A CLASS OF UNBOUNDED FOURIER MULTIPLIERS ON THE UNIT
COMPLEX BALL

PENGTAO LI, JIANHAO LV, AND TAO QIAN

AgsTRACT. In this paper, we introduce a class of Fourier multiplier operators M,
on n—complex unit sphere, where the symbol b € H*(S,). We obtained the
Sobolev boundedness of M,,. Our result implies that the operators M), take a role
of fractional differential operators on JB.

1. INTRODUCTION

In this paper, we introduce a class of unbounded holomorphic Fourier multi-
pliers M; on n—complex unit sphere. We further study the boundedness of M,
on Sobolev spaces. Our results generalize the theory of Fourier multipliers on
Lipschitz curves in C to n—complex unit sphere B,. We refer the reader to Gaudry-
Qian-Wang [3], Mclntosh-Qian [8], and Qian [9, 10] for further information on
multipliers on Lipschitz curves.

Our motivation originates from the following example on the unit sphere in C".
The explicit formula of the Cauchy-Szego kernel

- 1
H (Z7 ‘f ) = S —
Won-1 (1 — z&"y"
Let {p,} denote the orthonormal system in the space of holomorphic functions in
B,. The following result is well-known.

oo Ni
(L.1) Hz8 = ) > piph),z € By, £ € 3B,

k=0 v=1
See Theorem 2.1 and (2.4) below for details. Formally, (1.1) can be seen as the
special case of (1.2) below. Let S, be the sector defined as

Sw:{zeC: ziOandIargz|<w}.

Assume that
(1) b is holomorphic on S ,;
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(2) b is bounded near the origin;
(3) 1b(2)| < Clzl* for |z] > 1.

We consider the function:

00 Nk
(1.2) Hy(z.8) = > b(k) Y pl@pk(é).

k=1 v=1
If b(z) = 1, then (1.2) becomes (1.1). For s = 0, Cowling-Qian [1] introduced a
class of bounded holomorphic multipliers on L*(9B,,). In this paper, we consider
the case s # 0. For this case, b is unbounded on {z : |z| > 1}. We prove that if
b e H(S ), then

- Cy
|Hp(z, )| = —.
(5(v,/1’)|1 _ Zé‘:/|n+s

See Theorem 3.4.

In Section 4, we introduce a class of Fourier multipliers M, withb € H%(S ), s #
0. Unlike the ones of Cowling-Qian [1], our multipliers b are unbounded on S ,.
Take b(k) = k*. Plancherel’s theorem implies that M), is not bounded on L?(9B,,).
Hence for such M, we need to consider their boundedness on some function spaces
with higher regularity. Let r,s € [0,00). We prove that if b € H*(S,), Mp is
bounded from Sobolev space W”"*5(9B,,) to Sobolev space W’ (9B,), 1 < p < co.
Our result implies that the operators M, take a role of fractional differential opera-
tors on dB,,. See Theorem 4.5.

The rest of this paper is organized as follows. In Section 2, we state some
basic preliminaries and notations which will be used in the sequel. In Section 3,
we estimate the kernels generated by holomorphic multipliers b € H*(S ). The
Sobolev boundedness of the operators My, is given in Section 4.

Notations: U ~ V represents that there is a constant ¢ > 0 such that ¢™'V < U <
cV whose right inequality is also written as U < V. Similarly, one writes V > U for
V> cU.

2. PRELIMINARIES AND NOTATIONS

In this section we state some preliminaries and notations and refer the reader to
Gong [4], Hua [5] and Rudin [13] for further information. We use z as a general
element of C", i.e. z = (z1,-+-,21), 2 € C, i = 1,2,---,n, n > 2. Denote
zZ = [zZ1, - - zx]- The notation z is considered to be a row vector. Denote by B, the

n 172
open unit ball {z € C" : |z] < 1}, where |z| = ( D |zl~|2) / . The unit sphere in C" is
i=1
denoted by
OB, =s"={zeC": |7 =1].

The open ball centered at z with radius r will be denoted by B(z, ). A general ele-

ment on B, is usually denoted by £. The constant wy,—; involved in the Cauchy-
21"

Szegd kernel is the surface area of 9B, and is equal to - Forz,w € C", we use

the notation zw’ = 3} zxwk. The theory developed in this paper is relevant to the
1

n

k



UNBOUNDED FOURIER MULTIPLIERS ON THE UNIT COMPLEX BALL 3
radial Dirac operator
n
0
D = Z Zka— .
=l Zk
Now we state some basis knowledge of basis functions in the space of holomor-

phic function in B,, and some relevant function spaces on 0B,,. We refer to Hua [5]
for details. Let k be a nonnegative integer. We consider the colum vector z*! with

Components
’ ‘C! k k,
1 n —
kl'kn' 1

The dimension of z!¥ is
1
Ne=gqnn+ 1) (n+ k= 1) = kot

Let dz and do(¢) be the Lebesgue volume element of C* and the Lebesgue area
element of 0B, respectively. Define

H'f:f K Mg,

B,

Hj = f R M o (),
OB,

It is easy to prove that H ’f and H’zc are positive definite Hermitian matrices of order
Ny. There exists a matrix I" such that

[ HE T = A,
2.1 — ]1(
I"-Hy - T'=1,
where A = [BY,---, %] is a diagonal matrix and [ is the identity matrix. Set
2k = AT
f =& T.
Denote by p¥(z) the components of the vectors zyy. From (2.1), we can see that
2.2) f PY@PR)Z = 8y 61 By
B,
(2.3) f PUEPLEAT(E) = 61y - G-
B,

The following theorem is well known.
Theorem 2.1. The system of functions
(B 2pk k=012, v=1,2, Ny

is a complete orthonormal system in the space of holomorphic functions in B,,. The
system {p*} is orthonormal, but not complete in the space of continuous functions
on 0B,,.
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The explicit formula of the Cauchy-Szegé kernel

1

H ,_ = e
(z.6) i (=27

on dB, was first deduced in Hua [5] by using the system { p"f } and the relation

oo Ni

(2.4) HzE =) Y phph©.z e By é € B,

k=0 v=1
For z, w € B, |J 0B, the nonisotropic distance d(z, w) is defined as

dz,w) = |1 -]

It can be easily shown that d(:, -) is a metric on dB,,. For £ € B, and £ > 0, we
define the ball corresponding to d(-, ) as

S(&.€) = [n € By, d&n) <s}.

The complement set of S (¢, €) in 0B, is denoted by S (¢, €).

Set
A={f: fis holomorphic in B(0, 1 + 6) for some & > O}.
If f € A, then
oo Ni
=) el
k=0 v=0

where ¢y, are the Fourier coefficients of f:

o = f KO f©do@),
0B,

and for any positive integer /, the series

Ni

DK ewpl@

k=0  v=0

is uniformally and absolutely convergent in any compact ball contained in B(0, 1 +
0) in which f is defined.

Denote by U the unitary group of C" consisting of all unitary operators on the
Hilbert space C” under the complex inner product (z, w) = zw’. These are the linear
operators U that preserve inner products:

(Uz, Uw) ={(z, w).

Clearly, U is a compact subset of O(2n). It is easy to verify that A is invariant
under U € U. If f € A, then f is defined by its values on dB,,. In Section 3, we
treat f |sp, as identical to f € A.
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3. THE KERNEL GENERATED BY HOLOMORPHIC MULTIPLIERS
Set
Sy = {zeCIziOand|argz|<w},
Su@ = {z€Clz#0,|Re(s)| < mand |arg(+2)| < w},
= {reClz#0,[Re(@)| < 7and Im() > O} | S ,(m),

H, = {z€C|z=eiw,w€Ww(ﬂ)}.

W ()

The following function space is relevant:

Definition 3.1. Let -1 < s < 0. H*(S,,) is defined as the set of all holomorphic
functions in S, such that

(1) b is bounded for |z] < 1;
(2) b < Clzl*,z€ 84,0 < p < w.

Remark 3.2. The classes H*(S ) are generalizations of H*(S,) which is intro-
duced by A. MclIntosh and his collaborators. We refer to Li-McIntosh-Semmes
[6], MclIntosh [7], McIntosh-Qian [8], Qian [12] and the reference therein for fur-
ther information on H*(S ) .

Let -
en(2) = ) b,
k=1

Lemma 3.3. Let b € H*(S,), -1 < s < oo. Then ¢, can be holomorphically
extended to H,,. Moreover, forO <u<u’ <wandl=0,1,2,...,

I
d Cyl!

— Z 4
( dZ) (’Db( ) 51(#’/1;) |1 _ Z|l+l+x
where 6(u, u’) = min{%, tan(u, u'}; C, are the constants in Definition 3.1.
Proof. Let

< eH

Mo

vV, = {zeC:Im(z)>0}USwU(—Sw),
Ww:Vwﬁ{zeC: —ﬂsRezSﬂ}

and py is the ray r exp(if), 0 < r < co, where 6 is chosen so that pg € S ,. Define

Wy(z) = 1 f exp(iz)b(£)dé, z €V,
27 Jpio)

where exp(iz€) is exponentially decaying as & — oo along pg. Then we get

GD ™| = |5

L f exp(i€z) l2|"** b(é)dz
p(6)

Cw
S o f exp(—rlz| sin(d + arg 2))(rlz])*d(rlz])°*
0
< C,Lt”
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which implies [¥),(z)| < 1/]z|'**. Define

W@ =21 Y Wi+ 2nm), ze | ] @nr+W,).

n=—oo n=—o00
It is easy to see that ¥, is holomorphically and 27 -periodically defined in the
described region, and |y (z)| < 1/ |z]'*5. Let

1
ep(2) = Yo (g) .

For z € exp(iS ), we write z = e, where u € S,,. Then sin % < % This implies
that 2 — 2 cos |u| < |u|? and |1 — ™| < |u|. Therefore, (3.1) gives

Cu Cu
<
@2 Tioga = Togla™
Cu
|1 _ Z|1+S'

Take the ball
Bz ) =1{¢ 1 2= & < 8(u.p)1 ~ 2l}.
Applying Cauchy’s integral formula, we obtain

A ()
0y L e,
‘pb (Z) 2mi j(;B(z,r) (77 - Z)Hl T

For any 1 € dB(z, r), we have [n — z| > (1 — 6(u, 1’))|1 — z|. Then we have

BN arscse) 1

) w

W) s — f ——dn

"’ ‘ S, I = 2l | Japeery 11 = mlt*s
[!

51(/1,/.1’)” _ Z|l+1+s'

Theorem 3.4. Let b € H(S ) and

00 Nk .
Hyz8) = > b(k) Y pl@ph€), zeB,, £€ B,

k=1 v=1
Then
& 1 n—1 (n—1)
Hy(2,8) = ————("" @p(r))
(n = D!wzy-1 r=cf

is holomorphically defined for 7 € B, & € 0B, such that z&' € H,,, where @, is the
function defined in Lemma 3.3, Moreover, for 0 <u <y <wandl=0,1,2,...,

Cul!
8 ) |1 - 2
where 5(u, ') = min{1/2, tan(u’ — )}, C,» are the constant in the definition of the
function space H*(S ).

|DLH(z,8)| < & € H,

,|n+l+s ’
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Proof. Recall that
(o]
k.
ep(z) = Z b(k)z";
k=1
(o]
P lep(r) = ) blor .

k=1
Then we have

- (n-1) 1 >
= (" gn(r)) = =T ;b(k)(n k=D +k=2). . (k+ 1)t
- (n+k=-1)!
=Y bkyF———=
; (n—1)k!
_ Z (n+k-1n ;k —2)(n+ l)nb(k)rk,
k=1 :
Therefore,
1 4 (n-1) RS n+k-=Dn+k=2)n+Dn, _,
oy (7)) e ; b(k) T ()

0 Nk
w1 )b Y phpkE)
k=1 v=1

wan-1Hp(z, &).

O
By [10, Theorem 3], we could obtain the following result.
Theorem 3.5. Let s be an negative integer. If b € H(S , 1),
) N
Hy(z.8) = ) b)) Pi@p, &), z€ B, £ € 9B,
k=1 v=1
then .
1 _ G|l -8 +1]
|DLH,(z,8)| < _ .
‘Sl(ﬂaﬂ’)ll _ Z§/|n+l+s
Proof. The proof is similar to Theorem 3.4. we omit it. O

4. SOBOLEV SPACES AND UNBOUNDED FOURIER MULTIPLIERS

4.1. Integral representation of multipliers. Given b € H*(S,). We define an
Fourier multiplier operator M : A — A by

00 Nk
My(H)E) = D b(K) " ciupi(), & € TB,,

k=1 v=0
where {c,} are the Fourier coeflicients of the test function f € A.
For the above operator My, a Plemelj type formula holds.
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Theorem 4.1. Let b € H5(S,,),s > 0. Take bi(z) = z7°'b(z), where 51
Operator My, has a singular integral expression. For f € A,

MO = tim| [ HuEDD} fapdo
&= S(&.)

+(D3' )(€) Hy, (€, 7)do()),

S(&.€)

where fS € Hy, (&, m)do(n) is a bounded function of ¢ € 0B, and ¢.

Proof. Let
) N
My()(p€) = Y bk) Y cuupl(pé), & € 3By,
k=1 v=1
where

o = f KD fandem).
0B

n
Vll!12!~~l! Oz V172 "
_ hob oo k= =1 ke | I
= N leZ"lkzlzz 1%k Y1 n
. I L I}
lk) 102
\/11312...4".(2 n

k=1
= [

We can see that

D, Z[l]

which implies that D_p¥ = kp%. Then we have

) Nk .
Zb(k)Z f PO PR F o)

My (f)(p€)

- ks. f Pr(pe)e p() f (p)dor()

_ Zb k“ f PPEID PR fndr.
k=1

By integration by parts,

MDD = b Z | shiverwtano; papdotn
k=1

= Zbl(mz fa Bpf(pf)p’v‘(n)(Df,‘f)(n)do(n)-

= [s]+ 1.
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For any £ > 0, we have

My(F)pe) = fs o, HnlpE DD} fpdrn)
© Jy H 06D+ D et
PO [ Hpg o)
) S.e)
= II(P’ 8) + 12(p’ 8) + Dg-lf(éj)l3(p’ 8)9
where
hoo) = [ gD} 00
Bioe) = [ HuloE MDY@ + D} oo,
Kp.e) = Hy, (o€, Ao,
S(.e)

For p — 1 — 0, we have

lim Hy, (€, Dy f(mdor(m)
p—1-0 SeE,e)

f Hpy, (&, D3 FO)dor(y).
S(.e)

lim [
pigqo 1(0,€)

Now we consider I>(p, €). Let £ = [1,0,...,0]. For n € dB,,, write

m=ref n =vy,m3 =3, 00 = v
V= [V2,V3,..-,Vn]-

For such 57 € B, vi’ = 1 — r?. Without loss of generality, assume & = 1. We get

|1 - &7

which implies that

Y22 1= re)? = [(1 = reos 0 + (rsin 021 < g,

1+r2-¢
cosf > ———.
2r
The above estimate implies
1+ -¢&
S, e) = {77 [vi' =1-r%cosf > #}
2r
Since
e ——
——— <cosf <1,
2r

we obtain 1 — r < &2 and then

wW=1l-rr<l-(1-¢&)=2&-¢"
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Denote

1+r2-¢
2r ’

a=a(re) = arccos(

Since (1 — r)?> < &* and 1 — y = O(arccos? y), we geta = O(?). Tt is easy to see

n
E—nl = N—re’P+ " il
k=2
= (1+7r*=2rcosf)+(1—-r
= 2-2rcosf
and
d'&mn = 1+r*=2rcosf

(2=2rcos8) —(1-r%)
i —nl* = L+ (1 -r),

that is, d>(£, ) < |¢€ — . Because
d&n = [1+r2=2rcosd]'?>1-r,
then we have 1 — r < d2(§, 1), SO
& = nl* < d*Em + (1 + Nd*Em.
Since d*(¢,n) < 2, then
€ = nl* < 2%, m) + 2d%(E.1)) = 4d° (€, ),
that is

€ — 1l < 2d(&, 7).

Since f € A, we have

If&) = fOpl s 1€ =1l s d& ).

Forp € (0,1)
h.o) < fs e n| @ - riaoen
dE&n)
———d

L(g,g) |] — fl_]'|n 0-(77)

¢ 1
s ———dfdv.
fV‘V’SZSZ—a“ f—a |1 — rei9|"—1/2 v
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Forn = 2,
3/4
f dg < ( ! f ! dQ]
—a |1 2 172 ~ o\ 2a J_, ’1 _ rei6|2
3/4
[261 j:ﬂ |1 rez@| ]
3/4
< -
(2a) (1- r2)3/4
Then we get
1
neol s [t
Vi’ <2g2—g4 (1 — r2)3/4
1
< Sl/zf ﬁd
W <e2-gh (V) /
1 V22 gt ¢
= &£ \f(; @dt
S €-0

For n > 2, we have
n 1/2-2

a 1 |
ﬁa mde < ﬂ |1 re 19|n 1/2 |1 _ r2|n_1/2_2d9
1
i

|1 _ r2|n—1/2—1 ’
then we get
V2gZ—g*
lL(p, o)l < f an pr
0

Now we prove if p — 1 — 0, I3(p, €) has a limit uniformly bounded for & near 0.
Integrating as before, we have

Iip,e) = S(g)Hbl(Pé’,ﬁ)dU(n)

_ (n=1)
[ [ en)
W <224 J-a

Let s = pre®. Then ds = isdf. We get

. et (n-1)
L(p, &) = —i (s ©b, (s)) dsdv.
VW <2g2—g* Jpreia

dodv.

t=pre'
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By integration by parts, the inside integral with respect to the variable ¢ becomes

. (n—1)
f (7o, () o
—a t=pre’
- (n_k_l) pre[a ia
n—1 (tn I‘Pbl(t)) pre ‘Pbl(t)
= Z(k—l)! , +(n—1)! dr
=1 t pre—ia t

pre—ia

= D OE, + Lira).
1

S

>~
Il

We first estimate Jy,

fv‘v’SZa‘z—a“ S (preiia) @

. \k
(preila) |
s [ wen -
V' <2g2—gt (preim) |] _preiia n

1
< f v,
VW <2g2—g* |1 —preiia|

a2
Because |1 —prei’“| =1+ p?r? = 2prcosa,

dv

al2 al2
|1 —prei’“| - |1 - rei‘”| = p’r’ —2prcosa— (r* — 2rcosa)

= r2(p*-1)+2rcosa(l - p).

Since cosa = % we have
1 —,orei"“|2 - '1 - reﬂ'a|2 = PE-D+A+rr-H1-p)

= (1-pIl+r2-&"-1+pr]
= (1-p)1-prr-eYH>o.

So
|1 —preiml > |1 - rei’al =&

For k, when € — 0, we obtain

. 1
f Ji (prei’“) v S5 dv
Vi’ <2g2—g4 & V' <2g2—g4

|
n—
~ g2n-2k f 4 dr
8211—2

S =51
g2n—2k
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On the other hand

(n_l)!fpre 90171T(t)dl = i(n—l)!f ¢bl(t)|—pre’9

pre""’

A

1, (whenp — 0)

f L(pr, a)dv.
v <2e2—g*

4.2. Sobolev spaces on 0B, via Fourier mulitpliers. Sobolev spaces on the n-
complex unit sphere dB, are defined as follows. We define the fractional integral
operator J* on 0B, as follows. Let

that implies

O

oo Ng

f@) = Z Z ClPy(2).

k=0 v=0
For —co < s < o0, the operator 7° is defined by
co Ny

I'f@) = ). > Kenph).

k=0 v=0
For s € Z,, we can see that the operators J* become the ordinary differential
operators with higher orders.
Theorem 4.2. Let s € Z,. DS = I° on L*(9B,).

Proof. Without loss of generality, we assume that f € A. Then
oo Ni

=2 ek,

k=0 v=0
where cy,, are the Fourier coefficients of f:

o = f PO (©do©).
0B,

So

oo Ni
pif@ = 35 f PO FEdr @D

k=0 v=0

DY f PHOF@dr P,
k=0  v=0

O

Definition 4.3. Let s € [0, +o0). The Sobolev norm || - |ly2.5(gg,) on 0B, is defined
as

fllw2sam,) =: 127 flla < oo.
The Sobolev spaces on 9B, is defined as the closure of A under the norm || -

”W2 S(0By)? that is W2 S(aB ) ” HWZ’((’]BVL)
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Remark 4.4. By the Plancherel theorem, f € W>$(9B,,) if and only if

00 Ny 12
(DK D lewl) " <.
v=0

k=1
Now we consider the Sobolev boundedness of Mj,.

Theorem 4.5. Given r,s € [0, +o0) and b € H*(S ). The Fourier multiplier oper-
ator My, is bounded from W2r+(9B,,) to W' (0B),).

Proof. Write
oo Ng

I'f@ =) k@

k=0 v=0
By the orthogonality of { p’;}, we can see that ¢} = k’cy. Let b(z) = z27°b(2).
Because b € H*(S ), we can see that by € H*(S ,,). This implies that

Ni

i bR cxpk(€)
k=1 v=0

I"(Mp()(E)

Ni

i ik > cupl()
k=1

v=0
My, (I f)(é).
Finally, by [1, Theorem 3], we can see that

1Mp(Pllwar

17" (Mp( D2
= Mp, (T P2
CIL™ fllo.

IA

This completes the proof of Theorem 4.5.
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