
Onbackward shift algorithm for estimatingpoles of systems ⋆

WenMi a, Tao Qian b

aSchool of Mathematical Science, University of Electronic and Technology Science of China, Chengdu, China

bDepartment of Mathematics, University of Macau, Macau, China

Abstract

In this paper, we present an algorithm of estimating poles of linear time-invariant systems by using the backward shift operator.
It is proved that poles of rational functions, including zeros and multiplicities, are solutions of an algebra equation which
can be obtained by taking backward shift operator to normalized reproductive kernels in the unit disc case. The algorithm
is accordingly developed for frequency-domain identification. The robustness of this algorithm is proved. Some illustrative
examples are presented to show the efficiency for systems with distinguished and multiple poles cases.
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1 Introduction

System identification is to build mathematical models
which fit the measured data from discrete or continuous
systems. An amount of methods have been developed
for this problem, such as [5,6,26–28]. A classical guide-
book for one getting to know this topic is [9]. For system
identification of linear time-invariant (LTI) systems, the
priori-knowledge of poles is important, especially for the
methods that adopt rational orthogonal bases such as
in[15–17,25]. In these methods, the estimated poles are
used to construct rational orthogonal basis functions. A
collection of these excellent results is [7].

In unit disc case, the general setting of a rational orthog-
onal basis is

Bk(z) = B{a1,.ak}(z) ,

√
1− |ak|2

1− akz

k−1∏
l=1

z − al
1− alz

, (1)

where aks (k = 1, ...) are in the unit disc, (a means con-
jugation of a). Many researchers work on choosing opti-
mal n-poles {ak}nk=1 in order to define the best rational
orthogonal bases for a system. T. Oliveria e Silva derived
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the optimal pole conditions for Laguerre, Kautz and gen-
eral orthogonal basis function models in [18–20], respec-
tively. In [10–12], adaptive selection of poles is studied.
Other attempts to estimate optimal pole positions of a
Laguerre model are given in [23,3]. Generally speaking,
the pole estimation of an LTI system, in practice, is not
easy.

For a discrete LTI system which is causal and stable, let
{xk}, {yk} be the input and output signals, respectively.
There is a relation between {xk} and {yk} as

yk = {xk} ∗ {hk} =
+∞∑
l=0

hlxk−l, (2)

where {hk} is the impulse response. With an operator q,
qx(k) = x(k+1), is drawn into, (2) can be represented as

yk =
+∞∑
l=0

hlxk−l = (
+∞∑
l=0

hlq
−l)xk. (3)

The related function

G(z) =
+∞∑
l=0

hlz
−l (4)

is the transfer function of the system. The values of the
transfer function for z on the unit circle are called fre-
quency responses. Under the stability and casuality as-
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sumption, G(z) is a proper rational function with real
coefficients. To identify G(z) with general orthogonal
bases, estimating poles for the basis functions plays a
significant role.

As is well-known, the basis (1) can be obtained by
the normalized reproducing kernels ea(z) with Gram-
Schmidt process, where the normalized reproducing
kernel at a, is given by

ea(z) =

√
1− |a|2
1− az

.

For these kernels, there is a very good property when
taking backward shift operator on them. Based on this
property, we can estimate poles of ea’s instead of the or-
thogonal cases. In this paper, we are to locate poles of an
LTI system based on a set of frequency domain measure-
ments by using backward shift operator, which results
in an algorithm, we call it backward shift algorithm.

This paper is arranged as follows. In section 2, we study
each case of taking backward shift operator to the ra-
tional functions. After that, we introduce the backward
shift algorithm in detail in section 3. Examples are given
in section 4 to illustrate the proposed idea. Some con-
clusions are drawn in the last section.

2 Backward shift on rational functions

2.1 Backward shift operator

The backward shift operator, denoted by S,

S(f)(z) =
f(z)− f(0)

z
, (5)

is the Banach space adjoint of the forward shift operator
F(f)(z) = zf(z) in the Hardy-2 space in the unit disc,
viz.,

⟨S(f), g⟩ = ⟨f,F(g)⟩, f, g ∈ H2. (6)

It is an important and interesting operator. Comprehen-
sive studies in the operator and related topics can be
found, for instance, in [1,14,4]. It is well known that a
collection of countably many reproducing kernels of the
Hardy space H2, viz., conjugates of shifted Cauchy ker-
nels, generates a backward shift invariant subspace.

For 0 ̸= a ∈ D, the unit disc, we notice the kernel ea(z) =
1

1−az (For convenience we will call a a pole of it, although

we know precisely it is 1
a ) is an eigenvector of S, viz.,

S(ea)(z) =
ea(z)− ea(0)

z

=
a

1− az
.

Therefore,

S2(ea)(z) = S(S(ea))(z)

=
a2

1− az
,

and, in general,

Sn(ea)(z) =
an

1− az
. (7)

An n-tuple (a1, ..., an) in the unit disc correspond to one
of the following two n-tuples of partial fractions, being
determined on whether some ak’s are zero. Denote by
b1, ..., bm all the distinguished ones among a1, ..., an.

Case 1.

If none of the distinguished bk’s is zero, then it corre-
sponds to

1

1− b1z
, ...,

1

(1− b1z)l1
, ...,

1

1− bmz
, ...,

1

(1− bmz)lm
,

where l1, ..., lm are multiples of b1, ..., bm, respectively
and l1 + ...+ lm = n.

A rational function p/q,where p and q are co-prime poly-
nomials, is a non-degenerate linear combination of the
above linearly independent set of functions if and only
if the degree of q is equal to n, and the degree of p is less
than n.

Case 2.

If one of the distinguished bk’s is zero, say, b1 = 0, with
multiplicity l1, then it corresponds to

1, ..., zl1 ,
1

1− b2z
, ...,

1

(1− b2z)l2
, ...,

1

(1− bmz)lm
,

where l1 + ...+ lm = n.

A rational function p/q,where p and q are co-prime poly-
nomials, is a non-degenerate linear combination of the
above linearly independent set of functions if and only
if the degree of q is equal to n − l1, and the degree of p
is less than n.

These cases will be studied in detail in the following three
subsections.

2.2 The distinguished non-zero poles case

In this subsection we treat the case where all bk, k =
1, ..., n, are different with each other, that is, each mul-
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tiplicity is 1. Assume that f is of the form

f(z) =

n∑
k=1

λk

1− bkz
, (8)

where λks are non-zero, bks are non-zero and distin-
guished from each other. Applying, consecutively, the
backward shift operator S to f(z) n times, we have



S(f)(z) =
λ1b1

1− b1z
+

λ2b2

1− b2z
+ ...+

λnbn

1− bnz
,

S2(f)(z) =
λ1b

2

1

1− b1z
+

λ2b
2

2

1− b2z
+ ...+

λnb
2

n

1− bnz
,

...

Sn(f)(z) =
λ1b

n

1

1− b1z
+

λ2b
n

2

1− b2z
+ ...+

λnb
n

n

1− bnz
.

Since the bks are distinguished, { 1

1−bkz
}nk=1 is a linearly

independent collection. There exists a unique non-zero
sequence {µk}nk=0 such that

µ0f(z) + µ1S(f)(z) + ...+ µnS
n(f)(z) = 0. (9)

Precisely,

0 = (µ0 + µ1b1 + ...+ µn−1b
n−1

1 + µnb
n

1 )
λ1

1− b1z

+ (µ0 + µ1b2 + ...+ µn−1b
n−1

2 + µnb
n

2 )
λ2

1− b2z
...

+ (µ0 + µ1bn + ...+ µn−1b
n−1

n + µnb
n

n)
λn

1− bnz
.

The linear independence of { 1

1−bkz
}nk=1 implies



µ0 + µ1b1 + µ2b
2

1 + ...+ µn−1b
n−1

1 + µnb
n

1 = 0,

µ0 + µ1b2 + µ2b
2

2 + ...+ µn−1b
n−1

2 + µnb
n

2 = 0,

...

µ0 + µ1bn + µ2b
2

n + ...+ µn−1b
n−1

n + µnb
n

n = 0,

Which means bk, k = 1, ..., n, are the solutions of an
algebraic equation

µnx
n+µn−1x

n−1+µn−2x
n−2+...+µ1x+µ0 = 0. (10)

The equation (10) has n different roots, then µn ̸= 0, we
may assume µn = 1.

2.3 The Multiple But Non-Zero Poles Case

In this subsection, we deal with rational function of or-
der n with non-zero multiple poles. Without loss of gen-
erality, we assume f(z) to be of the form

f(z) =
m∑
j=1

λj

(1− b1z)j
+

n∑
k=m+1

λk

1− bkz
, (11)

where λk, for k ≥ m, are all nonzero. First of all, by
applying the backward shift operator to 1

(1−b1z)m
, we

have

S(
1

(1− b1z)m
)

= b1

(
1

(1− b1z)m
+

1

(1− b1z)m−1
+ ...+

1

(1− b1z)

)
.

(12)

Set M(z) =
∑m

j=1
1

(1−b1z)j
, then

S(M)(z)

= b1
1

(1− b1z)
+ b1

(
1

(1− b1z)2
+

1

(1− b1z)

)
+ b1

(
1

(1− b1z)m
+ ...

1

(1− b1z)

)
= b1

(
1

(1− b1z)m
+

2

(1− b1z)m−1
+ ...+

m

(1− b1z)

)
.

(13)

Recursively,

Sk(M)(z)

= b
k

1

(
ckm

(1− b1z)m
+

ckm−1

(1− b1z)m−1
+ ...+

ck1
(1− b1z)

)
,

(14)

where ckj , j = 1, ...,m; k = 0, 1, 2, ..., are the coefficients
of the order-jth term by taking kth backward shift oper-
ator. We can see the coefficients also satisfy the recursive
rule,

ck+1
j =

m∑
l=j

ckl , (j = 1, 2, ...,m). (15)

Obviously c0m = c0m−1 = ... = c01 = 1, from (12) we

know by taking backward shift operator to 1

(1−b1z)m
, it

will generate m components in which the coefficients of
the m-th order is 1, then there is c1m = c2m... = ckm =
ck+1
m = ... = 1. From (13), due to linear independence of
{ 1

(1−b1z)j
, j = 1, ...,m; 1

1−bm+1z
, ..., 1

1−bnz
}, there exists

a unique sequence {µk}nk=0, such that the same relation
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as equation (9) holds,

µ0f(z) + µ1S(f)(z)...+ µnS
n(f)(z) = 0. (16)

That results to

µ0 + µ1b1 + µ2b
2

1 + ...++µnb
n

1 = 0,

µ0 + µ1bm+1...+ µnb
n

m+1 = 0,

...

µ0 + µ1bn + µ2b
2

n + ...+ b
n

n = 0,

(17)

and equations about b1,

c0mµ0 + c1mµ1b1 + ...cnmµnb
n

1 = 0,

c0m−1µ0 + c1m−1µ1b1 + ...+ cnm−1µnb
n

1 = 0,

...

c02µ0 + c12µ1b1 + ...cn2µnb
n

1 = 0,

c01µ0 + c11µ1b1 + ...cn1µnb
n

1 = 0.

There are m equations of b1. By first eliminating µ0 we
have m− 1 equations given by,



c0m−1µ1 + c1m−1µ2b1 + ...cn−1
m−1µnb

n−1

1 = 0,

c0m−2µ1 + c1m−2µ2b1 + ...cn−1
m−2µnb

n−1

1 = 0,

...

c02µ1 + c12µ2b1 + ...cn−1
2 µnb

n−1

1 = 0,

c01µ1 + c11µ2b1 + ...cn−1
1 µnb

n−1

1 = 0.

Repeating this process (m− 1) times, it comes

c01µm−1 + c11µmb1 + ...cn−m+1
1 µnb

n−m+1

1 = 0. (18)

The following is a result about the coefficients ck1 .

Lemma 1 For any positive integer m, let c0m = c0m−1 =

... = c01 = ... = ckm = ck+1
m = ... = 1, and ckj be given by

the recursive formula (15), then we have

ck1 =
(m+ k − 1)!

(m− 1)!k!
. (19)

Proof.We use mathematical induction. First of all, c01 =
(m−1)!
(m−1)!0! = 1 and c11 = (m+1−1)!

(m−1)!1! = m. Second, assume

that the result holds for cl1, 1 < l ≤ k. For l = k +
1, observing that ckl (l = 1, ...,m) are the numbers of

combinations, we have

ck1 = Ck
m+k−1,

ck2 = Ck
m+k−2,

...

ckm = Ck
k .

Then there holds

ck+1
1 =

m∑
l=1

ckl =
m∑
l=1

Ck
m+k−l.

Using the property of combination Cn
m +Cn+1

m = Cn+1
m+1

(for any positive integers m,n), we obtain

ck+1
1 = Ck+1

m+k =
(m+ k)!

(m− 1)!(k + 1)!
. (20)

The proof is complete.

The first equation in (17) implies b1 is a solution of an
equation like (10). Equation (18) is the (m−1)th deriva-
tive of the first equation in (17) by lemma 1, then b1 is
the m−multiple root. Therefore, the multiple poles are
completely included in the solutions of equation (10). In
the same way, we can assume µn = 1.

2.4 The infinite poles case

In this subsection we will discuss the case in which poly-
nomials are included. Set

f(z) =

m−1∑
k=0

ckz
k +

n∑
l=m+1

λl

1− blz
, (21)

where cm−1 and λl (l = m + 1, ..., n) are nonzero. For
the monomial zm−1, when applying the backward shift
operator to it, we have

S(zm−1) =
zm−1 − 0

z
= zm−2. (22)

After mth backward shift operator taken on it, it be-
comes zero, viz,

Sm(zm−1) = 0. (23)
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Then, for f(z) given by (21), we have

S(f)(z) =
m−1∑
k=1

ckz
k−1 +

n∑
l=1

λkbk

1− bkz
,

...

Sm−1(f)(z) = cm−1 +
n∑

l=1

λkb
m−1

k

1− bkz
,

Sm(f)(z) = 0 +
n∑

l=1

λkb
m

k

1− bkz
,

...

Sm+n(f)(z) = 0 +
n∑

l=1

λkb
m+n

k

1− bkz
,

Similarly, because of the linear independence of {zk} and
{ 1

1−blz
}, there exists a unique sequence {µk}nk=0 such

that

µ0f(z) + µ1S(f)(z) + ...µnS
n(f)(z) = 0, (24)

which gives

µ0c0 + µ1c1 + µ2c2 + ...+ µm−1cm−1 = 0,

µ0c1 + µ1c2 + µ2c3 + ...+ µm−2cm−1 = 0,

...

µ0cm−3 + µ1cm−2 + µ2cm−1 = 0,

µ0cm−2 + µ1cm−1 = 0,

µ0cm−1 = 0,

(25)

and 
µ0 + µ1b1 + µ2b

2

1 + ...µnb
n

1 = 0,

...

µ0 + µ1bn + µ2b
2

n + ...µnb
n

n = 0.

(26)

Since cm−1 ̸= 0, from equations (25) we can see µ0 =
µ1 = .... = µm−1 = 0. While from equations (26), by
the same way, we can see that {bk}nk=m+1 are solutions
of equation

µ0 + µ1x+ ...+ µn−1x
n−1 + µnx

n = 0, (27)

which can be simplified to

xm(µnx
n−m + µn−1x

n−m−1...+ µm) = 0. (28)

It is easy to find that the truth {bk}nk=m+1 are exactly
the solutions of

µnx
n−m + µn−1x

n−1...+ µm = 0.

Without loss of generality, we can assume µn = 1.

For the multiple {bk} case, the discussion is similar to
the above.

2.5 Sum-up

For any n-tuple {a1, ..., an} inD, the corresponding finite
orthogonal system

B{a1}, B{a1,a2}, ..., B{a1,a2,...,an},

where B{a1,...,ak} (k = 1, ..., n) is defined by (1), is
called an n-Blaschke system. It is proven in [22] that
the n-Blaschke system may be obtained through Gram-
Schmidt orthogonalization process from the reproduc-
tive kernels of order n,

e{a1}, e{a2}, ..., e{an},

where if ak ̸= 0 has multiplicity l in the n-tuple
(a1, ..., an), then

e{ak}(z) =
1

(1− akz)j
(j = 1, ..., l);

if ak = 0 has multiplicity l, then

e{ak}(z) = zj−1(j = 1, ..., l).

Any rational function consists of the kernels can be rep-
resented by linear combination of the corresponding fi-
nite orthogonal system. The studies in the above three
subsections through backward shift operator perfectly
correspond to the cases of the poles of the rational func-
tions. Our conclusion is that:

Theorem 2 Poles (including the zero and multiplici-
ties) of rational functions are exactly solutions of an al-
gebraic equation which can be derived through applying
the backward shift operator.

3 Backward shift algorithm

With Theorem 2, we can estimate poles of LTI systems
based on frequency responses. Generally, the measured
data are corrupted by noise and errors of measurement.
These will lead to some errors in estimating coefficients
{µk}n−1

k=0 and finally affect the accuracy of the estimated
poles.

It is here assumed a set of measurements {Ek}Nk=1 from a
system f(z), f(z) be a proper rational function, is given
by

Ek = f(eiωk) + vk, (29)
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where ωk = 2π(k−1)
N , k = 1, ..., N , and vk is the cor-

ruption to f(eiωk). The corruption {vk} can be used to
model a number of different error sources. It can be as-
sumed to either be a bounded deterministic sequence,
or a stochastic process with zero-mean and bounded co-
variance.

Without losing the accuracy, we consider the equation
(9) in the form

µ0f(z)+µ1S(f)(z)+ ...+µn−1S
n−1(f)(z) = Sn(f)(z).

(30)
The corresponding algebraic equation to (10) becomes

xn − µn−1x
n−1 − µn−2x

n−2 − ...− µ1x− µ0 = 0. (31)

We call our algorithm backward shift algorithm given as
follows.

Algorithm 1 It has four steps:

• Generates data sets by taking backward shift operator
to {Ek}Nk=1 n times.

• Determine the coefficients µk’s by relation (30).
• Find solutions of the algebraic equation (31) which

gives the poles of the rational function.
• Find the composition coefficients by using a least-

squares criterion.

The following are processes in detail. Firstly, based on
{f(eiωk)}Nk=1, {S(f)(eiωk)}Nk=1 can be obtained by

S(f)(eiωk) =
f(eiωk)− f(0)

eiωk
. (32)

With f(0) approximated by

f(0) =
1

2π

∫ 2π

0

f(eiω)dω ≈ 1

N

N∑
k=1

f(eiωk),

we denote

S̃(f)(eiω) =
f(eiωk)− 1

N

∑N
k=1 f(e

iωk)

eiωk
.

Repeating the process, we have

Sl−1f(0) =
1

2π

∫ 2π

0

Sl−1f(eiω)dω

≈ 1

N

N∑
k=1

S̃l−1f(eiωk),

and

S̃l(f)(eiω) =
S̃l−1(f)(eiω)− 1

N

∑N
k=1 S̃

l−1f(eiωk)

eiω

≈ Sl(f)(eiω), (33)

The approximating data sets {S̃2(f)(eiωk)}, {S̃3(f)(eiωk)},
..., {S̃n(f)(eiωk)} are obtained. Therefore we obtain a
linear system, denoted by

AµN = b, (34)

where A = (Apq)N×n, Apq = S̃q−1(f)(eiωp), and µ, b
are the columns given by

µ = [µ0 µ1 ... µn−1]
T ,

b = [S̃n(f)(eiω1) S̃n(f)(eiω2) ... S̃n(f)(eiωN )]T ,

T being the transposition.

The problem (34) is a typical least-squares problem,
since f(z),S(f)(z),...,Sn−1(f)(z) are independent. To
solve (34) is equivalent to solve

µN =

argmin
µ

1

N

N∑
k=1

|
n∑

l=1

µl−1S̃
l−1(f)(eiωk)− S̃n(f)(eiωk)|2,

(35)

whose normal equations are

RNµN =
1

N
AT b,

where RN = 1
NATA,

(RN )pq =
1

N

N∑
k=1

S̃p−1(f)(eiωk)S̃q−1(f)(eiωk), (36)

p, q = 1, 2, ..., n.

We have the following result.

Lemma 3 For the matrix RN defined by (36), there ex-
ists a matrix R∗, such that

R∗ = lim
N→∞

RN . (37)

Proof. It is easy to prove the result since Sp−1(f)(z)
(p = 1, ..., n) are rational. First we can see

lim
N→∞

S̃(f)(eiωk) = lim
N→∞

f(eiωk)− 1
N

∑N
l=1 f(e

iωl)

eiωk

=
f(eiωk)− 1

2π

∫ 2π

0
f(eiω)dω

eiωk

=
f(eiωk)− f(0)

eiωk

= S(f)(eiωk). (38)
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Therefore, according to (38), we have

lim
N→∞

S̃2(f)(eiωk) =
S(f)(eiωk)− S(f)(0)

eiωk

= S2(f)(eiωk).

Likewise, uniformly in k,

lim
N→∞

S̃p−1(f)(eiωk) = Sp−1(f)(eiωk).

It means for each element of RN ,

lim
N→∞

(RN )pq

= lim
N→∞

1

N

N∑
k=1

S̃p−1(f)(eiωk)S̃q−1(f)(eiωk)

=
1

2π

∫ 2π

0

Sp−1(f)(eiω)Sq−1(f)(eiω)dω.

Accordingly, RN converges when N → ∞. Denote

lim
N→∞

RN = R∗.

The proof is complete.

The rank of R∗ is n, because f,S(f), ...,Sn−1(f) are lin-
ear independent. Similarly, it can be proved there exists
a b∗ given by

b∗ = lim
N→∞

1

N
Ab.

From the proof of lemma 3, we notice if µ∗ is the true
solution of (30), then there holds

lim
N→∞

µN = µ∗. (39)

In the noise case, assume the noise {vk} is bounded.

Denote {S̃d(f)(e
iωk)}, {S̃2

d(f)(e
iωk)}, {S̃3

d(f)(e
iωk)},...,

{S̃n
d (f)(e

iωk)} as the data sets obtained through the
backward shift processes based on {Ek}Nk=1, i.e. cor-
rupted by noise. The following result states a property
of this algorithm.

Theorem 4 Suppose the noise {vk} is bounded by ϵ > 0,
that is, |vk| < ϵ. Let µ∗ be the true solution of (30),
R∗µ∗ = b∗, and µ′

N be the solution given by (35) with the

sequence of data {{S̃l
d(f)(e

iωk)}Nk=1}nl=1 then there holds

lim
ϵ→0,
N→∞

µ′
N = µ∗. (40)

Proof.

By substituting the measured data {Ek}Nk=1 in the back-
ward shift processes, the first data set is

S̃d(f)(e
iωk)

=
Ek − 1

N

∑N
l=1 El

eiωk

=
f(eiωk)− 1

N

∑N
l=1 f(e

iωl)

eiωk
+

vk − 1
N

∑N
l=1 vl

eiωk

= S̃(f)(eiωk) + S̃E(vk),

where S̃E(vk) stands for the error between S̃d(f)(e
iωk)

and S̃(f)(eiωk). We can see

lim
ϵ→0,
N→∞

S̃E(vk) = lim
ϵ→0,
N→∞

vk − 1
N

∑N
l=1 vl

eiωk
= 0. (41)

The other data sets can be obtained from the following
recursive formula, for m = 2, 3, ..., n,

S̃m
d (f)(eiωk) = S̃m(f)(eiωk) + S̃mE(vk), (42)

where

S̃m(f)(eiωk) =
S̃m−1(f)(eiωk)− 1

N

∑N
l=1 S̃

m−1(f)(eiωl)

ejωk
,

S̃mE(vk) =
S̃m−1E(vk)− 1

N

∑N
l=1 S̃

m−1E(vl)

eiωk
.

(43)

The error between S̃m
d (f)(eiωk) and S̃m(f)(eiωk) is

S̃mE(vk). From (41), by mathematical induction, we
also have

lim
ϵ→0,
N→∞

S̃mE(vk) = 0. (44)

The equations for µ are

(A+ δA)µ = b+ δb, (45)

where Apq = S̃q−1(f)(eiωp), δApq = S̃q−1E(vp)(p, q =
1, 2, ..., n) and

b = [S̃n(f)(eiω1) S̃n(f)(eiω2) ... S̃n(f)(eiωN )]T ,

δb = [S̃nE(v1) S̃nE(v2) ... S̃nE(vN )]T .

The normal equations become

(RN + δRN
)µ = b+ δb, (46)
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where

RN =
1

N
ATA,

δRN =
1

N
(AtδA + (δA)

TA+ (δA)
T δA),

b =
1

N
AT b,

δb =
1

N
((δA)

T b+ (δA)
T δb +Aδb).

Since each element of δA and δb tends to 0 as N → ∞
and ϵ → 0, besides each element of matrices A and b
converges, then from (41) and (44), we can see that

lim
ϵ→0,
N→∞

δRN
= 0, lim

ϵ→0,
N→∞

δb = 0. (47)

Let µN be the solution using data without noise and µ′
N

be solution with noise. That is,

RNµN = b,

(RN + δRN
)µ′

N = b+ δb.

By perturbation theory [24], there is a result

∥µ′
N−µN∥ ≤ ∥µN∥ κ(RN )

1− κ(RN )
∥δRN

∥
∥RN∥

(
∥δRN ∥
∥RN∥

+
∥δb∥
∥b∥

)
,

(48)
where κ(RN ) = ∥RN∥∥R−1

N ∥ is the condition number of
RN . We have the following error from µ′

N to µ∗

∥µ′
N − µ∗∥ ≤ ∥µ′

N − µN∥+ ∥µN − µ∗∥

≤ ∥µN∥ κ(RN )

1− κ(RN )
∥δRN

∥
∥RN∥

(
∥δRN ∥
∥RN∥

+
∥δb∥
∥b∥

)
+ ∥µN − µ∗∥, (49)

From (48), it can be seen that

lim
ϵ→0,
N→∞

∥µ′
N − µN∥ = 0; (50)

On the other hand, from (39), there holds

lim
N→∞

∥µN − µ∗∥ = 0. (51)

Therefore, we have

lim
ϵ→0,
N→∞

∥µ′
N − µ∗∥ = 0. (52)

The proof is complete.

The inequality (49) also gives the error estimation in the
matrix norm sense. Once µ′

N is obtained, the poles {ak}

can be acquired by solving equation (31) again. Using the
least-squares criterion with {Ek}Nk=1, the corresponding
coefficients can be obtained.

Remark 5 For order estimation of a rational function,
by perturbation theory of matrix, there is a minimal per-
turbation that affects the rank of a matrix. Assume that
the transfer function is of type (8) or (11), it is possible
to determine the order through backward shift operator.
We can repeat the shift processes, study the changes of
A’s rank in (34) and stop until A’s rank does not change
any more.

Remark 6 Observation and discussion show that if the
transfer functionG(z) is not a rational function, then the
proposed backward shift method for a prescribed n may
have no relevance with the solution of the best approxi-
mation to G(z) by rational functions of order not larger
than n ([2]), although it does give the unique solution
of the n-best approximation problem, that is G(z) itself,
when G(z) is a rational function of order n.

4 Numerical examples

In this section, we give some examples for illustrating
the proposed backward shift algorithm, the first one is

f(z) =

1

1− 0.5z
− 3

1 + 0.6z
+

2

1 + 0.7z
+

3− 5i

6(1− (0.5 + 0.3i)z)

+
3 + 5i

6(1− (0.5− 0.3i)z)
,

in which each pole is different.

Table 1
{ak} obtained in no noise case for example 1.

data number a1 a2 a3

15 −0.7068 −0.5854 0.4712 − 0.2740i

20 −0.7005 −0.5992 0.4975 − 0.2999i

25 −0.7 −0.6 0.4999 + 0.3i

28 −0.7 −0.6 0.5 + 0.3i

Table 2
Continued {ak} in no noise case for example 1.

data number a4 a5

15 0.4712 + 0.2740i 0.2623

20 0.4975 + 0.2999i 0.4893

25 0.4999 − 0.3i 0.4997

28 0.5 − 0.3i 0.5

Table 3
{ak} obtained for example 1 with noised data(m = 20).
SNR a1 a2 a3

10 −0.8194 − 0.0971i 0.5130 − 0.3587i −0.3527 + 0.1973i

20 −0.6620 − 0.0454i −0.6411 + 0.0888i 0.4526 + 0.2298i

30 −0.7195 + 0.0086i −0.5355 − 0.0331i 0.4767 − 0.2672i

40 −0.7208 + 0.0006i −0.5775 − 0.0001i 0.4874 − 0.2837i
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Table 4
Continued {ak} obtained for example 1 with noised
data(m = 20).

SNR a4 a5

10 0.4443 + 0.1699i 0.1049 + 0.3324i

20 0.4767 − 0.3016i 0.2041 − 0.2514i

30 0.4532 + 0.2650i 0.0802 + 0.1173i

40 0.4555 + 0.2930i 0.3667 + 0.0812i
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−0.5

0

0.5

1

1.5

2

2.5

3

real

im
ag

 

 

Original system
SNR=10
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SNR=40

Fig. 1. Comparison of different noised data with SNR=
10,20,30,40, respectively, for example 1. And the data num-
ber m=20.

Table 1 and 2 show the results in no noise case, we can
locate true poles of original system by using nomore than
30 frequency responses for example 1. Table 3 and 4 are
results by using the noised data (m=20) in each SNR
(signal-to-noise ratio) level. Figure 1 shows frequency
responses of approximating systems obtained by using
noised data in different levels of SNR. We can see the
approximations with order 5 is very good.

The second example is

f(z) =
1

1− 0.9048z
+

z2 − 1

(1− 0.3679z)2
, (53)

in which 0.3679 has multiplicity 2.

Table 5
{ak} obtained in no noise case for example 2.

data number a1 a2 a3

m=50 0.9040 0.3655 + 0.0346i 0.3655 − 0.0346i

m=80 0.9048 0.3679 − 0.0017i 0.3679 + 0.0017i

m=120 0.9048 0.3679 0.3679

Table 5 shows in the non-noise case, true solution can
be gained. Table 6 are the results using the noised data.
We can see the estimated poles are close to the original
ones. In Figure 2, it shows the frequency responses of
approximating systems obtained by using data added up
with Gaussian noise in different levels of SNR.

Table 6
{ak} obtained for example 2 with noised data.

SNR a1 a2 a3

10 0.8627 + 0.0008i −0.4135 + 0.0591i −0.0218 − 0.0374i

20 0.8657 −0.0898 − 0.1313i −0.0842 + 0.1163i

30 0.8800 0.2316 + 0.2253i 0.2229 − 0.2176i

40 0.8999 0.3537 + 0.0866i 0.3502 − 0.0865i
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Fig. 2. Approximations of different noised data with SNR=
10,20,30,40, respectively, for example 2.

In the third example, we compare our algorithm with
the existing algorithms given by [8] and [13]. We choose
a simple second order system for comparison. Consider

g(z) =
4

z − 0.5
+

5

z − 0.2
, (54)

for algorithms in [8] and [13], it is to estimate poles 0.5
and 0.2 with measured data. The function g(z) is ana-
lytic outside of the unit disc, by taking z = 1/z, then it
is analytic in the unit disc and the proper part is

f(z) =
4

1− 0.5z
+

5

1− 0.2z
, (55)

we are to estimate the points 0.5 and 0.2 of f(z) by the
proposed method. The results are shown in the table 7
and 8 for both noise and no noise cases, respectively. All
the data are equally spaced in the corresponding interval.
In the noise case, the data are added up with Gaussian
noise at SNR = 20. We can see our results are better.

Table 7
Results of a1 and a2 with no noise for example 3.
methods data a1 a2

Proposed 10 0.4999 0.1997

Proposed 15 0.5 0.2

Nara-Ando’s [13] 10 −0.9781 + 0.1564i 0.9646 − 0.0314i

Kang-Lee’s [8] 30 −0.9638 − 1.0765i −0.3846 + 0.8661i
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Table 8
Results of a1 and a2 with noise for example 3.

methods data a1 a2

Proposed 20 0.4935 + 0.0196i 0.2080 + 0.0193i

Nara-Ando’s [13] 50 0.8888 − 0.4782i −0.6116 + 0.6413i

Kang-Lee’s [8] 50 0.5384 + 0.6089i 0.0557 − 0.0774i

5 Conclusions

This paper presents a new method for estimating poles
of LTI systems by using backward shift operator. The
numerical results show this algorithm is practical. The
number of used data is not large. In fact, for the con-
jugate symmetry of the values on the unit circle of the
transfer function, it only needs data that in the interval
(0, π), the rest on the other half circle can be denoted to
be the conjugated value of the measured data, which de-
creases the cost of experiments. In each shift process, it
computes a mean of errors, this will contribute to elimi-
nate the large errors. From the illustrating examples, we
can see this algorithm is convenient and efficient.
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