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Abstract

It is well known that orthogonal rational systems (Takenaka-Malmquist or TM sys-
tems) are bases of the closures of their spans in all Hardy Hp spaces, 1 < p < ∞. In
this paper we further prove that they are, in fact, Schauder bases in those spaces. We
simultaneously treat both the contexts the unit disc D and the upper-half space C+.
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1 Introduction

In a Banach space B a set E is called a basis [1] of B if it satisfies span{E} = B, where
span{E} stands for the collection of all finite linear combinations of elements in E, span is
for the topological closure. In a Banach space B a collection of elements {en} is said to be a
Schauder basis if it is first a basis and, secondly,

lim
n→∞

‖f − sn(f)‖ = 0,

where

sn(f) =
n∑

k=1

Λk(f)ek
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is the partial sum and {Λn} is a sequence of bounded linear functionals of {E}. It is well known
that in a Hilbert space any basis is a Schauder basis.

It is well known that the Fourier system [2, 3] { eikt
√

2π
}∞k=−∞ is a Schauder basis in Lp([−π, π])

for all 1 < p < ∞; and so is the half-Fourier system { eikt
√

2π
}∞k=0 in the Hardy spaces Hp(∂D), 1 <

p < ∞. The Hardy spaces [4] on the boundary consist of the non-tangential boundary limits of
the related holomorphic Hardy space functions inside the open unit disc. For the same p, the
two types of Hardy spaces are isometry. The same is for the upper-half complex plane context.

The TM systems [5], including the Laguerre and the Kautz systems [6], are natural gen-
eralizations of the half-Fourier system. They enjoys a long term development with ample
applications in both pure [7, 8] and applied mathematics, including control theory [9, 10].

There are usually two different contexts, viz., the unit disc and the upper- half complex
plane. In the unit disc case, for a given parameter sequence {an}∞n=1 ⊂ D, the corresponding
TM system {en}∞n=1 is

en(z) =

√
1− |an|2
1− anz

n−1∏
j=1

z − aj

1− ajz
, z ∈ D, n = 1, 2, . . . , (1.1)

where for n = 1 we use the convention
∏0

j=1 = 1.
Similarly, for a given parameter sequence {λn}∞n=1 ⊂ C+, the corresponding TM system

{β}∞n=1 is

βn(w) =

√
2
π
Im{λn}

w − λn

n−1∏
j=1

w − λj

w − λj

, w ∈ C+, n = 1, 2, . . . (1.2)

The case an = 0, n = 1, 2, · · · , corresponds to the half-Fourier system that gives rise to
classical Fourier analysis. It is an important result in classical Fourier analysis that in all
Lp(∂D) (Hp(∂D)), 1 < p < ∞, the Fourier system (the half-Fourier system) is a Schauder basis
(see, for instance, [2]). It is natural to ask whether a general TM system is a Schauder basis in
the closure of its span in those Hardy spaces. To the authors’ knowledge this question has been
open. In this paper we give the positive answer to this question. In each of the mentioned two
contexts there are two different cases to make. It is according to whether or not the parameter
sequence giving rise to the system can define a Blaschke product in the context. In the unit
disc context, the two cases are∑

n

(1− |an|) < ∞ or
∑

n

(1− |an|) = ∞. (1.3)

In the first case the parameter sequence {an} define a Blaschke product: The Blaschke product
has the parameters in the sequence as all its zeros together with the multiples. In the second
case the parameters cannot define a Blaschke product. In the second case the closure of the
span of {en} is the whole Hardy space Hp(∂D), and in the first case not. Similarly, in the
upper-half space context we have

∞∑
k=1

√
Im(λk)

1 + |λk|2
< ∞ or

∞∑
k=1

√
Im(λk)

1 + |λk|2
= ∞. (1.4)
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The second case corresponds to the closure of the span {βn} being the whole space, but the
first case not. The result in the unit disc context is well known. The proofs can be found, for
instance, in [1] or [6]. The corresponding result in the upper-half plane context is also known.
There have been increasing interests in the applications of TM system including control theory,
system identification and signal theory[6, 11, 12]. An extension of it in relation to general
backward shift invariant subspaces (see below) is given in [12]. This paper does not depend
on the results for general p, but only the case p = 2 in which a basis is at the same time a
Schauder basis. In below when a result is valid for both the unit disc and the upper-half plane
contexts we suppress the notation specifying the region, viz., D and C+, and write the basis
as {αn}. Based on this convention, corresponding to p = 2, the following is understood to be
valid for both contexts:

H2 = span2{αn}
⊕

BH2, (1.5)

where, here and below, spanp is for the Hp closure, B is the Blaschke product in either of the
two contexts defined by the related parameter sequence ([11]). The above result implies that if
the parameter sequence cannot define a Blaschke product, then

H2 = span2{αn}. (1.6)

No matter whether or not a parameter sequence is qualified to define a Blaschke product,
we always have

spanp{αn} = Hp ∩BHp = (BHp′
)⊥, (1.7)

where the notation⊥ is for the formal orthogonality under the paring between Hp and Hp′
, 1/p+

1/p′ = 1, 1 < p, p′ < ∞. Note that subspaces on the right-hand-side, Hp ∩ BHp, in either of
the two contexts, represent the backward-shift-invariant spaces of the Hp ([4]). In the unit disc
context the shift operator and the backward shift operators are, respectively,

S∗f(z) = zf(z), Sf(z) =
f(z)− f(0)

z
, z ∈ D;

and in the upper-half plane, by using the same notation, they are

S∗f(ζ) = eiaζf(ζ), Sf(ζ) = e−iaζf(ζ), a > 0, ζ ∈ C+.

We say that a subspace M in Hp is a shift-operator-invariant space if

S∗M ⊂ M.

It is a celebrating result that M is a shift-operator-invariant space if and only if

M = IHp,

where I is an inner function in the context ([13]). This result in the unit disc context is
the Beurling Theorem and in the upper-half complex plane context the Beurling-Lax Theorem
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([14]). As consequence of these theorems a subspace is a backward-shift-invariant space (SM ⊂
M) if and only if ([15])

M = Hp ∩ IHp.

So, when the inner function is reduced to a Blaschke product, we obtain the right hand side of
(1.7) as a particular case.

The results that {en} and {βn} are Schauder bases in their respectively defined backward
shift invariant spaces are significant in the Hp and Lp approximation by using these bases.
The nature of the problem is non-linear: It deals with a representation of non-linear phase;
and the corresponding Christoffel-Darboux’s kernel associated with the n-th partial sum is a
function of two variables that does not give rise to a convolution operator. The kernel method
to prove the same result in the classical Fourier analysis case is not applicable here ([3]). The
technical approach of this paper is a blend of an adaptation of a Kolmogorov’s method, M.
Riesz’s theorem on Lp boundedness of the Hilbert transformation and Hilbert-transformation-
eigenfunction properties of boundary limits of functions in the Hardy space.

2 TM Systems Are Schauder Bases

We treat the two contexts together. We recall that the system consisting of the orthogonal
rational functions in the Hp context has been denoted by {αn}. In the unit disc context {αn} =
{en}; and in the upper-half-plane context {αn} = {βn}. We denote the parameter sequence
giving rise to the TM system by {bn}. In the two contexts it is, respectively, identical with
{an} ⊂ D and {λn} ⊂ C+. We will be working with the partial sums Sn, defined by

Sn(f) =
n∑

k=1

〈f, αn〉αn,

where 〈·, ·〉 denotes the paring between Hp and Hp′
, where 1/p + 1/p′ = 1, 1 < p, p′ < ∞. The

paring in the unit disc context is

〈f, g〉 =
1

2π

∫ 2π

0

f(eit)g(eit)dt;

and in the upper-half-complex plane context is

〈f, g〉 =

∫ ∞

−∞
f(t)g(t)dt.

Below, by ‖ · ‖p we mean either the norm of the Hardy space Hp or that of the boundary Hardy
space, depending on the context.

Theorem 2.1 The linear operators Sn are uniformly bounded in spanp{αn}. That is, there
exists a constant C such that for all n,

‖Snf‖p ≤ C‖f‖p, f ∈ spanp{αn}. (2.8)
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Theorem 2.2 The linear operators Sn are uniformly bounded from spanp{αn} to spanp{αn} if
and only if

lim
n→0

Sn(f) = f in the Hp − norm sense, f ∈ spanp{αn}. (2.9)

Corollary 2.3 The TM system {en} is a Schauder basis in spanp{en}, 1 < p < ∞. In other
words, for any f ∈ spanp{en}, we have

f =
∞∑

n=1

〈f, en〉en in the Hp(∂D)− norm sense.

Corollary 2.4 The TM system {βn} is a Schauder basis in spanp{βn}, 1 < p < ∞. In other
words, for any f ∈ spanp{βn}, we have

f =
∞∑

n=1

〈f, βn〉βn in the Hp(R)− norm sense.

Only Theorem (2.1) and Theorem (2.2) need to be proved. We will first prove Theorem
(2.2).
Proof of Theorem (2.2) First we assume that (2.9) holds. In the case the Resonance Theorem
implies that Sn is uniformly bounded. Next we assume that Sn is uniformly bounded. We note
that due to the formal orthogonal property of the system {αn} under the paring between Hp

and Hp′
, the elements αn all satisfy the condition (2.9), and thus so do all the functions in

span{αn}. In the case to show that {αn} is a Schauder basis of spanp{αn} it suffices to show
that the functions in Hp satisfying the condition (2.9) form a closed set. Let f ∈ spanp{αn} be
fixed. For any ε > 0, there exists fε ∈ span{αn} such that

‖f − fε‖p ≤ ε.

Now, by assumption, Sn are uniformly bounded, therefore,

‖f − Sn(f)‖ ≤ ‖f − fε‖p + ‖fε − Sn(fε)‖p + ‖Sn(f − fε)‖p

≤ ε + ‖fε − Sn(fε)‖p + Cε.

Since fε ∈ span{αn}, for large enough n, we have

fε = Sn(fε), therefore, ‖fε − Sn(fε)‖p = 0.

For the same large n, being selected according to f and ε, we have

‖f − Sn(f)‖p ≤ (1 + C)ε.

The proof is complete.
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Proof of Theorem (2.1) Assume that f ∈ H2∩ spanp{αn}. Then, by the H2-theory, we have

f = Sn(f) + Rn(f),

where Rn =
∑∞

k=n+1〈f, αk〉αk ∈ H2. Let Bn be the finite Blaschke product having {α1, ..., αn}
as all its zeros including the multiples. Then

B−1
n f = B−1

n Sn(f) + B−1
n Rn.

It is clear that B−1
n Sn(f) ∈ Hp(C \ X) and B−1

n Rn ∈ Hp(X), where X is D or C+, depending
on the context. Note that Hilbert transformation H has all the functions in H2(X) as its
eigenfunctions with the eigenvalue −i; and all the functions in H2(C \X) as its eigenfunctions
with the eigenvalue i. We hence have

HB−1
n f = iB−1

n Sn(f)− iB−1
n Rn.

Consequently,
BnHB−1

n f = iSn(f)− iRn.

On the other hand,
if = iSn(f) + iRn.

Therefore,
2iSn(f) = if + BnHB−1

n f.

Note that for any Blaschke product B we have |B| = 1, a.e., on the boundary. Due to the
uniform boundedness of the multiplication operators by Bn and B−1

n , and the Lp- boundedness
of the Hilbert transformation H, we have

‖Sn(f)‖p ≤ C‖f‖p

uniformly in n for f in H2∩spanp{αn}. By a routine density argument the uniform boundedness
of Sn can be extended to the closure of H2 ∩ spanp{αn} in Hp, that is spanp{αn}, as desired.
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