn


Σ


|α|=k

Wα(r−1x)ks1V α(y)n(y)f (y)dσ(y)

=

∞
k=0

b−k−1

(k + 1)s1


k + 1
k

s1 1
Ωn


Σ


|α|=k

Wα(r−1x)(Γ s1
η V α)(y)n(y)f (y)dσ(y)

=

∞
k=0

b−k−1

(k + 1)s1


k + 1
k

s1 1
Ωn


Σ


|α|=k

Wα(r−1x)V α(y)n(y)(Γ s1
η f )(y)dσ(y).

As above, we still write the term b−k−1
(k+1)s1

 k+1
k

s1 as b−1−k and get the singular integral expression ofM2 as follows.

M2 =
1

Ωn


Σ


∞
k=0

b−k−1P̃−k−1(y−1r−1x)


E(y)n(y)(Γ s1

η f )(y)dσ(y)

=:
1

Ωn


Σ

φ̃2(y−1r−1x)E(y)n(y)(Γ s1
η f (y))dσ(y).

Finally we rewrite the multiplierMr
(bk)

(f ) as

Mr
(bk)(f )(x) = lim

r→1−

1
Ωn


Σ

(φ1(y−1rx) + φ2(y−1r−1x))E(y)n(y)(Γ s1
ξ f )(y)dσ(y),

where we have used the fact that the series definingMr
bk

(f ) uniformly converges as r → 1- for f ∈ A.
Similar to the case of a singular Cauchy integral, we could deduce a Plemelj type formula for such Fourier multiplier

operators with s > 0. We refer [16] for the proof.

Theorem 3.16 ([16, Theorem 4.6]). Let b ∈ Hs(Scω) with s > 0 and s1 = [s] + 1. For f ∈ A and x ∈ Σ , we have

Mbf (x) = lim
r→1−

1
2π2


Σ


φ1(y−1rx) + φ2(y−1r−1x)


E(y)n(y)f (y)dσ(y)

= lim
ε→0

1
2π2


|1−p−1q|>ε, p∈Σ


φ1(y−1x) + φ2(y−1x)


E(y)n(y)(Γ s1

ξ f )(y)dσ(y)

+


φ̃1(ε, x) + φ̃2(ε, x)


(Γ

s1
ξ f )(x)


,
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where
φ̃1(ε, x) =


S(ε,y,+)

φ1(y)E(y)n(y)dσ(y),

φ̃2(ε, x) =


S(ε,y,−)

φ2(y)E(y)n(y)dσ(y),

where S(ε, x, ±) is the part of the surface |1 − y−1x| = ε inside or outside Σ , depending on ± taking + or −.

4. Applications to Sobolev spaces on Lipschitz surfaces

4.1. Boundedness on Sobolev spaces

Now we consider the boundedness of the operatorsMb on Sobolev spaces. Our proof is based on the Hardy space theory
on starlike Lipschitz surfaces established by Jerison–Kenig [5], Kenig [19] and Mitrea [20].

Let ∆ and ∆c be the bounded and unbounded connected components of Rn
1 \ Σ . For α > 0, define the non-tangential

approach regions Λα and Λc
α(x) to a point q ∈ Σ to be

Λα(x) = Λα(x, ∆) =


y ∈ ∆ : |y − x| < (1 + α) dist (y, Σ)


and

Λc
α(x) = Λα(x, ∆c) =


y ∈ ∆c

: |y − x| < (1 + α) dist (y, Σ)

.

Let f be defined on ∆. The interior non-tangential maximal function Nα(f ) is defined by

Nα(f )(x) = sup

|f (y)| : y ∈ Λα(x)


, x ∈ Σ .

The exterior non-tangential maximal function can be defined similarly.
For 0 < p < ∞, the left-Hardy space Hp(∆) is defined by

Hp(∆) =


f : f is left regular in ∆, and Nα(f ) ∈ Lp(Σ)


.

We can define the space Hp(∆c) similarly, except that the functions in Hp(∆c) are assumed to vanish at the infinity. See
Mitrea [20] for further properties of Hp(∆) and Hp(∆c), p > 1. For the special case p = 2, H2(∆) and H2(∆c) have
equivalent characterizations of the higher order Littlewood–Paley g-functions. Taking H2(∆) for example, we have the
following.

Proposition 4.1 (Mitrea [20]). Suppose that f ∈ H2(∆). Then the norm ∥f ∥H2(∆) is equivalent to the norm 1

0


Σ

Γ j
ξ f


(ry)
2 (1 − r)2j−1dσ(y)

dr
r

1/2

, j = 1, 2, 3, . . . .

As two subspaces of L2(Σ), H2(∆) and H2(∆c) are orthogonal with each other, we state this property in the following
proposition.

Proposition 4.2. Suppose that f ∈ L2(Σ). Then there exist f +
∈ H2(∆) and f −

∈ H2(∆c) such that their non-tangential
boundary limits, still denoted by f +, f −, respectively, lie in L2(Σ) and f = f +

+ f −. The mapping f → f ± is bounded on L2(Σ).

By an example given in Eelbode [21] and Eelbode–Sommen [22], we can see that for b ∈ Hs(Scω), s ≠ 0, the Fourier
multiplier operators are unbounded on L2(Σ). See also [16, Example 1.1]. The occurrence of the terms ksPk(f ) implies that
we should assume f owns some regularity to justify the boundedness. This observation hints us to consider the boundedness
of the Fourier multipliers on some Sobolev spaces.

Theorem 4.3. Let ω ∈ (arctanN, π
2 ), s ≥ 0 and r ∈ Z+ ∪ {0}. If b ∈ Hs(Scω), then with the convention b(0) = 0, the Fourier

multiplier operator introduced in Section 3.3 can be extended to a bounded operator from W 2, r+s1
Γξ

(Σ) to W 2, r
Γξ

(Σ), where s1 is
the constant defined by

s1 =


s, s is an integer ,
[s] + 1, otherwise .

Moreover, for the operator norm ∥ · ∥op, we have

∥Mb∥op ≤ Cν

 b
|z + 1|s1


L∞(Scν )

, arctanN < ν < ω.
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Proof. It is obvious that W 2,s1
Γξ

(Σ) ⊂ L2(Σ). For any f ∈ W 2,s
Γξ

(Σ), Proposition 4.2 implies that f = f +
+ f −, where

f +
∈ H2(∆) and f −

∈ H2(∆c) such that ∥f ±
∥L2(Σ) ≤ C∥f ∥

W
2,s1
Γξ

(Σ)
. Applying Theorem 3.16, we have Mb(f ) = Mb+(f +)

+ Mb−(f −), where

Mb±(f ±)(x) = lim
r→1−


Σ

φ±(r±1y−1x)E(y)n(y)f (y)dσ(y), x ∈ Σ .

Hence it suffices to prove

∥Γ k
ξ Mb±(f ±)∥H2 ≤ CN∥Γ

k+s1
ξ f ±

∥H2 , ∀k = 1, 2, . . . , r. (4.1)

We only prove (4.1) for the part f + and omit ‘‘+’’ in the sequel for simplicity. The treatment for f − is similar. By
Theorem 3.9, for b ∈ Hs(Scω), we have

|φ(y−1x)| ≤
C

|1 − y−1x|3+s
.

Hölder’s inequality implies that

|Γ
1+s1+k
ξ Mbf (x)| ≤


Σ√

t

|φ(x−1y)|
dσ(y)
|y|n

1/2 
Σ√

t

|φ(x−1y)||Γ s1+1+k
ξ f (y)|2

dσ(y)
|y|n

1/2

≤ C


Σ√

t

1
|1 − y−1x|n+s

dσ(y)
|y|n

1/2 
Σ√

t

|Γ
s1+1+k
ξ f (y)|2

|1 − y−1x|n+s

dσ(y)
|y|n

1/2

≤ C


Σ

1
(1 −

√
t)2 + θ2

0

 s+n
2

dσ(y)

1/2
Σ

|Γ
s1+1+k
ξ f (y)|2

(1 −
√
t)2 + θ2

0

 s+n
2

dσ(y)

1/2

≤ C


1

(1 −
√
t)s

1/2


Σ

|Γ
s1+1+k
ξ f (y)|2

(1 −
√
t)2 + θ2

0

 s+n
2

dσ(y)

1/2

.

Finally by Proposition 4.1, we have

∥Γ k
ξ Mbf ∥2

H2(∆)
≤

 1

0

Γ s1+1+k
ξ Mbf (ty)

2 (1 − t)2s1+1dσ(y)
dt
t

≤

 1

0


Σ

Γ s1+1+k
ξ f (

√
tx)
2 

Σ

(1 −
√
t)s1

[(1 −
√
t)2 + θ2

0 ]
s+3
2

dσ(y)


(1 −

√
t)dσ(x)

dt
t

≤

 1

0


Σ

Γξ (Γ
s1+k
ξ f )(

√
tx)
2 (1 −

√
t)dσ(x)

dt
t

≤ ∥Γ
s1+k
ξ f ∥2

H2(∆)
,

where in the fourth inequality, we have used the facts:

(1 −
√
t)2s1+1−s

= (1 −
√
t)1+s+(2s1−2s)

≤ (1 −
√
t)1+s for t ∈ (0, 1)

and the integral
Σ

(1 −
√
t)s

[(1 −
√
t)2 + θ2

0 ]
s+3
2

dσ(y) ≤ C .

This completes the proof of Theorem 4.3. �

4.2. Equivalence between Hardy–Sobolev spaces

In the proof of Theorem 4.3, we use the Hardy decomposition of L2(Σ). For f ∈ L2(Σ), f = f +
+ f −, where f +

∈ H2(∆)

and f −
∈ H2(∆c). If f ∈ W 2,s

Γξ
(Σ), f + and f − belong to the so called Hardy–Sobolev spaces. For these spaces, there exist

two methods to give the definitions.
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Method I. For f ∈ L2(Σ), f = f +
+ f −, where f +

∈ H2,+ and f −
∈ H2,−. That is, f + belongs to the Hardy space, while

f − belongs to the conjugate Hardy space. We define the Hardy–Sobolev spaces on Σ as

H2,s
+,1(Σ) =


f : there exists a function g ∈ L2(Σ) such that f = g+

∈ L2(Σ) and Γ
j
ξ (g

+) ∈ L2(Σ), j = 1, 2, . . . , s


and

H2,s
−,1(Σ) =


f :∈ L2(Σ) there exists a function g ∈ L2(Σ) such that

f = g−
∈ L2(Σ) and Γ

j
ξ (g

−) ∈ L2(Σ), j = 1, 2, . . . , s

.

Method II. For every f ∈ W 2,s
Γξ

, Γ j
ξ f ∈ L2(Σ), j = 1, 2, . . . , s. We get the decomposition Γ

j
ξ f = (Γ

j
ξ f )

+
+ (Γ

j
ξ f )

−, where

(Γ
j
ξ f )

+
∈ H2,+ and (Γ

j
ξ f )

−
∈ H2,−. The Hardy–Sobolev space is defined as follows.

H2,s
+,2(Σ) =


f : there exists a functiong ∈ L2(Σ) such that f = g+

∈ L2(Σ) and (Γ
j
ξg)

+
∈ L2(Σ), j = 1, 2, . . . , s


and

H2,s
−,2(Σ) =


f : there exists a functiong ∈ L2(Σ) such that

f = g−
∈ L2(Σ) and (Γ

j
ξg)

−
∈ L2(Σ), j = 1, 2, . . . , s


.

On the unit sphere, the order of Riesz transforms and the Dirac operator can be changed. The above two Hardy–Sobolev
spaces are the same one obviously. On a general starlike Lipschitz surface, we prove the two spaces are equivalent by the
Fourier multiplier theory.

Theorem 4.4. Let Σ be a starlike Lipschitz surface and s be a positive integer. The Hardy–Sobolev spacesH2,s
±, 1(Σ) andH2,s

±, 2(Σ)
are equivalent.

Proof. Because A is dense in L2(Σ), without loss of generalization, we assume f ∈ A. By spherical monogenic extension,
we have

f =

∞
k=1

Pk(f )(x) +

∞
k=1

Qk(f )(x).

Let f +
=


∞

k=1 Pk(f )(x) and f −
=


∞

k=1 Qk(f )(x). We can get

Γξ (f +) = Γξ


∞
k=1

Pk(f )(x)


.

Because Pk(f ) ∈ Mk, the homogeneous eigenspace of order k, we have

Γξ (f +)(x) =

∞
k=1

kPk(f )(x) for f ∈ A.

On the other hand,

Pk(f )(x) =
1

Ωn


Σ

Pk(x−1y)E(y)n(y)f (y)dσ(y)

=
1

Ωn


Σ


|α|=k

Vα(y)Wα(y)n(y)f (y)dσ(y),

where we have used the Cauchy–Kovalevskaya extension againPk(x−1y)E(y) =


|α|=k

Vα(y)Wα(y),

where Vα ∈ Mk and Wα ∈ M−n−k. Therefore we can get

Γξ (f +)(x) =
1

Ωn

∞
k=1


Σ


|α|=k

Vα(x)
k

k + n − 1
(k + n − 1)Wα(y)n(y)f (y)dσ(y)

=
1

Ωn

∞
k=1

k
k + n − 1


Σ


|α|=k

Vα(x)ΓηWα(y)n(y)f (y)dσ(y).
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Because f ∈ A, f decays fast enough. By integration by parts, we have

Γξ (f +)(x) =
1

Ωn

∞
k=1

k
k + n − 1


Σ

P (k)(y−1x)E(y)n(y)(Γηf )(y)dσ(y)

=
1

Ωn

∞
k=1

k
k + n − 1

Pk(Γξ f )(x).

Let bk =
k

k+n−1 . We have Γξ (f +) = M(bk)((Γξ f )+). It is easy to see that |bk| ≤ C . Take s = 0 in Theorem 4.3. We obtain
that M(bk) is bounded on L2(Σ) (we can also deduce this result by the H∞-Fourier multiplier theory on Σ). There exists a
constant C1 such that

∥(Γξ f +)∥L2(Σ) ≤ C1∥(Γξ f )+∥L2(Σ).

For the converse, let b′

k =
k+1
k . Similarly, we have

(Γξ f )+(x) =
1

Ωn

∞
k=1

k + n − 1
k

(ΓξPk(f ))(x) = M(b′
k)
(Γξ (f +))(x).

So there exists another constant C2 such that

∥(Γξ f )+∥L2(Σ) ≤ C1∥Γξ (f +)∥L2(Σ).

This completes the proof of Theorem 4.4. �
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