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Abstract Appealing to the Clifford analysis and matching pursuits, we study the adaptive

decompositions of functions of several variables of finite energy under the dictionaries con-

sisting of shifted Cauchy kernels. This is a realization of matching pursuits among shifted

Cauchy kernels in higher-dimensional spaces. It offers a method to process signals in arbitrary
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1 Introduction

Decomposition of a given signal into certain basic components is important in signal anal-
ysis, which allows us to easily understand the structure of the signal and get hidden structure
information behind the signal. Traditional methods like Fourier transform, wavelet transform,
or others using fixed bases, are powerful linear expansions in most cases, but they are not
flexible enough. The convergence rate can not make people satisfied in many cases, and it
is hard to detect the signal patterns from the expansion coefficients. For these reasons and
for the purpose of finding fast ways to decompose signals, Mallat and Zhang introduced an
adaptive algorithm in 1993 (see [1]), called matching pursuit, which is a greedy algorithm that
decomposes any signal into a linear combination of waveforms which belong to a redundant
dictionary of functions, where by definition, a dictionary in a Hilbert space H is a family of
unit vectors D = {gγ : γ ∈ Γ, ‖gγ‖ = 1}, which is often assumed to be complete or even re-
dundant. Although the algorithm itself is nonlinear, it is adaptive because at each iteration it
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chooses a waveform that almost best matches the signal structures, thus it provides a flexible
representation of the signal.

Note that vectors in an arbitrarily given dictionary are generally not mutually orthogonal.
However, an orthonormal decomposition can offer a special case of matching pursuit (or greedy
algorithm) with dictionary consisting of an orthonormal basis. In [2], the authors studied the
adaptive intrinsic mono-component decomposition of functions by the orthonormal rational
system, i.e., the Takenaka–Malmquist system, in the context of complex Hardy space in the
unit disc. The case of upper half plane, as a counterpart, first appeared in [3]. The algorithm
in both cases guarantees that the optimal projection (maximal energy) can be obtained at each
recursive step, being a variation of greedy algorithm with the convergence order being 1/2 under
certain conditions (cf. [4]). As to some subsequent works along this direction, see [5, 6].

Given the work in [2] and [3] it naturally arises the question what happens for the same
type of signal decomposition in the higher-dimensional spaces? Recently, the same type of
adaptive decompositions of functions of two or three variables are obtained in [7] by means of
quaternionic analysis as a natural extension of the complex analysis case. The method, as in
the complex number case, produces an orthonormal system. Unfortunately, the method can
not be directly adapted to a general (m + 1)-dimensional space in the Clifford analysis setting,
for, in general, a Clifford number is not invertible, that stands as a major technical obstacle.

For the above reasons, in this paper, under the Clifford algebra setting, we study adaptive
decompositions of functions in the monogenic Hardy spaces using dictionaries consisting of
shifted Cauchy kernels (the Szegö kernels for the unit ball case, see [8], also [9]). Through
Hardy spaces decomposition of signals the type of decompositions is thus valid for functions of
finite energy in the (m + 1)-dimensional Euclidean space. When m + 1 is even, what we obtain
is a rational approximation, although in general not orthogonal. For the special case m = 1,
viz., in one complex variable, shifted Cauchy kernels are referred as the Cauchy wavelet system
[10]. For model reduction practice in control theory the type of questions is equivalent with
best rational approximation to functions in the Hardy spaces [11].

Our algorithm is in the spirit of matching pursuit. The previous algorithms in [2], [3] and
[7], however, are combinations of generalized backward shift and matching pursuit. Thus in the
present context we do not result in an orthonormal system in each case. This flexibility avoids
the technical difficulty mentioned above. From [4] we know that the convergence order is 1/6
under some additional assumptions.

In practice, the signal we study may be determined by more than one factor, that is
to say, the signal is of several variables (e.g., an image can be regarded as a signal of two
variables). Thus our method suggests an effective way for this, and from [12] we know that
each basic component (shifted Cauchy kernel) we obtain from the decomposition possesses
positive instantaneous frequency.

Our writing plan is as follows. Section 2 contains some basic knowledge on Clifford analysis
and monogenic Hardy spaces. In Section 3 we study matching pursuits for functions in H2(Bm),
from which we derive the adaptive decomposition of functions in L2(Sm) in Section 4. The cases
H2(Rm+1

+ ) and L2(Rm), are discussed in Section 5. In the last section, we point out that the
problem in H2(Rm+1

+ ) can be converted to that in H2(Bm), and vice versa.
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2 Clifford Analysis and Monogenic Hardy Spaces

2.1 Clifford Algebra and Clifford Analysis

Let e1, . . . , em be basic elements satisfying eiej + ejei = −2δij , i, j = 1, . . . ,m, where δij

equals 1 if i = j and 0 otherwise. Let Rm+1 = {x = x0 +x1e1 + · · ·+xmem : xi ∈ R, 0 ≤ i ≤ m}
be identified with the usual (m + 1)-dimensional Euclidean space. The real Clifford algebra
generated by e1, . . . , em, denoted by Am, is an associative algebra in which each element is of
the form x =

∑
T xT eT , where xT ∈ R, eT = ei1ei2 · · · eil

and T = {1 ≤ i1 < i2 < · · · < il ≤ m}
runs over all ordered subsets of {1, . . . ,m} and x∅ = x0, e∅ = e0 = 1. Sc x = x0 is called
the scalar part of x, and NSc x = x − Sc x is the non-scalar part of x, the conjugate and the
norm of x are defined by x =

∑
T xT eT and |x| = Sc(xx) = (

∑
T x2

T )1/2 respectively, where
eT = eil

· · · ei2 ei1 and ei = −ei for i 6= 0, e0 = e0. We have for any x, y, z ∈ Am, xy = y x,
(xy)z = x(yz) and |xy| ≤ 2m/2|x||y|. A1 = C and A2 coincides with the quaternion algebra H.
In general Am is not a division algebra.

A function f(x) =
∑

T fT (x)eT ∈ C1(Ω,Am) is said to be left (right) monogenic in the
open set Ω ⊂ Rm+1 if and only if it satisfies the generalized Cauchy–Riemann equation

Df =
m∑

i=0

ei
∂f

∂xi
= 0

(
fD =

m∑
i=0

∂f

∂xi
ei = 0

)
,

where the Dirac operator D is defined by D = ∂
∂x0

+ ∇ =
∑m

0 ei
∂

∂xi
. If f is left (right)

monogenic, then each component of f is a real-valued harmonic function, and f remains left
(right) monogenic after right (left) multiplying f by a constant in Am.

The theory of Clifford analysis developed by Brackx, Delanghe and Sommen et al is about
the theory of monogenic functions, which is a generalization of the complex analysis into higher-
dimensional spaces. Now it plays an important role in modern analysis and becomes a powerful
tool for many applications. A Cauchy-type integral formula for this setting is:

Lemma 2.1 ([8]) Let S ⊂ Ω be an (m + 1)-dimensional compact differentiable and
oriented manifold with boundary. If f is left monogenic in Ω, then

f(x) =
1

ωm

∫
∂S

E(y − x)(n(y)dS)f(y), x ∈ int(S),

where E(x) = x
|x|m+1 is the Cauchy kernel, ωm = 2π

m+1
2 /Γ(m+1

2 ) stands for the area of the unit
sphere Sm = {x ∈ Rm+1 : |x| = 1}, n(y) is the outward-pointing unit normal vector on ∂S, dS

is the surface area element on ∂S and int(S) is the interior of S.

2.2 Monogenic Hardy Spaces

Since the theory of left monogenic functions is analogous to that of right monogenic func-
tions, we will work on left monogenic functions in this paper.

Denote the unit ball {x ∈ Rm+1 : |x| < 1} which is centered at the origin by Bm, and let
the half space Rm+1

+ = {x ∈ Rm+1 : Sc x > 0}. The monogenic Hardy space H2(Bm) (resp.
H2(Rm+1

+ )), consists of all functions f that are left monogenic in Bm (resp. Rm+1
+ ), for which

sup
0≤r<1

(
1

ωm

∫
|η|=1

|f(rη)|2dS

)1/2

< ∞



4 ACTA MATHEMATICA SCIENTIA Vol.3x Ser.B(
resp. sup

x0>0

(
1

ωm

∫
Rm

|f(x0 + x)|2dx

)1/2

< ∞

)
,

here x = x1e1 + · · ·+ xmem, dx = dx1 · · · dxm is the volume element of Rm.
For any f ∈ H2(Bm) (resp. H2(Rm+1

+ )), the non-tangential limit of f on Sm (resp. Rm)
exists and belongs to L2(Sm) (resp. L2(Rm)). Moreover, the Cauchy’s integral formula holds
for f .

The monogenic Hardy spaceH2(Bm) (resp. H2(Rm+1
+ )) is associated with the inner product

and norm which are respectively defined by

〈f, g〉 =
1

ωm

∫
|η|=1

g(η)f(η)dS, f, g ∈ H2(Bm)

(
resp. 〈f, g〉 =

1
ωm

∫
Rm

g(y)f(y)dy, f, g ∈ H2(Rm+1
+ )

)
and

‖f‖ = (Sc〈f, f〉)1/2 =
(

1
ωm

∫
Sm

|f(η)|2dS

)1/2

, f ∈ H2(Bm)(
resp. ‖f‖ = (Sc〈f, f〉)1/2 =

(
1

ωm

∫
Rm

|f(y)|2dy

)1/2

, f ∈ H2(Rm+1
+ )

)
.

There holds the quasi Cauchy–Schwarz inequality

|〈f, g〉| ≤ 2m/2‖f‖‖g‖.

For more information about the monogenic Hardy spaces please see [13, 14].

3 Matching Pursuit in H2(Bm)

In this section, we focus our attention on the following dictionary:

D = {ϕa : a ∈ Bm},

where the function ϕa is defined by

ϕa(x) = (1− |a|2)m
2

1− ax

|1− ax|m+1
, x ∈ Bm.

It is easy to check that ϕa is left monogenic, and obviously ϕa is continuous in the closure of
Bm whenever a ∈ Bm, hence ϕa ∈ H2(Bm). To see that ‖ϕa‖ = 1, we first show that

Proposition 3.1 For any function f ∈ H2(Bm) and any ϕa ∈ D , there holds

〈f, ϕa〉 = (1− |a|2)m
2 f(a).

Proof By definition and the Cauchy’s integral formula for H2(Bm),

〈f, ϕa〉 =
1

ωm

∫
Sm

(1− |a|2)m
2

1− aη

|1− aη|m+1
f(η)dS

= (1− |a|2)m
2

1
ωm

∫
Sm

η − a

|η − a|m+1
(ηdS)f(η)

= (1− |a|2)m
2 f(a).

�
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The above property implies

‖ϕa‖2 = Sc(〈ϕa, ϕa〉) = Sc((1− |a|2)m
2 ϕa(a)) = Sc(1) = 1.

Next we will study the adaptive decomposition for functions in H2(Bm) with the dictionary
D . The algorithm is, in fact, the pure greedy algorithm. We, however, prove that the optimality
factor can be taken as 1. That is to say, at each step we can get the projection of maximal
energy that decomposes the function in a fast way. To be specific, let f ∈ H2(Bm), ϕa0 ∈ D ,
clearly,

f = ϕa0〈f, ϕa0〉+ Rf,

where
Rf = f − ϕa0〈f, ϕa0〉

is the residual vector. Note that ϕa0 is orthogonal to Rf , we have

‖f‖2 = |〈f, ϕa0〉|2 + ‖Rf‖2.

Doing the same procedure on Rf , one yields

Rf = ϕa1〈Rf, ϕa1〉+ R2f,

where
R2f = Rf − ϕa1〈Rf, ϕa1〉,

and we get
‖Rf‖2 = |〈Rf, ϕa1〉|2 + ‖R2f‖2.

Let R0f = f , by induction, at the nth step we will get

Rnf = ϕan
〈Rnf, ϕan

〉+ Rn+1f,

and
‖Rnf‖2 = |〈Rnf, ϕan〉|2 + ‖Rn+1f‖2.

So

f =
n∑

k=0

ϕak
〈Rkf, ϕak

〉+ Rn+1f,

and

‖f‖2 =
n∑

k=0

|〈Rkf, ϕak
〉|2 + ‖Rn+1f‖2.

In order to get a fast decomposition, we should select an an ∈ Bm at the nth iteration such
that |〈Rnf, ϕan〉| takes as large as possible. The best choice is that

|〈Rnf, ϕan
〉| = sup

a∈Bm

|〈Rnf, ϕa〉|, (3.1)

this is guaranteed by the following lemma.

Lemma 3.2 Suppose f ∈ H2(Bm), a = |a|ξ = rξ ∈ Bm, then

lim
r→1−

|〈f, ϕa〉| = 0

holds uniformly in |ξ| = 1.



6 ACTA MATHEMATICA SCIENTIA Vol.3x Ser.B

Proof Let Vr = Cm(1 − r)m+1 be the volume of the ball Bm(a, 1 − r) = {x ∈ Rm+1 :
|x − a| < 1 − r}, in which Cm is a constant depends only on m and it may differ at each
appearance. Write x = |x|η = ρη, note that

|x− a| ≥ ||x| − |a|| = |ρ− r|

and

|x− a| = |ρη − rξ| = |r(η − ξ)− (r − ρ)η| ≥ r|η − ξ| − |r − ρ| ≥ r|η − ξ| − |x− a|,

so x ∈ Bm(a, 1− r) implies {
2r − 1 < ρ < 1,

|η − ξ| < 2(1− r)/r.

Hence, when r is sufficiently close to 1, we have

|〈f, ϕa〉| = |(1− r2)m/2f(a)|

= (1− r2)m/2

∣∣∣∣∣V −1
r

∫
Bm(a,1−r)

f(x)dx

∣∣∣∣∣
≤ (1− r2)m/2

(
V −1

r

∫
Bm(a,1−r)

|f(x)|2dx

)1/2

≤ (1− r2)m/2

(
V −1

r

∫ 1

2r−1

ρm

∫
|η−ξ|<2(1−r)/r

|f(ρη)|2dSdρ

)1/2

≤ (1− r2)m/2

(
V −1

r 2(1− r) sup
0≤ρ<1

∫
|η−ξ|<2(1−r)/r

|f(ρη)|2dS

)1/2

≤ Cm

(∫
|η−ξ|<2(1−r)/r

sup
0≤ρ<1

|f(ρη)|2dS

)1/2

.

Note that as a function of η, sup
0≤ρ<1

|f(ρη)| belongs to L2(Sm), and the measure of the set

{η : |η − ξ| < 2(1− r)/r} tends to zero as r → 1−. The lemma then follows from the absolute
continuity of the Lebesgue integral. �

The above lemma enables us to find the optimal projections that best match the residues
under the condition (3.1), and thus get a fast decomposition. Here we note that there may be
more than one parameter satisfying (3.1).

Theorem 3.3 Under the maximum selection criterion (3.1), we have

lim
n→∞

‖Rnf‖ = 0. (3.2)

Proof From [1] we know that there exists a function g such that

g =
∞∑

k=0

ϕak
〈Rkf, ϕak

〉

holds in the sense of energy, and

‖g‖2 =
∞∑

k=0

|〈Rkf, ϕak
〉|2.
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If (3.2) is not true, then h := f − g 6= 0, so one can find at least one point b ∈ Bm \
⋃∞

i=0{ai}
such that

|〈h, ϕb〉| = δ > 0.

Set

gN = −
∞∑

k=N

ϕak
〈Rkf, ϕak

〉.

Choose a large N such that
|〈RNf, ϕaN

〉| < δ/2

and
|〈gN , ϕb〉| ≤ 2m/2‖gN‖‖ϕb‖ = 2m/2‖gN‖ < δ/2.

Thus
|〈RNf, ϕb〉| = |〈h− gN , ϕb〉| ≥ |〈h, ϕb〉| − |〈gN , ϕb〉| > δ − δ/2 = δ/2,

so
|〈RNf, ϕb〉| > |〈RNf, ϕaN

〉|.

This is contrary with our choice of aN for RNf based on the maximum selection criterion (3.1).
�

Remark 3.4 Theorem 3.3 states that after matching pursuit for f ∈ H2(Bm) we obtain

f =
∞∑

k=0

ϕak
〈Rkf, ϕak

〉, ‖f‖2 =
∞∑

k=0

|〈Rkf, ϕak
〉|2,

which implies that D is a complete dictionary, i.e., the closed linear span spanD of D is H2(Bm).
However, we can prove this in a simpler and more direct way. In fact, it is not hard to see from
Proposition 3.1 that the orthogonal complement of D is {0} (cf. [2]). Hence we conclude that
spanD = H2(Bm).

Example 3.5 Let f(x) = (1−0.75x0+0.25x)(1−0.5x)
|1−0.5x|5 , x = x0 + x1e1 + x2e2 ∈ B2, then

f ∈ H2(B2) and ‖f‖2 = 32/9 ≈ 3.5556. The adaptive decomposition of f according to the
selection principle (3.1) yields

f(x) =
4∑

n=0

ϕan
(x)cn + R5f =

4∑
n=0

ϕan
(x)〈Rnf, ϕan

〉+ R5f, x ∈ B2,

where the parameters and coefficients are showed in Table 1. The energy of the residue R5f is
‖R5f‖2 = ‖f‖2 −

∑4
n=0 |cn|2 ≈ 0.0099.

Table 1 Values for the parameters and coefficients

i the ith parameter ai the ith coefficient ci

0 0.6458 1.8779

1 −0.1948 −0.1030

2 0.6718 + 0.0336e1 − 0.3231e2 0.0557 + 0.0016e1 − 0.0157e2

3 0.9138 + 0.0029e1 − 0.0077e2 −0.0502− 0.0001e1 − 0.0045e2

4 0.6913− 0.0335e1 + 0.3373e2 0.0497− 0.0019e1 + 0.0202e2 − 0.0001e1e2
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On B2, f admits the spherical monogenic expansion, i.e.,

f(x) =
∞∑

k=0

Pk(f, x) =
5∑

k=0

Pk(f, x) + R6f, x ∈ B2,

where Pk is the inner spherical monogenic of order k, R6f is the remainder term for the
expansion up to order 5. Computation shows ‖

∑5
k=0 Pk‖2 =

∑5
k=0 ‖Pk‖2 = 7195/2048, so

‖R6f‖2 = ‖f‖2 −
∑5

k=0 ‖Pk‖2 ≈ 0.0424. It is obvious that our method works better for f than
that using spherical monogenics.

4 Adaptive Decompositions for Functions in L2(Sm)

If a function F ∈ H2(Bm), then its non-tangential boundary limit is a function f in L2(Sm).
According to Section 3, the adaptive decomposition for f will be obtained by taking the bound-
ary values after performing matching pursuit on F . But conversely, if we are given a function
f ∈ L2(Sm), in general it is not the restriction of some function F ∈ H2(Bm) on Sm. In
this case, f can be split into several components such that each component corresponds to
a real-valued function. Therefore, without loss of generality, we may assume that f itself is
real-valued. Under this condition, there exists an F ∈ H2(Bm) with the property

lim
r→1−

Sc(F (rξ)) = f(ξ), a.e. on Sm. (4.1)

Hence, taking the scalar part of the boundary limit of the partial sums arising from the adaptive
decomposition for F will lead to a fast approximation of f .

A solution of (4.1) is given by (cf. [8, 15])

F (x) = T (f)(x) =
∫
|ω|=1

S(x, ω)f(ω)dS, |x| < 1,

where S(x, ω) = P (x, ω) + Q(x, ω) is the monogenic Schwarz kernel, P (x, ω) = 1
ωm

1−|x|2
|x−ω|m+1 is

the Poisson kernel and

Q(x, ω) = NSc
(∫ 1

0

tm−1(DP )(tx, ω)xdt

)
=
(

1
ωm

∫ 1

0

(m + 1)tm−1(1− t2|x|2)
|tx− ω|m+3

dt

)
NSc(ωx)

is the Cauchy-type harmonic conjugate of P (x, ω) on the unit sphere, which can be computed
out explicitly with an expression in terms of elementary functions (cf. [16, 17]). As a conse-
quence of boundedness of Hilbert transform on the sphere [15], T is a bounded operator from
L2(Sm) to H2(Bm). We note that F plus any non-scalar constant still satisfies (4.1).

5 Matching Pursuit in H2(Rm+1
+ )

In this section, we will investigate a matching pursuit algorithm for functions in H2(Rm+1
+ )

and the adaptive decomposition for functions in L2(Rm).
Let f ∈ L2(Rm). In order to get an adaptive approximation for f , let us first consider the

Cauchy integral of f :

F (x) = C(f) =
−1
ωm

∫
Rm

y − x

|y − x|m+1
f(y)dy, x ∈ Rm+1

+ ,
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then F ∈ H2(Rm+1
+ ). The well known Sokhotsky–Plemelj formula reads

lim
x0→0+

F (x0 + x) =
1
2
f(x) +

1
2
H(f)(x),

where H(f) =
∑m

i=1 eiRi(f), and

Ri(f)(x) =
2

ωm
p.v.

∫
Rm

yi − xi

|y − x|m+1
f(y)dy

is the ith (1 ≤ i ≤ m) Riesz transform of f . Consequently,

f(x) = 2Sc
(

lim
x0→0+

F (x0 + x)
)

.

Hence, the adaptive decomposition of f is now turned to the adaptive decomposition of F .
The dictionary we choose for this case is

D =
{

ϕa = (2Sc(a))
m
2

x + a

|x + a|m+1
: a ∈ Rm+1

+

}
,

where each ϕa is a unit vector of H2(Rm+1
+ ). For any f ∈ H2(Rm+1

+ ), invoking Cauchy’s integral
formula for H2(Rm+1

+ ), we get

〈f, ϕa〉 =
1

ωm

∫
Rm

(2a0)
m
2

y + a

|y + a|m+1
f(y)dy

= (2a0)
m
2
−1
ωm

∫
Rm

y − a

|y − a|m+1
f(y)dy

= (2a0)
m
2 f(a), (5.1)

where a0 = Sc(a).
The corresponding maximum selection criterion we adopt for this setting is to find an

an ∈ Rm+1
+ at each stage such that

|〈Rnf, ϕan
〉| = sup

a∈Rm+1
+

|〈Rnf, ϕa〉|. (5.2)

The attainability of the supremum is concluded from the following proposition whose proof is
a slight modification of one in [7]. We would like to write the proof for completeness.

Proposition 5.1 Suppose f ∈ H2(Rm+1
+ ), then

lim
a0→0+

〈f, ϕa〉 = lim
a0→+∞

〈f, ϕa〉 = 0

holds uniformly with respect to a ∈ Rm.

Proof Let Va0 = Cmam+1
0 be the volume of the ball Bm(a, a0

2 ), then

|〈f, ϕa〉| = |(2a0)m/2f(a)|

= (2a0)m/2

∣∣∣∣∣V −1
a0

∫
Bm(a,

a0
2 )

f(x0 + x)dx

∣∣∣∣∣
≤ (2a0)m/2

(
V −1

a0

∫
Bm(a,

a0
2 )

|f(x0 + x)|2dx

)1/2

(5.3)

≤ (2a0)m/2

(
V −1

a0

∫ 3a0
2

a0
2

∫
Rm

|f(x0 + x)|2dxdx0

)1/2

(5.4)
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≤ (2a0)m/2

(
a0V

−1
a0

sup
x0>0

∫
Rm

|f(x0 + x)|2dx

)1/2

= Cm‖f‖. (5.5)

On the other hand, when a0 is small,

(5.3) ≤ (2a0)m/2

(
V −1

a0

∫ 3a0
2

a0
2

∫
|x−a|≤ a0

2

|f(x0 + x)|2dxdx0

)1/2

≤ (2a0)m/2

(
a0V

−1
a0

sup
x0∈(

a0
2 ,

3a0
2 )

∫
|x−a|≤ a0

2

|f(x0 + x)|2dx

)1/2

≤ Cm

(∫
|x−a|≤ a0

2

sup
x0∈(

a0
2 ,

3a0
2 )

|f(x0 + x)|2dx

)1/2

≤ Cm

(∫
|x−a|≤ a0

2

sup
x0>0

|f(x0 + x)|2dx

)1/2

.

Note that as a function of x, sup
x0>0

|f(x0+x)| ∈ L2(Rm) and the measure |{x : |x−a| ≤ a0
2 }| → 0

as a0 → 0+, by the absolute continuity of the Lebesgue integral we have

lim
a0→0+

〈f, ϕa〉 = 0.

When a0 is large,

(5.4) ≤ (2a0)m/2

(
a0V

−1
a0

sup
x0∈(

a0
2 ,

3a0
2 )

∫
Rm

|f(x0 + x)|2dx

)1/2

≤ Cm

(∫
Rm

G(a0, x)2dx

)1/2

holds uniformly for a ∈ Rm, where G(a0, x) = sup
x0∈(

a0
2 ,

3a0
2 )

|f(x0 + x)|. Obviously,

G(a0, x) ≤ sup
x0>0

|f(x0 + x)| ∈ L2(Rm).

Also, from (5.5) we know that

G(a0, x) ≤ a
−m/2
0 Cm‖f‖,

which implies that
lim

a0→+∞
G(a0, x) = 0

holds uniformly for x ∈ Rm. By Lebesgue’s dominated convergence theorem we have

lim
a0→+∞

〈f, ϕa〉 = 0.

The proof of the proposition is complete. �

Proposition 5.2 Suppose f ∈ H2(Rm+1
+ ), then

lim
|a|→+∞

〈f, ϕa〉 = 0

holds uniformly in a0 > 0.



No.x T. Qian et al: MATCHING PURSUITS AMONG SHIFTED CAUCHY KERNELS 11

Proof By Proposition 5.1 and formula (5.1), it suffices to show that

lim
|a|→+∞

|f(a0 + a)| = 0

holds uniformly with respect to a0 ∈ [c, d] ⊂ R+.
We have

|f(a0 + a)| = 1
ωm

∣∣∣∣∫
Rm

a0 + a− y

|a0 + a− y|m+1
f(y)dy

∣∣∣∣
≤ 1

ωm

∫
Rm

|f(y)|
(|y − a|2 + a2

0)m/2
dy

≤ 1
ωm

(∫
|y|>N

|f(y)|
(|y − a|2 + c2)m/2

dy +
∫
|y|≤N

|f(y)|
(|y − a|2 + c2)m/2

dy

)

=
1

ωm
(I1 + I2).

By Hölder’s inequality,

I1 ≤

(∫
|y|>N

1
(|y − a|2 + c2)m

dy

)1/2(∫
|y|>N

|f(y)|2dy

)1/2

≤
(∫

Rm

1
(|y|2 + c2)m

dy

)1/2
(∫

|y|>N

|f(y)|2dy

)1/2

≤ Cm

(∫
|y|>N

|f(y)|2dy

)1/2

,

so I1 is small provided N is large enough. With N fixed,

I2 ≤
Cm

|a|m

∫
|y|≤N

|f(y)|dy → 0 (|a| → +∞),

which is due to the fact that f(y) is integrable on {y : |y| ≤ N}. This finishes the proof of the
proposition. �

Theorem 3.3 also holds for this case.

6 Isomorphism between H2(Bm) and H2(Rm+1
+ )

The matching pursuits for H2(Bm) and H2(Rm+1
+ ), as we suggest, are subject to the max-

imum selection criteria (3.1) and (5.2) respectively. In numerical computation, to find a maxi-
mizer for (3.1) is easy. For example, we can divide the unit ball by mesh, and then evaluate the
norm of the coefficient for each point in each subgrid. However, for (5.2) it is hard to imple-
ment in practice, since Rm+1

+ is an unbounded domain. In this section, we solve this problem
by showing that H2(Bm) is isometrically isomorphic to H2(Rm+1

+ ). As a consequence, it turns
out that the optimization problem (5.2) is essentially equivalent to (3.1).

We start from a Möbius transformation τ (see [18]), which is defined through

b = τ(a) = (1− a)(1 + a)−1 = (1 + a)−1(1− a).

One can verify that τ is a bijection from Bm to Rm+1
+ , and its inversion is given by

a = τ−1(b) = τ(b) = (1− b)(1 + b)−1 = (1 + b)−1(1− b).
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Define the linear operator T acting on functions by

(T f)(x) = 2
m
2

1 + x

|1 + x|m+1
f(τ(x)),

whenever it makes sense. We have

Proposition 6.1 If ϕ is a shifted Cauchy kernel for Bm (resp. Rm+1
+ ), then T (ϕ) is a

shifted Cauchy kernel for Rm+1
+ (resp. Bm) modulo a unimodular constant.

Proof Let a ∈ Bm, b = τ(a) ∈ Rm+1
+ , then one can deduce by direct computations that(

T
(

(1− |a|2)m
2

1− aX
|1− aX|m+1

))
(x) =

(
(2Sc(b))

m
2

x + b

|x + b|m+1

)
1 + b

|1 + b|
,

and (
T

(
(2Sc(b))

m
2

x + b

|x + b|m+1

))
(X ) =

(
(1− |a|2)m

2
1− aX

|1− aX|m+1

)
1 + a

|1 + a|
.

�

Theorem 6.2 T is a unitary operator from H2(Bm) to H2(Rm+1
+ ), and T −1 = T .

Proof Assume that f ∈ H2(Bm). Cauchy’s integral formula gives

f(X ) =
1

ωm

∫
Sm

1−Xη

|1−Xη|m+1
f(η)dS, X ∈ Bm.

Changing variables by setting X = τ(x) and η = τ(y), then y ∈ Rm and dS(η) = 2m

|1+y|2m dy (cf.
[19]), from which it is not difficult to get

(T f)(x) =
−1
ωm

∫
Rm

y − x

|y − x|m+1
(T f)(y)dy, x ∈ Rm+1

+ .

So T f is the Cauchy integral of its boundary limit (and hence it is monogenic on Rm+1
+ ).

Meanwhile, we obtain

‖f‖2
H2(Bm) =

1
ωm

∫
Sm

|f(η)|2dS =
1

ωm

∫
Rm

∣∣f(τ(y))
∣∣2 2m

|1 + y|2m
dy,

which means that T f |Rm ∈ L2(Rm) and ‖T f |Rm‖L2(Rm) = ‖f‖H2(Bm). Consequently, T f ∈
H2(Rm+1

+ ) and ‖T f‖H2(Rm+1
+ ) = ‖T f |Rm‖L2(Rm) = ‖f‖H2(Bm). Moreover, 〈T f, T g〉H2(Rm+1

+ ) =
〈f, g〉H2(Bm) for any f, g ∈ H2(Bm). As to T −1 = T , it follows from the fact that T 2 coincides
with the identity operator. �
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