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Abstract. In this paper, we introduce a class of Fourier multiplier operators Mb

on n−complex unit sphere, where the symbol b ∈ H s(S ω). We obtained the
Sobolev boundedness of Mb. Our result implies that the operators Mb take a role
of fractional differential operators on ∂B.

1. Introduction

In this paper, we introduce a class of unbounded holomorphic Fourier multi-
pliers Mb on n−complex unit sphere. We further study the boundedness of Mb
on Sobolev spaces. Our results generalize the theory of Fourier multipliers on
Lipschitz curves in C to n−complex unit sphere Bn. We refer the reader to Gaudry-
Qian-Wang [3], McIntosh-Qian [8], and Qian [9, 10] for further information on
multipliers on Lipschitz curves.

Our motivation originates from the following example on the unit sphere in Cn.
The explicit formula of the Cauchy-Szegö kernel

H(z, ξ) =
1

ω2n−1

1

(1 − zξ′)n
.

Let {pv
k} denote the orthonormal system in the space of holomorphic functions in

Bn. The following result is well-known.

(1.1) H(z, ξ) =
∞∑

k=0

Nk∑
v=1

pk
v(z)pk

v(ξ), z ∈ Bn, ξ ∈ ∂Bn

See Theorem 2.1 and (2.4) below for details. Formally, (1.1) can be seen as the
special case of (1.2) below. Let Sω be the sector defined as

Sω =
{
z ∈ C : z , 0 and | arg z| < ω

}
.

Assume that
(1) b is holomorphic on Sω;
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(2) b is bounded near the origin;
(3) |b(z)| ≤ C|z|s for |z| > 1.

We consider the function:

(1.2) Hb(z, ξ) =
∞∑

k=1

b(k)
Nk∑

v=1

pk
v(z)pk

v(ξ).

If b(z) ≡ 1, then (1.2) becomes (1.1). For s = 0, Cowling-Qian [1] introduced a
class of bounded holomorphic multipliers on L2(∂Bn). In this paper, we consider
the case s , 0. For this case, b is unbounded on {z : |z| > 1}. We prove that if
b ∈ Hs(Sω), then

|Hb(z, ξ)| =
Cµ′

δ(ν, µ′)|1 − zξ′|n+s
.

See Theorem 3.4.
In Section 4, we introduce a class of Fourier multipliers Mb with b ∈ Hs(Sω), s ,

0. Unlike the ones of Cowling-Qian [1], our multipliers b are unbounded on Sω.
Take b(k) = ks. Plancherel’s theorem implies that Mb is not bounded on L2(∂Bn).
Hence for such Mb, we need to consider their boundedness on some function spaces
with higher regularity. Let r, s ∈ [0,∞). We prove that if b ∈ Hs(Sω), Mb is
bounded from Sobolev space W p,r+s(∂Bn) to Sobolev space W p,r(∂Bn), 1 < p < ∞.
Our result implies that the operators Mb take a role of fractional differential opera-
tors on ∂Bn. See Theorem 4.5.

The rest of this paper is organized as follows. In Section 2, we state some
basic preliminaries and notations which will be used in the sequel. In Section 3,
we estimate the kernels generated by holomorphic multipliers b ∈ Hs(Sω). The
Sobolev boundedness of the operators Mb is given in Section 4.

Notations: U ≈ V represents that there is a constant c > 0 such that c−1V ≤ U ≤
cV whose right inequality is also written as U . V. Similarly, one writes V & U for
V ≥ cU.

2. Preliminaries and notations

In this section we state some preliminaries and notations and refer the reader to
Gong [4], Hua [5] and Rudin [13] for further information. We use z as a general
element of Cn, i.e. z = (z1, · · · , zn), zi ∈ C, i = 1, 2, · · · , n, n ≥ 2. Denote
z = [z1, · · · zn]. The notation z is considered to be a row vector. Denote by Bn the

open unit ball {z ∈ Cn : |z| < 1}, where |z| =
( n∑

i=1
|zi|2

)1/2
. The unit sphere in Cn is

denoted by
∂Bn = S

2n−1 =
{
z ∈ Cn : |z| = 1

}
.

The open ball centered at z with radius r will be denoted by B(z, r). A general ele-
ment on ∂Bn is usually denoted by ξ. The constant ω2n−1 involved in the Cauchy-
Szegö kernel is the surface area of ∂Bn and is equal to 2πn

Γ(n) . For z,w ∈ Cn, we use

the notation zw′ =
n∑

k=1
zkwk. The theory developed in this paper is relevant to the
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radial Dirac operator

D =
n∑

k=1

zk
∂

∂zk
.

Now we state some basis knowledge of basis functions in the space of holomor-
phic function in Bn and some relevant function spaces on ∂Bn. We refer to Hua [5]
for details. Let k be a nonnegative integer. We consider the colum vector z[k] with
components √

k!
k1! · · · kn!

zk1
1 · · · z

kn
n , k1 + · · · kn = k.

The dimension of z[k] is

Nk =
1
k!

n(n + 1) · (n + k − 1) = Ck
n+k−1.

Let dz and dσ(ξ) be the Lebesgue volume element of Cn and the Lebesgue area
element of ∂Bn, respectively. Define

Hk
1 =

∫
Bn

z[k]′ · z[k]dz,

Hk
2 =

∫
∂Bn

ξ[k]′ · ξ[k]dσ(ξ).

It is easy to prove that Hk
1 and Hk

2 are positive definite Hermitian matrices of order
Nk. There exists a matrix Γ such that

(2.1)

Γ′ · Hk
1 · Γ = Λ,

Γ′ · Hk
2 · Γ = I,

where Λ = [βk
1, · · · , βk

n] is a diagonal matrix and I is the identity matrix. Set z[k] = z[k] · Γ;
ξ[k] = ξ

[k] · Γ.

Denote by pk
v(z) the components of the vectors z[k]. From (2.1), we can see that∫

Bn

pk
v(z)pk

µ(z)dz = δvµ · δkl · βk
v,(2.2) ∫

∂Bn

pk
v(ξ)pk

µ(ξ)dσ(ξ) = δvµ · δkl.(2.3)

The following theorem is well known.

Theorem 2.1. The system of functions{
(βk
ν)
− 1

2 pk
ν, k = 0, 1, 2, · · · , ν = 1, 2, · · · ,Nk

}
is a complete orthonormal system in the space of holomorphic functions in Bn. The
system {pk

ν} is orthonormal, but not complete in the space of continuous functions
on ∂Bn.
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The explicit formula of the Cauchy-Szegö kernel

H(z, ξ) =
1

ω2n−1

1

(1 − zξ′)n

on ∂Bn was first deduced in Hua [5] by using the system {pk
v} and the relation

(2.4) H(z, ξ) =
∞∑

k=0

Nk∑
v=1

pk
v(z)pk

v(ξ), z ∈ Bn, ξ ∈ Bn.

For z, ω ∈ Bn
∪
∂Bn, the nonisotropic distance d(z, ω) is defined as

d(z, ω) =
∣∣∣1 − zω̄′

∣∣∣1/2 .
It can be easily shown that d(·, ·) is a metric on ∂Bn. For ξ ∈ ∂Bn and ε > 0, we
define the ball corresponding to d(·, ·) as

S (ξ, ε) =
{
η ∈ ∂Bn, d(ξ, η) ≤ ε

}
.

The complement set of S (ξ, ε) in ∂Bn is denoted by S c(ξ, ε).
Set

A =
{
f : f is holomorphic in B(0, 1 + δ) for some δ > 0

}
.

If f ∈ A, then

f (z) =
∞∑

k=0

Nk∑
v=0

ckv pk
v(z),

where ckv are the Fourier coefficients of f :

ckv =

∫
∂Bn

pk
v(ξ) f (ξ)dσ(ξ),

and for any positive integer l, the series

∞∑
k=0

kl
Nk∑

v=0

ckv pk
v(z)

is uniformally and absolutely convergent in any compact ball contained in B(0, 1+
δ) in which f is defined.

Denote by U the unitary group of Cn consisting of all unitary operators on the
Hilbert space Cn under the complex inner product ⟨z,w⟩ = zw′. These are the linear
operators U that preserve inner products:

⟨Uz, Uw⟩ = ⟨z, w⟩.

Clearly, U is a compact subset of O(2n). It is easy to verify that A is invariant
under U ∈ U. If f ∈ A, then f is defined by its values on ∂Bn. In Section 3, we
treat f |∂Bn as identical to f ∈ A.
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3. The kernel generated by holomorphic multipliers

Set

Sω =
{
z ∈ C | z , 0 and | arg z| < ω

}
,

Sω(π) =
{
z ∈ C | z , 0, |Re(z)| ≤ π and | arg(±z)| < ω

}
,

Wω(π) =
{
z ∈ C | z , 0, |Re(z)| ≤ π and Im(z) > 0

}∪
Sω(π),

Hω =
{
z ∈ C | z = eiω, ω ∈ Wω(π)

}
.

The following function space is relevant:

Definition 3.1. Let −1 < s < ∞. Hs(Sω) is defined as the set of all holomorphic
functions in Sω such that

(1) b is bounded for |z| ≤ 1;
(2) |b(z)| ≤ Cµ|z|s, z ∈ S µ, 0 < µ < ω.

Remark 3.2. The classes Hs(Sω) are generalizations of H∞(Sω) which is intro-
duced by A. McIntosh and his collaborators. We refer to Li-McIntosh-Semmes
[6], McIntosh [7], McIntosh-Qian [8], Qian [12] and the reference therein for fur-
ther information on H∞(Sω) .

Let

φb(z) =
∞∑

k=1

b(k)zk.

Lemma 3.3. Let b ∈ Hs(Sω), −1 < s < ∞. Then φb can be holomorphically
extended to Hω. Moreover, for 0 < µ < µ′ < ω and l = 0, 1, 2, . . . ,∣∣∣∣∣∣∣

(
z

d
dz

)l

φb(z)

∣∣∣∣∣∣∣ . Cµ′ l!

δl(µ, µ′) |1 − z|l+1+s , z ∈ Hµ,

where δ(µ, µ′) = min{12 , tan(µ, µ′}; Cµ′ are the constants in Definition 3.1.

Proof. Let
Vω =

{
z ∈ C : Im(z) > 0

}∪
Sω

∪
(−Sω),

Wω = Vω ∩
{
z ∈ C : −π ≤ Rez ≤ π

}
and ρθ is the ray r exp(iθ), 0 < r < ∞, where θ is chosen so that ρθ ( Sω. Define

Ψb(z) =
1

2π

∫
ρ(θ)

exp(iξz)b(ξ)dξ, z ∈ Vω,

where exp(izξ) is exponentially decaying as ξ → ∞ along ρθ. Then we get∣∣∣|z|1+sΨb(z)
∣∣∣ = ∣∣∣∣∣∣ 1

2π

∫
ρ(θ)

exp(iξz) |z|1+s b(ξ)dz

∣∣∣∣∣∣(3.1)

.
Cµ′

2π

∫ ∞

0
exp(−r|z| sin(θ + arg z))(r|z|)sd(r|z|)s

. Cµ′ ,
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which implies |Ψb(z)| . 1/|z|1+s. Define

ψb(z) = 2π
∞∑

n=−∞
Ψb(z + 2nπ), z ∈

∞∪
n=−∞

(2nπ +Wω).

It is easy to see that ψb is holomorphically and 2π -periodically defined in the
described region, and |ψb(z)| . 1/|z|1+s. Let

φb(z) = ψb

(
log z

i

)
.

For z ∈ exp(iSω), we write z = eiu, where u ∈ Sω. Then sin |u|2 .
|u|
2 . This implies

that 2 − 2 cos |u| . |u|2 and |1 − ei|u|| . |u|. Therefore, (3.1) gives

|φb(z)| .
Cµ′

| log z|1+s .
Cµ′

| log |z||1+s

.
Cµ′

|1 − z|1+s .

Take the ball

B(z, r) =
{
ξ : |z − ξ| < δ(µ, µ′)|1 − z|

}
.

Applying Cauchy’s integral formula, we obtain

φ(l)
b (z) =

l!
2πi

∫
∂B(z,r)

φ(η)
(η − z)1+l dη.

For any η ∈ ∂B(z, r), we have |η − z| ≥ (1 − δ(µ, µ′))|1 − z|. Then we have∣∣∣∣φ(l)
b (z)

∣∣∣∣ . l!∥b∥Hs(S c
ω)

δl(µ, µ′)|1 − z|l

∣∣∣∣∣∣
∫
∂B(z,r)

1
|1 − η|1+s dη

∣∣∣∣∣∣
.

l!
δl(µ, µ′)|1 − z|l+1+s .

�

Theorem 3.4. Let b ∈ Hs(Sω) and

Hb(z, ξ̄) =
∞∑

k=1

b(k)
Nk∑

v=1

pk
v(z)pk

v(ξ), z ∈ Bn, ξ ∈ ∂Bn.

Then

Hb(z, ξ) =
1

(n − 1)!ω2n−1
(rn−1φb(r))(n−1)

∣∣∣∣∣
r=zξ̄′

is holomorphically defined for z ∈ Bn, ξ ∈ ∂Bn such that zξ̄′ ∈ Hω, where φb is the
function defined in Lemma 3.3, Moreover, for 0 < µ < µ′ < ω and l = 0, 1, 2, . . . ,∣∣∣Dl

zHb(z, ξ̄)
∣∣∣ . Cµ′ l!

δl(µ, µ′)
∣∣∣1 − zξ̄′

∣∣∣n+l+s , zξ̄′ ∈ Hµ,

where δ(µ, µ′) = min{1/2, tan(µ′ − µ)}, Cµ′ are the constant in the definition of the
function space Hs(Sω).
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Proof. Recall that 
φb(z) =

∞∑
k=1

b(k)zk;

rn−1φb(r) =
∞∑

k=1

b(k)rn+k−1.

Then we have
1

(n − 1)!

(
rn−1φb(r)

)(n−1)
=

1
(n − 1)!

∞∑
k=1

b(k)(n + k − 1)(n + k − 2) . . . (k + 1)rk

=

∞∑
k=1

b(k)rk (n + k − 1)!
(n − 1)!k!

=

∞∑
k=1

(n + k − 1)(n + k − 2)(n + 1)n
k!

b(k)rk,

Therefore,

1
(n − 1)!

(
rn−1φb(r)

)(n−1)
∣∣∣∣∣
r=zξ̄′

=

∞∑
k=1

b(k)
(n + k − 1)(n + k − 2)(n + 1)n

k!
(zξ̄′)k

= ω2n−1

∞∑
k=1

b(k)
Nk∑

v=1

pk
v(z)pk

v(ξ)

= ω2n−1Hb(z, ξ̄).

�

By [10, Theorem 3], we could obtain the following result.

Theorem 3.5. Let s be an negative integer. If b ∈ Hs(Sω,±),

Hb(z, ξ) =
∞∑

k=1

b(k)
Nk∑

v=1

pk
v(z)pl

µ(ξ), z ∈ B, ξ ∈ ∂Bn,

then ∣∣∣Dl
zHb(z, ξ̄)

∣∣∣ . Cµl!
[
| ln |1 − zξ̄′|| + 1

]
δl(µ, µ′)|1 − zξ̄′|n+l+s

.

Proof. The proof is similar to Theorem 3.4. we omit it. �

4. Sobolev spaces and unbounded Fourier multipliers

4.1. Integral representation of multipliers. Given b ∈ Hs(Sω). We define an
Fourier multiplier operator Mb : A → A by

Mb( f )(ξ) =
∞∑

k=1

b(k)
Nk∑

v=0

ckv pk
v(ξ), ξ ∈ ∂Bn,

where {ckv} are the Fourier coefficients of the test function f ∈ A.
For the above operator Mb, a Plemelj type formula holds.
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Theorem 4.1. Let b ∈ Hs(Sω), s > 0. Take b1(z) = z−s1b(z), where s1 = [s] + 1.
Operator Mb has a singular integral expression. For f ∈ A,

Mb( f )(ξ) = lim
ε→0

[ ∫
S c(ξ,ε)

Hb1(ξ, η)Ds1
η f (η)dσ(η)

+(Ds1
z f )(ξ)

∫
S c(ξ,ε)

Hb1(ξ, η)dσ(η)
]
,

where
∫

S (ξ,ε) Hb1(ξ, η)dσ(η) is a bounded function of ξ ∈ ∂Bn and ε.

Proof. Let

Mb( f )(ρξ) =
∞∑

k=1

b(k)
Nk∑

v=1

ckv pk
v(ρξ), ξ ∈ ∂Bn,

where

ckv =

∫
∂B

pk
v(η) f (η)dσ(η).

We can see that

Dzz[l] =

√
l!

l1!l2! · · · ln!

n∑
k=1

zk
∂

∂zk

(
zl1

1 zl2
2 · · · z

ln
n

)
=

√
l!

l1!l2! · · · ln!

n∑
k=1

zklkzl1
1 zl2

2 · · · z
lk−1
k−1zlk−1

k zlk+1
k+1 · · · z

ln
n

=

√
l!

l1!l2! · · · ln!

( n∑
k=1

lk
)
zl1

1 zl2
2 · · · z

ln
n

= lz[l],

which implies that Dz pk
v = kpk

v. Then we have

Mb( f )(ρξ) =
∞∑

k=1

b(k)
Nk∑

v=1

∫
∂B

pk
v(ρξ)pk

v(η) f (η)dσ(η)

=

∞∑
k=1

b(k)
1

ks1

Nk∑
v=1

∫
∂B

pk
v(ρξ)ks1 pk

v(η) f (η)dσ(η)

=

∞∑
k=1

b(k)
1

ks1

Nk∑
v=1

∫
∂B

pk
v(ρξ)Ds1

η pk
v(η) f (η)dσ(η).

By integration by parts,

Mb( f )(ρξ) =
∞∑

k=1

b(k)
1

ks1

Nk∑
v=1

∫
∂B

pk
v(ρξ)pk

v(η)(Ds1
η f )(η)dσ(η)

=

∞∑
k=1

b1(k)
Nk∑

v=1

∫
∂B

pk
v(ρξ)pk

v(η)(Ds1
η f )(η)dσ(η).
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For any ε > 0, we have

Mb( f )(ρξ) =

∫
S c(ξ,ε)

Hb1(ρξ, η̄)Ds1
η f (η)dσ(η)

+

∫
S (ξ,ε)

Hb1(ρξ, η̄)(−Ds1
ξ f (ξ) + Ds1

η f (η))dσ(η)

+ Ds1
ξ f (ξ)

∫
S (ξ,ε)

Hb1(ρξ, η̄)dσ(η)

=: I1(ρ, ε) + I2(ρ, ε) + Ds1
ξ f (ξ)I3(ρ, ε),

where

I1(ρ, ε) =
∫

S c(ξ,ε)
Hb1(ρξ, η̄)Ds1

η f (η)dσ(η),

I2(ρ, ε) =
∫

S (ξ,ε)
Hb1(ρξ, η̄)(−Ds1

ξ f (ξ) + Ds1
η f (η))dσ(η),

I3(ρ, ε) =
∫

S (ξ,ε)
Hb1(ρξ, η̄)dσ(η).

For ρ→ 1 − 0, we have

lim
ρ→1−0

I1(ρ, ε) = lim
ρ→1−0

∫
S c(ξ,ε)

Hb1(ρξ, η̄)Ds1
η f (η)dσ(η)

=

∫
S c(ξ,ε)

Hb1(ξ, η̄)Ds1
η f (η)dσ(η).

Now we consider I2(ρ, ε). Let ξ = [1, 0, . . . , 0]. For η ∈ ∂Bn, writeη1 = reiθ, η2 = v2, η3 = v3, . . . , ηn = vn;
v = [v2, v3, . . . , vn].

For such η ∈ ∂Bn, vv̄′ = 1 − r2. Without loss of generality, assume ξ = 1. We get∣∣∣1 − ξη̄′∣∣∣1/2 = ∣∣∣1 − reiθ
∣∣∣1/2 = [(1 − r cos θ)2 + (r sin θ)2]1/4 ≤ ε,

which implies that

cos θ ≥ 1 + r2 − ε4

2r
.

The above estimate implies

S (ξ, ε) =
{
η | vv̄′ = 1 − r2, cos θ ≥ 1 + r2 − ε4

2r

}
.

Since
1 + r2 − ε4

2r
≤ cos θ ≤ 1,

we obtain 1 − r ≤ ε2 and then

vv̄′ = 1 − r2 ≤ 1 − (1 − ε2)2 = 2ε2 − ε4.
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Denote

a = a(r, ε) = arccos
(
1 + r2 − ε4

2r

)
.

Since (1 − r)2 ≤ ε4 and 1 − y = O(arccos2 y), we get a = O(ε2). It is easy to see

|ξ − η|2 = |1 − reiθ|2 +
n∑

k=2

|vk|2

= (1 + r2 − 2r cos θ) + (1 − r2)
= 2 − 2r cos θ

and

d4(ξ, η) = 1 + r2 − 2r cos θ
= (2 − 2r cos θ) − (1 − r2)
= |ξ − η|2 − (1 + r)(1 − r),

that is, d2(ξ, η) ≤ |ξ − η|. Because

d2(ξ, η) = [1 + r2 − 2r cos θ]1/2 ≥ 1 − r,

then we have 1 − r ≤ d2(ξ, η), so

|ξ − η|2 ≤ d4(ξ, η) + (1 + r)d2(ξ, η).

Since d2(ξ, η) ≤ 2, then

|ξ − η|2 ≤ 2d2(ξ, η) + 2d2(ξ, η) = 4d2(ξ, η),

that is

|ξ − η| ≤ 2d(ξ, η).

Since f ∈ A, we have

| f (ξ) − f (η)| . |ξ − η| . d(ξ, η).

For ρ ∈ (0, 1)

|I2(ρ, ε)| .
∫

S (ξ,ε)

∣∣∣Hb1(ρξ, η̄)
∣∣∣ | f (ξ) − f (η)| dσ(η)

.
∫

S (ξ,ε)

d(ξ, η)
|1 − ξη̄′|n dσ(η)

.
∫

vv̄′≤2ε2−ε4

∫ a

−a

1∣∣∣1 − reiθ
∣∣∣n−1/2 dθdv.
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For n = 2,

1
2a

∫ a

−a

1∣∣∣1 − reiθ
∣∣∣2−1/2 dθ ≤

 1
2a

∫ a

−a

1∣∣∣1 − reiθ
∣∣∣2 dθ

3/4

≤
 1

2a

∫ π

−π

1∣∣∣1 − reiθ
∣∣∣2 dθ

3/4

≤
(

1
2a

)3/4 1(
1 − r2)3/4 .

Then we get

|I2(ρ, ε)| .
∫

vv̄′≤2ε2−ε4
a1/4 1(

1 − r2)3/4 dv

. ε1/2
∫

vv̄′≤2ε2−ε4

1
(vv̄′)3/4 dv

= ε1/2
∫ √

2ε2−ε4

0

t
t3/2 dt

. ε→ 0

For n > 2, we have∫ a

−a

1∣∣∣1 − reiθ
∣∣∣n−1/2 dθ .

∫ a

−a

∣∣∣1 − r2
∣∣∣n−1/2−2∣∣∣1 − reiθ
∣∣∣n−1/2

1∣∣∣1 − r2
∣∣∣n−1/2−2 dθ

.
1∣∣∣1 − r2
∣∣∣n−1/2−1

∫ π

−π

1∣∣∣1 − reiθ
∣∣∣2 dθ

.
1∣∣∣1 − r2
∣∣∣n−1/2−1 ,

then we get

|I2(ρ, ε)| .
∫ √

2ε2−ε4

0
t2n−3 1

t2n−3 dt .
√

2ε2 → 0.

Now we prove if ρ → 1 − 0, I3(ρ, ε) has a limit uniformly bounded for ε near 0.
Integrating as before, we have

I3(ρ, ε) =
∫

S (ξ,ε)
Hb1(ρξ, η̄)dσ(η)

=

∫
vv̄′≤2ε2−ε4

∫ a

−a

(
tn−1φb1(t)

)(n−1)
∣∣∣∣∣
t=ρreiθ

dθdv.

Let s = ρreiθ. Then ds = isdθ. We get

I3(ρ, ε) = −i
∫

vv̄′≤2ε2−ε4

∫ ρreia

ρre−ia

(
sn−1φb1(s)

)(n−1)
dsdv.
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By integration by parts, the inside integral with respect to the variable t becomes∫ a

−a

(
tn−1φb1(t)

)(n−1)
∣∣∣∣∣
t=ρreiθ

dθ

=

n−1∑
k=1

(k − 1)!

(
tn−1φb1(t)

)(n−k−1)

tk


∣∣∣∣∣∣∣∣∣
ρreia

ρre−ia

+ (n − 1)!
∫ ρreia

ρre−ia

φb1(t)
t

dt

=

n−1∑
k=1

[Jk(t)]ρreia

ρre−ia + L(r, a).

We first estimate Jk,∫
vv̄′≤2ε2−ε4

Jk
(
ρre±ia

)
dv

.
∫

vv̄′≤2ε2−ε4
(k − 1)!

(
ρre±ia

)k(
ρre±ia)k

1∣∣∣1 − ρre±ia
∣∣∣n−k dv

.
∫

vv̄′≤2ε2−ε4

1∣∣∣1 − ρre±ia
∣∣∣n−k dv.

Because
∣∣∣1 − ρre±ia

∣∣∣2 = 1 + ρ2r2 − 2ρr cos a,∣∣∣1 − ρre±ia
∣∣∣2 − ∣∣∣1 − re±ia

∣∣∣2 = ρ2r2 − 2ρr cos a − (r2 − 2r cos a)

= r2(ρ2 − 1) + 2r cos a(1 − ρ).

Since cos a = 1+r2−ε4

2r , we have∣∣∣1 − ρre±ia
∣∣∣2 − ∣∣∣1 − re±ia

∣∣∣2 = r2(ρ2 − 1) + (1 + r2 − ε4)(1 − ρ)

= (1 − ρ)[1 + r2 − ε4 − (1 + ρ)r2]
= (1 − ρ)(1 − ρr2 − ε4) > 0.

So ∣∣∣1 − ρre±ia
∣∣∣ ≥ ∣∣∣1 − re±ia

∣∣∣ = ε2.

For k, when ε→ 0, we obtain∫
vv̄′≤2ε2−ε4

Jk
(
ρre±ia

)
dv .

1
ε2n−2k

∫
vv̄′≤2ε2−ε4

dv

.
1

ε2n−2k

∫ √
2ε2−ε4

0
t2n−3dt

.
ε2n−2

ε2n−2k . 1.
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On the other hand

(n − 1)!
∫ ρreia

ρre−ia

φb1(t)
t

dt = i(n − 1)!
∫ a

−a
φb1(t)

∣∣∣
t=ρreiθ dθ

. 1, ( when ρ→ 0)

that implies ∫
vv̄′≤2ε2−ε4

L(ρr, a)dv.

�

4.2. Sobolev spaces on ∂Bn via Fourier mulitpliers. Sobolev spaces on the n-
complex unit sphere ∂Bn are defined as follows. We define the fractional integral
operator Is on ∂Bn as follows. Let

f (z) =
∞∑

k=0

Nk∑
v=0

ckv pk
v(z).

For −∞ < s < ∞, the operator Is is defined by

Is f (z) =
∞∑

k=0

Nk∑
v=0

ksckv pk
v(z).

For s ∈ Z+, we can see that the operators Is become the ordinary differential
operators with higher orders.

Theorem 4.2. Let s ∈ Z+. Ds
z = Is on L2(∂Bn).

Proof. Without loss of generality, we assume that f ∈ A. Then

f (z) =
∞∑

k=0

Nk∑
v=0

ckv pk
v(z),

where ckv are the Fourier coefficients of f :

ckv =

∫
∂Bn

pk
v(ξ) f (ξ)dσ(ξ).

So

Ds
z f (z) =

∞∑
k=0

Nk∑
v=0

∫
∂Bn

pk
v(ξ) f (ξ)dσ(ξ)Ds

z(pk
v)(z)

=

∞∑
k=0

ks
Nk∑

v=0

∫
∂Bn

pk
v(ξ) f (ξ)dσ(ξ)pk

v(z).

�

Definition 4.3. Let s ∈ [0,+∞). The Sobolev norm ∥ · ∥W2,s(∂Bn) on ∂Bn is defined
as

∥ f ∥W2,s(∂Bn) =: ∥Is f ∥2 < ∞.
The Sobolev spaces on ∂Bn is defined as the closure of A under the norm ∥ ·
∥W2,s(∂Bn), that is W2,s(∂Bn) = A∥·∥W2,s(∂Bn) .
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Remark 4.4. By the Plancherel theorem, f ∈ W2,s(∂Bn) if and only if( ∞∑
k=1

k2s
Nk∑

v=0

|ckv|2
)1/2

< ∞.

Now we consider the Sobolev boundedness of Mb.

Theorem 4.5. Given r, s ∈ [0,+∞) and b ∈ Hs(Sω). The Fourier multiplier oper-
ator Mb is bounded from W2,r+s(∂Bn) to W2,r(∂Bn).

Proof. Write

Is f (z) =
∞∑

k=0

Nk∑
v=0

cs
kv pk

v(z).

By the orthogonality of {pk
v}, we can see that cs

kv = ksckv. Let b(z) = z−sb(z).
Because b ∈ Hs(Sω), we can see that b1 ∈ H∞(Sω). This implies that

Ir(Mb( f ))(ξ) =
∞∑

k=1

b(k)kr
Nk∑

v=0

ckv pk
v(ξ)

=

∞∑
k=1

b1(k)kr+s
Nk∑

v=0

ckv pk
v(ξ)

= Mb1(Ir+s f )(ξ).

Finally, by [1, Theorem 3], we can see that

∥Mb( f )∥W2,r = ∥Ir(Mb( f ))∥2
= ∥Mb1(Ir+s f )∥2
≤ C∥Ir+s f ∥2.

This completes the proof of Theorem 4.5.
�
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